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In this paper, we study graph translation surfaces in a 3-dimensional Lorentz-Heisenberg
3-space H3. The classification theorems of the considered surfaces with zero and
nonzero mean and Gaussian curvatures are given. Contrary to the Euclidean case, there
is evidence that , translation surfaces with constant Gaussian curvature K that are not
cylindrical surfaces, with constant mean curvature H ̸= 0 which are not settled.

1. Introduction

In classical differential geometry, the problem of obtaining the mean curvature H and Gaussian curvature K of a
surface in the three dimensional Euclidian space E3 and in other spaces is one of the most important problems.

In particular, for the immersed graph z into E3, such a problem is reduced to solve the Monge-Ampère equation
given by ( [1], [2])

det(
∂ z

∂x∂y
) = K(1+ |∇z| 2)2,

and the equation of mean curvature type in divergence form

div(
∇z√

1+ |∇z|2
) = H,

where ∇ denotes the gradient of E2 ( [3], [4], [5]).
An interesting class of surfaces in E3 is that of the graph tanslation surfaces, which can be locally parametrized

as
r(s, t) = (s, t,u(s)+ v(t)),

where u and v are smooth functions of a single variable.

Such a surfaces has been invertigated from various points of view by many geometers. One of the famous
examples of minimal surfaces in E3 is a Scherk’s minimal graph translation surfaces. In fact, in [6], Sherk showed
that exept for the planes, the only minimal graph translation surfaces are the surfaces given by

z(x,y) =
1
a

log
∣∣∣∣cos(ax)
cos(ay)

∣∣∣∣ , (1)
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where a is a nonzero constant.
On the other hand, in [7], H. Liu has presented a classification of translation surfaces with a constant mean

curvature or constant Gaussian curvature in the three dimensional Euclidian space E3 and the three dimensional
Minkowski space E3

1. In [8], L. Verstraelen, J.Walrave and S. Yaprak have considered minimal translation surfaces
in n-dimensional Euclidian space.

The concept of graph translation surfaces in E3 has been generlized in the three dimensional Lie group, in
particular, homogenous manifolds. In [9], J. Inoguchi, R. Lopez and M.I. Munteanu, clssified minimal translation
surfaces in the three dimensional Heisenberg group Nil3. In [10], R, Lopez and M.I. Munteanu studied minimal
translation surfaces in Sol3 space. In [11], Dj. Bensikaddour, L. Belarbi studied minimal translation surfaces in
Lorentz-Heisenberg 3-space H3.

In [12], the second author, M. Bekkar and C. Baba Hamed have observed that in the 3-dimensional Lorentz-
Minkowski space, translation surfaces are eigenfunction, component functions of their Laplace operator. In [13],
Yoon who considered, within the 3-dimensional Minkowski space, the Gauss map G that comply with the condi-
tion ∆G = AG, A ∈ Mat(3,R), where Delta represent Laplacien of the surfaces with regard to the induced Metric
Mat(3,R) the set of 3× 3 real matrix. In [14], M. I. Munteanu and A. I. Nistor have studied the second funda-
mental form of translation surface in the Euclidean space E3 . They have introduced a non-existence polynominal
translation surfaces in E3 results, with fading second Gauss curvature KII . They have ranked those translation
surfaces for which KII and H are proportional.

Most recently, in [15] the second author, A. Azzi and M. Bekkar classified surfaces graph of function in
SL(2,R), which has finite type immersion.

On the other hand, in [16] and [17] the authors showed that modulo an automorphism of the Lie algebra, the
three dimensional Heisenberg group H3 has the following classes of left-invariant Lorentz metrics:

g1 = −dx2 +dy2 +(xdy+dz)2,

g2 = dx2 +dy2 − (xdy+dz)2,

g3 = dx2 +(xdy+dz)2 − [(1− x)dy−dz]2 .

They proved that the metrics g1, g2, g3 are non-isometrics and g3 is flat.
In the present study, we are mainly interested in the graph translation surfaces in Lorentz-Heisenberg 3-space

H3 endowed with the left invariant flat metric g3. We describe such surfaces in H3 with H and K being constants.

2. Preliminaries

The Heisenberg group H3 is a Lie group which is diffeomorphic to R3 and the group operation is defined as

(x,y,z)∗ (x,y,z) = (x+ x,y+ y,z+ z− xy).

The identity of the group is (0,0,0) and the inverse of (x,y,z) is given by (−x,−y,−xy− z). The left invariant
Lorentz metric on H3 is

g3 = dx2 +(xdy+dz)2 − [(1− x)dy−dz]2 .

The following set of left-invariant vector fields forms an pseudo-orthonormal for corresponding Lie-algebra

B =

{
e1 =

∂

∂x
, e2 =

∂

∂y
+(1− x)

∂

∂ z
, e3 =

∂

∂y
− x

∂

∂ z

}
.

The characterizing properties of this algebra are the following commutation relations :

[e2,e3] = 0, [e3,e1] = e2 − e3, [e2,e1] = e2 − e3,

with
g3 (e1,e1) = 1, g3 (e2,e2) = 1, g3 (e3,e3) =−1.
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If ∇ is the Levi-Civita connection and R is the curvature tensor of ∇, we have

∇e1e1 = ∇e1e2 = ∇e1e3 = 0,

∇e2e1 = ∇e3e1 = e2 − e3,

∇e2e2 = ∇e2e3 = ∇e3e2 = ∇e3e3 =−e1.

So we obtain that
R(e1,e3) = R(e1,e2) = R(e2,e3) = 0.

Now, let p = (x,y,z) be a point in H3, and T = t1∂x+ t2∂y+ t3∂ z be a tangent vector at p. Then, T can be written,
with respect to the pseudo-orthonormal basis B = {e1,e2,e3} as follows :

T = t1e1 +(xt2 + t3)e2 +((1− x) t2 − t3)e3.

Graph Surface in H3
Let M2 be a surface in the Lorentz-Heisenberg 3-space H3 which represents the graph of the function z =

h(x,y), parametrized by
r : U ⊂ R2

(x,y)
−→
7−→

H3
(x,y,h(x,y)) ,

(2)

where r(x,y) = (x,y,h(x,y)) is the position vector. Hence,

rx = (1,0,hx) = ∂x +hx∂z,

ry = (0,1,hy) = ∂y +hy∂z.

Therefore,

rx = e1 +hxe2 −hxe3, (3)

ry = (x+hy)e2 +(1− x−hy)e3.

The formes fundamentals I and II of the surface M2 are given respectively by

I = Edx2 +2Fdxdy+Gdy2,

II = Ldx2 +2Mdxdy+Ndy2,

with
E = g3 (rx,rx) = 1, F = g3 (rx,ry) = hx, G = g3 (ry,ry) = (2hy +2x−1) ,

and
L = g3 (∇rxrx,ℵ) , M = g3 (∇rxry,ℵ) , N = g3

(
∇ryry,ℵ

)
,

where ℵ is a unit vector field normal on M2, which satisfies the following system
g3 (rx,ℵ) = 0,
g3 (ry,ℵ) = 0,

g3 (ℵ,ℵ) =−1.

Hence

∇rxrx = hxxe2 −hxxe3, (4)

∇rxry = (hxy +1)e2 − (hxy +1)e3,

∇ryry =−e1 +hyye2 −hyye3.

The normal vector is then given by

ℵ =
(−hx,(1− x−hy) ,(x+hy))

W

=
−hx

W
e1 +

(1− x−hy)

W
e2 +

(x+hy)

W
e3,
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with
W =

√
EG−F2 =

√
2(hy + x)−1−h2

x > 0.

Therefore
L = 1

W hxx , M = 1
W (1+hxy) , N = 1

W (hx +hyy) . (5)

The curvatures H and K are respectively defined by

H =
EN −2FM+GL

2(EG−F2)
=

1
2W 3 [hyy +(2(hy + x)−1)hxx −2hxhxy −hx] , (6)

and

K =
LN −M2

EG−F2 =
hxx (hx +hyy)− (1+hxy)

2

W 4 . (7)

3. Graph translation surfaces with constant mean curvature

In what follows, we consider the graph translation surface in H3 parameterized by

r(x,y) = (0,y,g(y))∗ (x,0, f (x)) = (x,y, f (x)+g(y)). (8)

Hence, we get from (6) that

H =
[g′′+(2(g′+ x)−1) f ′′− f ′]

2(1+ f ′2 −2(g′+ x))
3
2

. (9)

Theorem 1 A graph translation surface in Lorentz-Heisenberg 3-space has constant mean curvature H0 if and
only if one of the following statements hold true:

1. If H0 = 0, then

a. z(x,y) = c1x+ c1
2 y2 + c2y+ c3,

b. z(x,y) = c1
3 (2x−1+2c2)

3
2 + c2y+ c3.

2. Otherwise, i.e. H0 ̸= 0,

z(x,y) =
∫ (−4H0x+d3)

√
2x−1+2d2√

(−4H0x+d3)2−4
dx+ c2y+ c3,

where c1,c2,c3,d1,d2,d3 are constants.

Proof 1

First let us separate the cases.

Case A: Let H0 = 0. Then (9), reduces to

g′′+
(
2
(
g′+ x

)
−1

)
f ′′− f ′ = 0. (10)

Case A.1. Let f (u) = c1x+ c2, c1,c2 ∈ R. Then by (10) we get

g(y) =
c1

2
y2 + c3y+ c4 , c3,c4 ∈ R.

Case A.2. Let g(y) = c5y+ c6, c5,c6 ∈ R. Then (10) becomes

(2(c5 + x)−1) f ′′− f ′ = 0. (11)
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Solving it gives
f (x) =

c7

3
(2x+2c5 −1)

3
2 + c8, c7,c8 ∈ R,c7 ̸= 0.

Case A.3. Let f ′′g′′ ̸= 0. Taking partial derivative in (10) with respect to y, we find

g′′′+2 f ′′g′′ = 0. (12)

Then (12) can be rewritten as
g′′′

2g′′
= − f ′′. (13)

The left hand side of (13) is a function of y, and the right hand side is a function of x. Then both sides have to

be equal a nonzero constant, i.e.
g′′′

2g′′
= λ1 =− f ′′,

which gives that f (x) =−λ1
2 x2 +λ2x+λ3 where λ2,λ3 ∈ R.

By substituting this in (10) we get

g′′−
(
2g′−1

)
λ1 = λ1x+λ2. (14)

The right hand side in (14) is a function of x while the other side is either a constant or function of y. This is not
possible.

Case B: H = H0 ̸= 0. Then (9), can be rewritten as

2H0
(
1+ f ′2 −2

(
g′+ x

)) 3
2 =

[
g′′+

(
2
(
g′+ x

)
−1

)
f ′′− f ′

]
. (15)

We have three cases to solve (15).

Case B.1. Let f ′ = d1,d1 ∈ R,d1 ̸= 0. Then (15) reduces to

g′′−d1 = 2H0
(
1+d1

2 −2
(
g′+ x

)) 3
2 . (16)

Taking the partial derivative in (16) with respect to x leads to

−6H0
(
1+d1

2 −2
(
g′+ x

)) 1
2 = 0,

and this implies that H0 = 0. This is a contradiction.

Case B.2. Let g′ = d2,d2 ∈ R,d2 ̸= 0. By (15) we get

1−2(d2 + x) f ′′+ f ′

(1+ f ′2 −2(d2 + x))
3
2
=−2H0. (17)

Let us put f ′ (x) = ϕ (x) in (17). Thus (17) can be rewritten as

1−2(d2 + x)ϕ ′+ϕ

(1+ϕ2 −2(d2 + x))
3
2
=−2H0. (18)

After solving (18), we find

ϕ (x) =
(−4H0x+d3)

√
2x−1+2d2√

(−4H0x+d3) 2 −4
,d3 ∈ R. (19)

Integrating (19) leads to

f (x) =
∫

(−4H0x+d3)
√

2x−1+2d2√
(−4H0x+d3) 2 −4

dx. (20)
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Case B.3. Let f ′′g′′ ̸= 0. The partial derivatives of (15) with respect x and y, gives

g′′
[

f ′′′( f ′2 +1−2(g′+ x))
1
2 +3H0( f ′ f ′′−1)

]
= 0. (21)

To solve (21), we distinguish two cases.

Case B.3.1. Let f ′′′ = 0 then f ′ f ′′−1 ̸= 0. By (21) we deduce H0 = 0, which is not possible.

Case B.3.2. Let f ′′′ ̸= 0. By (21) we obtian

−2g′ =
(
−3H0

f ′ f ′′−1
f ′′′

)2

− f ′2 −1+2x. (22)

This implies that g′ = const so g′′ = 0. It is a contradiction.

4. Graph translation surfaces with constant Gaussian curvature

Let us consider the graph translation surfaces given by (2) in H3 with constant Gaussian curvature K. Hence, we
get from (7) that

K =
[ f ′′ ( f ′+g′′)−1]

(1+ f ′2 −2(g′+ x)) 2 . (23)

Theorem 2 A graph translation surface in Lorentz-Heisenberg 3-space has constant Gaussian curvature K0 if
and only if one of the following statements hold true:

1. If K0 = 0, then

z(x,y) = c1
3

(√
2x+2c2 + c2

3 − c3

)2
+ 1

3

(√
2x+2c2 + c2

3 − c3

)3
+ c3

2 y2 + c4y+ c5.

2. Otherwise, i.e. K0 ̸= 0,

z(x,y) =
∫ √

2(c1 + x)−1− 1
2K0x+c2

dx+ c1y+ c2,

where c1,c2,c3,c4 and c5 are constants.

Proof 2

Let us assume that K = K0 = const. First we treat the case K0 = 0.

Case C: Let K0 = 0. By (23), we get
f ′′
(

f ′+g′′
)
−1 = 0. (24)

It should be noted that f ′′ ̸= 0. Then (24) can be rewritten as

g′′ =
1
f ′′

− f ′. (25)

Both sides of (25) are equal to some nonzero constant. More precisely

1
f ′′

− f ′ = c and g′′ = c,c ∈ R. (26)

From (26), we have
g(y) =

c
2

y2 + c1y+ c2, c1,c2 ∈ R, (27)
18
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and
( f ′+ c) f ′′ = 1. (28)

Let us put f ′(x) = h(x), in (28). Thus (28) can be rewritten in the form

h′(h+ c)
dh
d f

= 1. (29)

Solving the previous equation gives

c
h2

2
+

h3

3
= f + c3,c3 ∈ R, (30)

which implies that

f (x) =−c3 +
c
2

f ′2(x)+
1
3

f ′3(x). (31)

It is a Lagrange differential equation. Thus the solution given by

f (x) =−c3 +
c
3

(√
2x+2c4 + c2 − c

)2
+

1
3

(√
2x+2c4 + c2 − c

)3
, c4 ∈ R. (32)

Case D: Let K = K0 ̸= 0. (23), can be rewritten as

f ′′
(

f ′+g′′
)
−1 = K0

(
1+ f ′2 −2

(
g′+ x

)) 2. (33)

In order to solve (33), we have to consider three situations.

Case D.1. Let f (x) = d1x+d2, d1,d2 ∈ R,d1 ̸= 0. It follows from (33) that

− 1
K0

=
(
1+d1

2 −2
(
g′+ x

)) 2, (34)

which implis that K0 is negative and that

2x−1−d1
2
√
− 1

K0
=−2g′. (35)

The left side in (35) is a function of x while the other side is either a constant or a function of y. Hence we have
reached a contradiction.

Case D.2. Let g(y) = d3y+d4, d3,d4 ∈ R, d3 ̸= 0. Then (33) leads to

f ′′ f ′−1 = K0
(
1+ f ′2 −2(d3 + x)

) 2. (36)

We put T (x) = 1+ f ′2 −2(d3 + x) . Then (36) can be rewritten in the form

T ′

2
= K0T 2. (37)

Then we obtain
T =

−1
2K0x+d5

,d5 ∈ R. (38)

Then we have

f (x) =
∫ √

2(d3 + x)−1− 1
2K0x+d5

dx. (39)

Case D.3. Let f ′′g′′ ̸= 0. Taking partial derivative of (33) with respect to y leads to

f ′′g′′′ =−4K0( f ′2 +1−2(g′+ x))g′′. (40)
19
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Again, we have to discuss two cases.

Case D.3.1. Let g′′′ = 0, g′′ = d6,d6 ̸= 0. Hence from (40), we deduce

−4K0d6( f ′2 +1−2(g′+ x)) = 0, (41)

which gives rise to a similar type of contradiction as in Case D.1.

Case D.3.2. Let g′′′ ̸= 0, Then taking partial derivative of (40) with respect to x gives

f ′′′g′′′ =−8K0g′′( f ′ f ′′−1). (42)

Thereby (42) can be arranged as
g′′′

g′′
=−8K0

f ′ f ′′−1
f ′′′

. (43)

Both sides of (43) are equal to some nonzero constant, namely

g′′′

g′′
= d7, (44)

and

−8K0
f ′ f ′′−1

f ′′′
= d7,d7 ∈ R−{0} . (45)

Subtituting (44) in (40), we have
d7 f ′′ =−4K0( f ′2 +1−2(g′+ x)). (46)

This equality is satisfied if g′ is a constant so g′′ = 0 which is contradiction.

Conclusion

In this article, we outline the graph translation surfaces in the Lorentz-Heisenbeg space that have a contant mean
and Gaussian curvatures. It appears that, as opposed to the Euclidean case there exist translation surfaces with con-
stant Gaussian curvature K that are not cylindrical surfaces, and translation surfaces with constant mean curvature
H wich are not settled.
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