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Abstract

The first general Zagreb index of a graph G is defined as the sum of the αth powers of the
vertex degrees of G, where α is a real number such that α 6= 0 and α 6= 1. In this note,
for α > 1, we present upper bounds involving chromatic and clique numbers for the first
general Zagreb index of a graph; for an integer α ≥ 2, we present a lower bound involving
the independence number for the first general Zagreb index of a graph.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those
in [2]. Let G = (V (G),E(G)) be a graph with n vertices and e edges, where V = {v1,v2, ...,vn}. We assume that the vertices in G are
arranged such that ∆(G) = dG(v1) ≥ dG(v2) ≥ ·· · ≥ dG(vn) = δ (G), where dG(vi), for each i with 1 ≤ i ≤ n, is the degree of vertex vi
in G. The chromatic number, denoted χ(G), of a graph G is the smallest number of colors which can be assigned to V (G) so that the
adjacent vertices in G are colored differently. A clique of a graph G is a complete subgraph of G. A clique of largest possible size is
called a maximum clique. The clique number, denoted ω(G), of a graph G is the number of vertices in a maximum clique of G. A set
of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum independent set in a graph G
is an independent set of largest possible size. The independence number, denoted β (G), of a graph G is the cardinality of a maximum
independent set in G. If H is any graph of order n with degree sequence dH(v1)≥ dH(v2)≥ ·· · ≥ dH(vn), and if H∗ is any graph of order
n with degree sequence d∗H(v1)≥ d∗H(v2)≥ ·· · ≥ d∗H(vn), such that dH(vi)≤ d∗H(vi) (for each i with 1≤ i≤ n), then H∗ is said to domi-
nate H. We use C(n,r) to denote the number of r-element subsets of a set of size n, where n and r are nonnegative integers such that 0≤ r≤ n.

The first Zagreb index was introduced by Gutman and Trinajstić in [8]. For a graph G, its first Zagreb index is defined as ∑
n
i=1 d2

G(vi). Li and
Zheng in [9] further extended the first Zagreb index of a graph and introduced the concept of the first general Zagreb index of a graph. The
first general Zagreb index, denoted Mα (G), of a graph G is defined as ∑

n
i=1 dα

G(vi), where α is a real number such that α 6= 0 and α 6= 1.

In this note, we will present upper bounds involving chromatic and cliques numbers for the first general Zagreb index of a graph when α > 1
and a lower bound involving the independent number for the first general Zagreb index of a graph when α is an integer at least 2. The main
results of this note are as follows.

Theorem 1.1. Let G be a graph of order n. Assume α is a real number such that α > 1. Then

(1) Mα ≤ n2(n−1)α−1
(

1− 1
χ

)
.

Equality holds if and only if G is Kn.

(2) Mα ≤ n2(n−1)α−1
(

1− 1
ω

)
.

Equality holds if and only if G is Kn.
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Theorem 1.2. Let G be a graph of order n. Assume α is an integer which is at least 2. Then

Mα ≥
nα+1

β α
+n(∆α − (1+∆)α ).

Equality holds if and only if G is a disjoint union of β complete graphs of order ∆+1.

2. Lemmas

In order to prove Theorem 1 and Theorem 2, we need the following results as our lemmas. The first one is a theorem proved by Erdős in [6].
Its proofs in English can be found in [1].

Lemma 2.1. If H is any graph of order n, then there exists a graph H∗ of order n, where χ(H∗)≤ ω(H), such that H∗ dominates H.

The second one can be found in [4] and [10].

Lemma 2.2. If G is a graph, then

β ≥ ∑
v∈V

1
d(v)+1

.

Equality holds if and only if each component of G is complete.

3. Proofs

Next, we will prove Theorem 1.1. The ideas from the proofs of Theorem 3 on Page 53 in [5] will be used in the proofs of Theorem 1.1 below.

Proof of (1) in Theorem 1.1 Let us partition the vertex set V of G into the pairwise disjoint nonempty subsets of V1, V2, ..., Vχ such that Vi

is independent for each i with 1≤ i≤ χ . Set |Vi| := ni for each i with 1≤ i≤ χ . Then we have that n = ∑
χ

i=1 ni and d(x)≤ n−ni for each
vertex x in Vi and each i with 1≤ i≤ χ . Without loss of generality, we assume that n1 ≤ n2 ≤ ·· · ≤ nχ . From Cauchy-Schwarz inequality,
we have that

χ

∑
i=1

n2
i ≥

(
∑

χ

i=1 ni
)2

χ
=

n2

χ
.

Now

Mα = ∑
v∈V

dα (v),

=
χ

∑
i=1

∑
v∈Vi

dα (v),

≤
χ

∑
i=1

ni(n−ni)
α ,

=
χ

∑
i=1

ni(n−ni)(n−ni)
α−1 ≤

χ

∑
i=1

ni(n−ni)(n−n1)
α−1,

= (n−n1)
α−1

χ

∑
i=1

ni(n−ni)≤ (n−1)α−1(n2−
χ

∑
i=1

n2
i )≤ (n−1)α−1

(
n2− n2

χ

)
= n2(n−1)α−1

(
1− 1

χ

)
.

If

Mα = n2(n−1)α−1
(

1− 1
χ

)
,

we, from the above proofs, have that n1 = n2 = · · ·= nχ = 1 and d(v) = n−1 for each vertex v in V . Thus G is Kn. If G is Kn, it is easy to
verify that

Mα = n2(n−1)α−1
(

1− 1
χ

)
.

This completes the proof of (1) in Theorem 1.1.

Proof of (2) in Theorem 1.1 From Lemma 2.1, we can find a graph G∗ dominating G and χ(G∗)≤ ω(G). From (1) of this theorem, we
have that

Mα (G)≤Mα (G∗)≤ n2(n−1)α−1
(

1− 1
χ(G∗)

)
≤ n2(n−1)α−1

(
1− 1

ω(G)

)
.

If

Mα (G) = n2(n−1)α−1
(

1− 1
ω

)
,
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then

Mα (G∗) = n2(n−1)α−1
(

1− 1
χ(G∗)

)
.

From (1) of this theorem, we have that G∗ is Kn and χ(G∗) = n. Thus ω(G)≥ χ(G∗) = n. Hence G is Kn. If G is Kn, it is again easy to
verify that

Mα (G) = n2(n−1)α−1
(

1− 1
ω

)
.

This completes the proof of (2) in Theorem 1.1.

Next, we will prove Theorem 1.2 which is motivated by Theorem 3.1 on Page 309 in [7].

Proof of Theorem 1.2 From Lemma 2.2 and the inequalities on the power means, arithmetic means, and harmonic means of n positive
integers, we have that(

(1+d1)
α +(1+d2)

α + · · ·+(1+dn)
α

n

) 1
α

≥ (1+d1)+(1+d2)+ · · ·+(1+dn)

n
≥ n

1
1+d1

+ 1
1+d2

+ · · ·+ 1
1+dn

≥ n
β
.

Then

(1+d1)
α +(1+d2)

α + · · ·+(1+dn)
α ≥ nα+1

β α
.

It is easy to check that for each i with 1≤ i≤ n we have

(1+di)
α =

α

∑
k=0

C(α,k)dk
i ≤

α

∑
k=0

C(α,k)∆k−∆
α +dα

i = (1+∆)α −∆
α +dα

i .

Equality holds if and only if di = ∆. Thus

(1+∆)α −∆
α +dα

1 +(1+∆)α −∆
α +dα

2 + · · ·+(1+∆)α −∆
α +dα

n ≥ (1+d1)
α +(1+d2)

α + · · ·+(1+dn)
α ≥ nα+1

β α
.

Therefore

Mα ≥
nα+1

β α
+n(∆α − (1+∆)α ).

If

Mα =
nα+1

β α
+n(∆α − (1+∆)α ),

then d1 = d2 = · · ·= dn = ∆. From Lemma 2, we have that G is a union of β complete graphs of order ∆+1. If G is a union of β complete
graphs of order ∆+1, then (∆+1)β = n. It is easy to verify that

Mα =
nα+1

β α
+n(∆α − (1+∆)α ).

This completes the proof of Theorem 1.2.

Remark 3.1. Let G be a graph with n vertices and e edges. Notice that

n+4e+M2 =
n

∑
i=1

(1+di)
2 ≥ n3

β 2 .

We have that

M2 ≥
n3

β 2 −n−4e.

It can be verified that M2 =
n3

β 2 −n−4e if and only if G is a disjoint union of β complete graphs of order ∆+1.

Remark 3.2. Let G be a graph with n vertices and e edges. Notice that

n+6e+3M2 +M3 =
n

∑
i=1

(1+di)
3 ≥ n4

β 3 .

We have that

M3 ≥
n4

β 3 −n−6e−3U,

where U is an upper bound for M2. A variety of concrete expressions for U can be found in [3].
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