The Bounds for the First General Zagreb Index of a Graph

Rao Li ${ }^{1}$
${ }^{1}$ Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA

Article Info

Keywords: The first general Zagreb index, the chromatic number, the clique number, the independent number.
2010 AMS: 05C09
Received: 21 July 2021
Accepted: 22 November 2021
Available online: 30 December 2021

Abstract

The first general Zagreb index of a graph G is defined as the sum of the α th powers of the vertex degrees of G, where α is a real number such that $\alpha \neq 0$ and $\alpha \neq 1$. In this note, for $\alpha>1$, we present upper bounds involving chromatic and clique numbers for the first general Zagreb index of a graph; for an integer $\alpha \geq 2$, we present a lower bound involving the independence number for the first general Zagreb index of a graph.

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [2]. Let $G=(V(G), E(G))$ be a graph with n vertices and e edges, where $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. We assume that the vertices in G are arranged such that $\Delta(G)=d_{G}\left(v_{1}\right) \geq d_{G}\left(v_{2}\right) \geq \cdots \geq d_{G}\left(v_{n}\right)=\delta(G)$, where $d_{G}\left(v_{i}\right)$, for each i with $1 \leq i \leq n$, is the degree of vertex v_{i} in G. The chromatic number, denoted $\chi(G)$, of a graph G is the smallest number of colors which can be assigned to $V(G)$ so that the adjacent vertices in G are colored differently. A clique of a graph G is a complete subgraph of G. A clique of largest possible size is called a maximum clique. The clique number, denoted $\omega(G)$, of a graph G is the number of vertices in a maximum clique of G. A set of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. A maximum independent set in a graph G is an independent set of largest possible size. The independence number, denoted $\beta(G)$, of a graph G is the cardinality of a maximum independent set in G. If H is any graph of order n with degree sequence $d_{H}\left(v_{1}\right) \geq d_{H}\left(v_{2}\right) \geq \cdots \geq d_{H}\left(v_{n}\right)$, and if H^{*} is any graph of order n with degree sequence $d_{H}^{*}\left(v_{1}\right) \geq d_{H}^{*}\left(v_{2}\right) \geq \cdots \geq d_{H}^{*}\left(v_{n}\right)$, such that $d_{H}\left(v_{i}\right) \leq d_{H}^{*}\left(v_{i}\right)$ (for each i with $1 \leq i \leq n$), then H^{*} is said to dominate H. We use $C(n, r)$ to denote the number of r-element subsets of a set of size n, where n and r are nonnegative integers such that $0 \leq r \leq n$.

The first Zagreb index was introduced by Gutman and Trinajstić in [8]. For a graph G, its first Zagreb index is defined as $\sum_{i=1}^{n} d_{G}^{2}\left(v_{i}\right)$. Li and Zheng in [9] further extended the first Zagreb index of a graph and introduced the concept of the first general Zagreb index of a graph. The first general Zagreb index, denoted $M_{\alpha}(G)$, of a graph G is defined as $\sum_{i=1}^{n} d_{G}^{\alpha}\left(v_{i}\right)$, where α is a real number such that $\alpha \neq 0$ and $\alpha \neq 1$.

In this note, we will present upper bounds involving chromatic and cliques numbers for the first general Zagreb index of a graph when $\alpha>1$ and a lower bound involving the independent number for the first general Zagreb index of a graph when α is an integer at least 2 . The main results of this note are as follows.

Theorem 1.1. Let G be a graph of order n. Assume α is a real number such that $\alpha>1$. Then
(1) $M_{\alpha} \leq n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\chi}\right)$.

Equality holds if and only if G is K_{n}.
(2) $M_{\alpha} \leq n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\omega}\right)$.

Equality holds if and only if G is K_{n}.

Theorem 1.2. Let G be a graph of order n. Assume α is an integer which is at least 2. Then

$$
M_{\alpha} \geq \frac{n^{\alpha+1}}{\beta^{\alpha}}+n\left(\Delta^{\alpha}-(1+\Delta)^{\alpha}\right)
$$

Equality holds if and only if G is a disjoint union of β complete graphs of order $\Delta+1$.

2. Lemmas

In order to prove Theorem 1 and Theorem 2, we need the following results as our lemmas. The first one is a theorem proved by Erdős in [6]. Its proofs in English can be found in [1].

Lemma 2.1. If H is any graph of order n, then there exists a graph H^{*} of order n, where $\chi\left(H^{*}\right) \leq \omega(H)$, such that H^{*} dominates H.
The second one can be found in [4] and [10].

Lemma 2.2. If G is a graph, then

$$
\beta \geq \sum_{v \in V} \frac{1}{d(v)+1}
$$

Equality holds if and only if each component of G is complete.

3. Proofs

Next, we will prove Theorem 1.1. The ideas from the proofs of Theorem 3 on Page 53 in [5] will be used in the proofs of Theorem 1.1 below.
Proof of (1) in Theorem 1.1 Let us partition the vertex set V of G into the pairwise disjoint nonempty subsets of $V_{1}, V_{2}, \ldots, V_{\chi}$ such that V_{i} is independent for each i with $1 \leq i \leq \chi$. Set $\left|V_{i}\right|:=n_{i}$ for each i with $1 \leq i \leq \chi$. Then we have that $n=\sum_{i=1}^{\chi} n_{i}$ and $d(x) \leq n-n_{i}$ for each vertex x in V_{i} and each i with $1 \leq i \leq \chi$. Without loss of generality, we assume that $n_{1} \leq n_{2} \leq \cdots \leq n_{\chi}$. From Cauchy-Schwarz inequality, we have that

$$
\sum_{i=1}^{\chi} n_{i}^{2} \geq \frac{\left(\sum_{i=1}^{\chi} n_{i}\right)^{2}}{\chi}=\frac{n^{2}}{\chi}
$$

Now

$$
\begin{aligned}
M_{\alpha} & =\sum_{v \in V} d^{\alpha}(v) \\
& =\sum_{i=1}^{\chi} \sum_{v \in V_{i}} d^{\alpha}(v) \\
& \leq \sum_{i=1}^{\chi} n_{i}\left(n-n_{i}\right)^{\alpha} \\
& =\sum_{i=1}^{\chi} n_{i}\left(n-n_{i}\right)\left(n-n_{i}\right)^{\alpha-1} \leq \sum_{i=1}^{\chi} n_{i}\left(n-n_{i}\right)\left(n-n_{1}\right)^{\alpha-1} \\
& =\left(n-n_{1}\right)^{\alpha-1} \sum_{i=1}^{\chi} n_{i}\left(n-n_{i}\right) \leq(n-1)^{\alpha-1}\left(n^{2}-\sum_{i=1}^{\chi} n_{i}^{2}\right) \leq(n-1)^{\alpha-1}\left(n^{2}-\frac{n^{2}}{\chi}\right)=n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\chi}\right)
\end{aligned}
$$

If

$$
M_{\alpha}=n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\chi}\right)
$$

we, from the above proofs, have that $n_{1}=n_{2}=\cdots=n_{\chi}=1$ and $d(v)=n-1$ for each vertex v in V. Thus G is K_{n}. If G is K_{n}, it is easy to verify that

$$
M_{\alpha}=n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\chi}\right)
$$

This completes the proof of (1) in Theorem 1.1.
Proof of (2) in Theorem 1.1 From Lemma 2.1, we can find a graph G^{*} dominating G and $\chi\left(G^{*}\right) \leq \omega(G)$. From (1) of this theorem, we have that

$$
M_{\alpha}(G) \leq M_{\alpha}\left(G^{*}\right) \leq n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\chi\left(G^{*}\right)}\right) \leq n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\omega(G)}\right)
$$

If

$$
M_{\alpha}(G)=n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\omega}\right)
$$

then

$$
M_{\alpha}\left(G^{*}\right)=n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\chi\left(G^{*}\right)}\right)
$$

From (1) of this theorem, we have that G^{*} is K_{n} and $\chi\left(G^{*}\right)=n$. Thus $\omega(G) \geq \chi\left(G^{*}\right)=n$. Hence G is K_{n}. If G is K_{n}, it is again easy to verify that

$$
M_{\alpha}(G)=n^{2}(n-1)^{\alpha-1}\left(1-\frac{1}{\omega}\right)
$$

This completes the proof of (2) in Theorem 1.1.
Next, we will prove Theorem 1.2 which is motivated by Theorem 3.1 on Page 309 in [7].
Proof of Theorem 1.2 From Lemma 2.2 and the inequalities on the power means, arithmetic means, and harmonic means of n positive integers, we have that

$$
\left(\frac{\left(1+d_{1}\right)^{\alpha}+\left(1+d_{2}\right)^{\alpha}+\cdots+\left(1+d_{n}\right)^{\alpha}}{n}\right)^{\frac{1}{\alpha}} \geq \frac{\left(1+d_{1}\right)+\left(1+d_{2}\right)+\cdots+\left(1+d_{n}\right)}{n} \geq \frac{n}{\frac{1}{1+d_{1}}+\frac{1}{1+d_{2}}+\cdots+\frac{1}{1+d_{n}}} \geq \frac{n}{\beta}
$$

Then

$$
\left(1+d_{1}\right)^{\alpha}+\left(1+d_{2}\right)^{\alpha}+\cdots+\left(1+d_{n}\right)^{\alpha} \geq \frac{n^{\alpha+1}}{\beta^{\alpha}}
$$

It is easy to check that for each i with $1 \leq i \leq n$ we have

$$
\left(1+d_{i}\right)^{\alpha}=\sum_{k=0}^{\alpha} C(\alpha, k) d_{i}^{k} \leq \sum_{k=0}^{\alpha} C(\alpha, k) \Delta^{k}-\Delta^{\alpha}+d_{i}^{\alpha}=(1+\Delta)^{\alpha}-\Delta^{\alpha}+d_{i}^{\alpha}
$$

Equality holds if and only if $d_{i}=\Delta$. Thus

$$
(1+\Delta)^{\alpha}-\Delta^{\alpha}+d_{1}^{\alpha}+(1+\Delta)^{\alpha}-\Delta^{\alpha}+d_{2}^{\alpha}+\cdots+(1+\Delta)^{\alpha}-\Delta^{\alpha}+d_{n}^{\alpha} \geq\left(1+d_{1}\right)^{\alpha}+\left(1+d_{2}\right)^{\alpha}+\cdots+\left(1+d_{n}\right)^{\alpha} \geq \frac{n^{\alpha+1}}{\beta^{\alpha}}
$$

Therefore

$$
M_{\alpha} \geq \frac{n^{\alpha+1}}{\beta^{\alpha}}+n\left(\Delta^{\alpha}-(1+\Delta)^{\alpha}\right)
$$

If

$$
M_{\alpha}=\frac{n^{\alpha+1}}{\beta^{\alpha}}+n\left(\Delta^{\alpha}-(1+\Delta)^{\alpha}\right)
$$

then $d_{1}=d_{2}=\cdots=d_{n}=\Delta$. From Lemma 2, we have that G is a union of β complete graphs of order $\Delta+1$. If G is a union of β complete graphs of order $\Delta+1$, then $(\Delta+1) \beta=n$. It is easy to verify that

$$
M_{\alpha}=\frac{n^{\alpha+1}}{\beta^{\alpha}}+n\left(\Delta^{\alpha}-(1+\Delta)^{\alpha}\right)
$$

This completes the proof of Theorem 1.2.

Remark 3.1. Let G be a graph with n vertices and e edges. Notice that

$$
n+4 e+M_{2}=\sum_{i=1}^{n}\left(1+d_{i}\right)^{2} \geq \frac{n^{3}}{\beta^{2}}
$$

We have that

$$
M_{2} \geq \frac{n^{3}}{\beta^{2}}-n-4 e
$$

It can be verified that $M_{2}=\frac{n^{3}}{\beta^{2}}-n-4 e$ if and only if G is a disjoint union of β complete graphs of order $\Delta+1$.
Remark 3.2. Let G be a graph with n vertices and e edges. Notice that

$$
n+6 e+3 M_{2}+M_{3}=\sum_{i=1}^{n}\left(1+d_{i}\right)^{3} \geq \frac{n^{4}}{\beta^{3}}
$$

We have that

$$
M_{3} \geq \frac{n^{4}}{\beta^{3}}-n-6 e-3 U
$$

where U is an upper bound for M_{2}. A variety of concrete expressions for U can be found in [3].

Acknowledgements

The author would like to thank the referees for their suggestions and comments which improve the original version of the paper.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978), Pages 295 and 296.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
[3] B. Borovićanin, K. Das, B. Furtula, I. Gutman, Bounds for Zagreb indices, MATCH Commun. Math. Comput. Chem. 78 (2017), 17-100.
[4] Y. Caro, New results on the independence number, Technical Report, Tel-Aviv University, 1979.
[5] C. S. Edwards and C. H. Elphick, Lower bounds for the clique and the chromatic numbers of a graph, Discrete Appl. Math., 5 (1983,) 51-64
[6] P. Erdős, On the graph theorem of Turán (in Hungarian), Mat. Lapok, 21 (1970), 249-251.
[7] S. Filipovski, New bounds for the first Zagreb index, MATCH Commun Math Comput Chem., 54 (2005), 195-208.
[8] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, total π-electron energy of alternant hydroncarbons, Chem. Phys. Lett., 17 (1972), 535-538
[9] X. Li and Z. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem,. 85(2021), 303-312.
[10] V. K. Wei, A lower bound on the stability number of a simple graph, Bell Laboratories Technical Memorandum, No. 81-11217-9, 1981.

