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ABSTRACT 

As a fabric surface defect, pilling gives clothes an unpleasant appearance and is often characterized 

with small, complex clusters of fibers attaching to the surface of the garment caused by the fiber 

migration from yarns to the fabric surface as the fabric rubs against itself, another fabric, or even the 

skin. In this study, a Markov chain model was built based on the pilling propensity of wool fabrics, 

evaluated with a scale ranging from 1 (severe pilling) to 5 (non-pilling). These degrees were defined 

as the state space of Markov chain. The numerical values of the transition probability matrix related 

to the pilling degrees were obtained by maximum likelihood estimation (MLE). Based on the matrix, 

it was intended to model the changes in the pilling process of woven wool fabrics. Furthermore, given 

that the fabric will eventually be in state 1, 2 or 3, accepted as unpleasant appearance; the conditional 

mean first passage times for any transient state to enter any recurrent state for the first time were 

determined. 
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1. INTRODUCTION 

Defining and evaluating the concept of pilling is a widely 

defined problem in textile production. Pilling is a fabric 

surface defect characterized with small and complex fiber 

clusters attached to the fabric surface, giving an unpleasant 

appearance. Moreover, pill formation leads to shortening 

the life cycle of clothes due to wear off and it sometimes 

causes problems resulting in the formation of holes [1].  

There is a dynamic equilibrium in terms of the number of 

pills on a fabric surface between the pill formation and pill 

wear off, due to the abrasion, loose fibers are transferred to 

the fabric surface and a layer of fuzz is formed, then with 

the applied abrasion forces, these loose fibers are entangled.  

As the abrasion proceeds, the anchor fibers are eventually 

broken, and the pills break off. When pill formation rates 

are equal to pill wear off rates, an equilibrium is maintained 

as shown in Figure 1 [2-5].  

 

Figure 1. Schematic pilling formation [5]  

The first studies on fabric pilling property were carried out 

between 1970 and 1990 and they were mostly on the pilling 

formation mechanism and modelling. Since then, the 

studies focused on fiber and yarn properties affecting 

pilling propensity as well as the effects of finishing 

treatments and pilling tendencies of different fabric 
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structures and pilling test methods. By 2000`s, these studies 

generally investigated the objective evaluation of pilling 

with image analysis. However, only a few studies have 

been reported concerning the stochastic modelling of the 

pilling characteristics. The pill formation on fabric surface 

occurs in multiple states and transitions between states 

depend only on the last state of the fabric. The transition 

from the current state to the next state involves uncertainty 

and therefore, pilling process has a stochastic structure. 

Markov chains have an important role in describing this 

kind of systems indicating stochastic behaviour that 

changes over time [6]. Modelling of pilling and determining 

the transitions from every stage of pilling process is 

important in terms of predicting the pilling propensity of 

the fabrics and obtaining a probabilistic structure of pilling 

formation especially in the fabric development phases and 

before the fabric is reached to the consumer. By 

considering this situation, the pilling formation on wool 

fabrics was investigated in this study as a stochastic process 

and assumed to be a Markov chain.  

Application of Markov principle is widely used for 

predictions in medical sciences, engineering, and financial 

management. Transition probability matrix handles the 

behaviour of a Markov chain and its elements determine the 

probability of moving from one state to the other state in a 

time interval. In studies based on observational data and 

using Markov chains to model any system behaviour, 

transition probability matrix is estimated from 

observational data using MLE. There are many studies 

using Markov models and focusing on estimating 

parameters by means of MLE, such as disease progression 

modelling, engineering, and financial area. However, there 

has not been that much research in modelling any process 

related to usage life of fabrics based on Markov chains. 

Markov chains are classified according to time parameter 

and state space. If the state space and time parameter are 

discrete, the stochastic process is called discrete-time 

Markov chains. Fabric pilling formation is occurred at 

discrete time points and the pilling states of the fabric are 

discrete, therefore in this study, the fabric pilling process 

was modelled with discrete-time Markov chain. Discrete 

time Markov chains have been frequently used to model or 

evaluate chronic disease progression since chronic diseases 

can be described according to specific health states and 

Markov chains enable modelling transitions among health 

states. In these types of studies based on observational data, 

transition probability matrix is estimated using MLE [7-10]. 

In addition to disease progression modelling, there are 

various studies on engineering, finance and other fields 

using Markov chains focusing on the estimation of 

parameters with MLE. Malik and Thomas (2012) 

developed a Markov chain model based on behavioural 

scores of consumers to predict the credit risk of portfolios 

[11]. Shi et al. (2011) modelled driving cycles of vehicles 

using Markov theory and created a transition probability 

matrix using MLE based on experimental data [12]. 

Assuming that the next action of a user was only dependent 

on the last action of the user, Chierichetti et al. (2012), used 

Markov theory and MLE to model browsing behaviours of 

users on the web [13]. 

Considering the use of Markov chains on textile industry, 

Paras and Pal (2018) developed a model for counting the 

number of cycles that a garment can do in a reuse-based 

closed loop cycle. The proposed model was used to 

examine the textile waste flow in Scandinavian countries 

such as Denmark, Finland, Iceland, Norway, and Sweden 

[14]. Kumar, et.al (2018) studied fabric finishing system of 

a textile industry. A performance evaluating model of the 

system was obtained based on Markov-Birth-Death process 

with probabilistic method. The teaching-learning-based 

optimization (TLBO) was used as the optimization 

algorithm [15]. Baycan and Yildirim (2016) investigated 

the cyclical economic asymmetric behavioural dynamics of 

the Turkish textile and apparel industries. To this end, the 

hidden Markov regime switching models were used. The 

authors also showed the estimated Markov probabilities, 

average durations, and percentages of staying in the same 

state [16]. Badea, et.al (2016) designed a proper Markov 

chain to model data from a sub-branch of textile industry. 

The stochastic processes were used to optimize the time of 

the textile manufacturing process [17]. Kumar, et.al (2016) 

analysed the performance modelling and the availability of 

the fabric finishing system that consisted of four main 

subsystems of textile industry. Markov-Birth-Death process 

was used to evaluate the performance and analysis of 

availability [18]. Afrinaldi (2020), modelled the lifecycle of 

a product using the Markov chain and validated with the 

analysis of plastic lifecycle. The number of trips and 

duration of stay of a product in a particular lifecycle stage, 

the number of products visiting a specific lifecycle stage, 

the probability of a product being discarded and 

incinerated, and the expected total environmental impact of 

the product are predicted [19].  

In this study, the pilling process of woollen fabrics, 

characteristically prone to pill was investigated by using 

stochastic modelling. Woollen fabrics are inherently 

staining resistant, fire retardant, temperature regulating and 

have wonderful acoustic properties however they are more 

prone to pilling, therefore the pilling process was carried 

out with 100% woven fabrics in this study. The pilling 

propensity on the surface of the fabric can be modelled as a 

Markov chain. This is because the pilling degrees indicated 

in Table 2 depend on the previous degrees. Estimates made 

using the Markov chain are important in terms of revealing 

the service life of the fabric. For this purpose, 58 different 

woven, 100% wool fabrics were subjected to pilling process 

in different pilling cycles to observe the changing of pilling 

degree by the time and the stochastic model was applied to 

this experimental data. In order to eliminate the subjectivity 

of pilling evaluation, PillGrade instrument was used for the 
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assessment of pilling degree to the tested fabrics. Although 

there are current studies on the pilling mechanism, the 

transition between the pilling states has not been 

investigated in terms of stochastic approach before. 

Therefore, the main purpose of this study is to model the 

changes in terms of pilling degree of woollen fabrics during 

pilling process based on the generated Markov probability 

transition matrix. Accordingly, transition probability matrix 

of the pilling degrees was estimated with MLE. In addition, 

the conditional mean first passage times for any transient 

state to enter any recurrent state for the first time were 

determined, assuming that the fabric will eventually be in 

unpleasant appearance.  

2. MATERIAL AND METHOD 

2.1 Material  

For the study, 58 different woven 100% wool fabrics in 

various woven constructions were used. The weight per unit 

area values were ranged between 150-300 g/m2 and 

thickness values were in the range of 0.18 mm to 1.57 mm. 

The mass per unit area, thickness, warp and weft yarn 

count, warp and weft density values of the fabrics are given 

in Table 1.  Besides the structural properties, photos of the 

fabrics taken by Leica S8APO Streo Microscobe are given 

in the Table 1, as well. 

   

 

Table 1. The physical and structural properties of the fabrics used in the study 

Fabric codes 

       
F1 F2 F3 F4 F5 F6 F7 

Mass per unit area (g/m2) 251 167 187 163 165 166 192 

Thickness (mm) 0,53 0,21 0,26 0,23 0,18 0,18 0,30 

Warp yarn count (tex) 26 28 32 20 30 26 26 

Weft yarn count (tex) 32 26 32 20 28 30 36 

Warp yarn density (ends/cm) 50 33 29 42 32 31 32 

Weft yarn density (picks/cm)  39 30 28 30 27 26 29 

Fabric codes 

       
F8 F9 F10 F11 F12 F13 F14 

Mass per unit area (g/m2) 185 156 174 174 210 290 175 

Thickness (mm) 0,22 0,18 0,21 0,19 0,55 0,86 0,27 

Warp yarn count (tex) 24 28 26 26 62 96 28 

Weft yarn count (tex) 20 28 32 24 60 92 34 

Warp yarn density (ends/cm) 40 26 30 37 18 16 34 

Weft yarn density (picks/cm)  38 25 26 32 15 14 25 

Fabric codes 

       
F15 F16 F17 F18 F19 F20 F21 

Mass per unit area (g/m2) 250 155 200 171 204 298 170 

Thickness (mm) 0,75 0,62 0,42 0,35 0,46 0,75 0,51 

Warp yarn count (tex) 52 50 22 48 88 52 24 

Weft yarn count (tex) 54 48 14 46 18 50 28 

Warp yarn density (ends/cm) 19 18 40 21 19 26 32 

Weft yarn density (picks/cm)  19 16 39 19 18 26 26 

Fabric codes 

       
F22 F23 F24 F25 F26 F27 F28 

Mass per unit area (g/m2) 211 172 233 194 178 284 274 

Thickness (mm) 0,60 0,26 0,35 0,35 0,33 0,83 0,81 

Warp yarn count (tex) 972 26 36 54 34 40 36 

Weft yarn count (tex) 878 28 38 56 34 48 22 

Warp yarn density (ends/cm) 3 37 26 19 40 27 27 

Weft yarn density (picks/cm)  3 31 21 18 32 24 25 

 

 



 

68 TEKSTİL ve KONFEKSİYON 32(1), 2022 

Table 1 (Continued) 

Fabric codes 

       

F29 F30 F31 F32 F33 F34 F35 

Mass per unit area (g/m2) 299 237 229 267 280 293 282 

Thickness (mm) 1,00 0,83 0,74 1,57 1,09 0,91 0,89 

Warp yarn count (tex) 30 32 20 56 28 32 34 

Weft yarn count (tex) 22 26 36 54 26 44 26 

Warp yarn density (ends/cm) 27 30 29 25 39 28 35 

Weft yarn density (picks/cm)  27 28 27 22 38 27 32 

Fabric codes 

       
F36 F37 F38 F39 F40 F41 F42 

Mass per unit area (g/m2) 245 224 233 154 155 155 160 

Thickness (mm) 0,75 0,73 0,80 0,58 0,57 0,58 0,69 

Warp yarn count (tex) 30 32 24 34 22 34 112 

Weft yarn count (tex) 20 26 22 24 22 32 116 

Warp yarn density (ends/cm) 43 33 38 33 38 30 13 

Weft yarn density (picks/cm)  38 25 34 31 30 25 13 

Fabric codes 
       

F43 F44 F45 F46 F47 F48 F49 

Mass per unit area (g/m2) 164 150 156 156 154 157 152 

Thickness (mm) 0,70 0,55 0,60 0,55 0,57 0,56 0,62 

Warp yarn count (tex) 118 106 124 88 98 160 118 

Weft yarn count (tex) 108 104 168 78 108 180 116 

Warp yarn density (ends/cm) 13 13 9 17 15 10 14 

Weft yarn density (picks/cm)  12 10 9 14 12 8 12 

Fabric codes 

       
F50 F51 F52 F53 F54 F55 F56 

Mass per unit area (g/m2) 156 162 151 155 155 251 296 

Thickness (mm) 0,72 0,74 0,65 0,66 0,68 0,70  0,74  

Warp yarn count (tex) 118 86 70 38 62 54 100 

Weft yarn count (tex) 130 108 74 38 64 62 88 

Warp yarn density (ends/cm) 12 14 16 32 25 20 17 

Weft yarn density (picks/cm)  11 14 16 23 23 20 15 

Fabric codes 

  

     

F57 F58      

Mass per unit area (g/m2) 239 226      

Thickness (mm)  0,68 0,65       

Warp yarn count (tex) 82 70      

Weft yarn count (tex) 76 68      

Warp yarn density (ends/cm) 17 16      

Weft yarn density (picks/cm)  16 14      
 

 
 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

 

 

2.2 Experimental Method  

The pilling propensities of fabrics were determined by 

using a laboratory test device simulating the usage 

conditions of fabrics. Although there are many instruments 
for pilling formation, the Martindale method gives nearly 

similar results compared to the real usage conditions. Test 
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results obtained from Martindale pilling method provide us 

with critical information about a textile’s durability and 

suitability for certain applications.  Therefore, the fabrics 

used in the study were subjected to pilling process by using 

James Heal Nu-Martindale Pilling and Abrasion Tester 

instrument (Figure 2a).  

In pilling tests, the fabrics were fixed on the Martindale 

Tester, and the face of the test specimen was rubbed against 

the face of the same attached fabric in the form of a 
geometric figure, lissajous figure given in Figure 2b, that is, 

a straight line which became a gradually widening ellipse 

until it formed another straight line in the opposite direction 

and followed the same pattern again for a specific number 

of movements under the weight of 415 g, which is also a 

recommended weight for the pilling test of woven fabrics in 

EN ISO 12945-2 standard method  [20]. In this study, after 

250, 500, 750, 1000, 1250, 1500, 1750 and 2000 cycles, the 

fabric samples were evaluated in terms of pilling degree by 

using PillGrade objective pilling evaluation system. 

Generally pilling evaluation is performed by skilled expert 

operators comparing the specimens, after a predefined 
number of cycles performed by the testing equipment, with 

visual standards (which may be actual fabrics samples or 

photographs). On the basis this comparison, the experts 

define the resistance to pilling using the so called “degree 

of pilling” i.e. an index varying on a scale ranging from 5 

which means no pilling to 1 which means very severe 

pilling, given also in Table 1 [21]. However, as this 

assessment is based on the operator, the repeatability is low. 

Therefore, instead of making pilling assessment by the 

textile experts, pilling estimation was carried out 

objectively using PillGrade instrument (Figure 2c).  

The PillGrade system is an automated pilling assesment 

system used for objective and repeatable pilling evaluation. 

After the pilled fabric speciemen is scanned by a camera 
and each pill in the center area of the specimen is detected 

and measured, PillGrade uses the PillGrade Grading 

Formula to calculate a pilling degree between 1 and 5 [22].  

Although PillGrade instrument measures various pilling 

related properties, in this study only pilling degree values 

were used since the aim of using PillGrade instrument was 

to eliminate the subjectivity of pilling evaluation, therefore 

the other parameters measured by the instrument were not 

considered, besides the pilling formula calculated by the 

instrument contains these parameters inherently. Table 2 

presents the instructions about pilling degrees and Figure 3 

indicates the woven fabrics with different pilling degree 
values.  Pilling degree 5 and pilling degree 4 generally 

represent good surface characteristics of the fabrics, 

however the lower pilling degrees (1, 2, 3) are evaluated as 

unpleasant.  

  

 

 
  

   
Figure 2. a) Martindale pilling and abrasion tester     b) Lissajous movement curve   c) PillGrade objective pilling evaluation system  

 
 
 

 

 

Table 2. The meaning of pilling degrees 

Pilling degree Description 

5 No surface change 

4 Very small amount of pill and fuzz 

3 Moderate fuzz and pill 

2 Clearly visible amount of pill and fuzz 

1 Very dense amount of fuzz and pill 

 

 

Figure 3. Woven fabrics in different pilling degrees [23]  
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2.3 Modelling Procedure 

A Markov chain model was built based on the pilling 

propensity of wool fabrics in this study since the pilling 

occurrence on fabric surface had a multiple state structure 

and the transitions from the current state to the next state 

involve uncertainty. The related theoretical framework and 

its implementation are given in the following.  

Let  0,,  nSxX nn represent a stochastic process. In 

this stochastic process,  sS ,....,3,2,1  represents finite 

state space of the process and 0n  denotes discrete time 

points. Let nX  be the value of the system characteristics at 

time n and generally it is not known with certainty before 
time point n. If this stochastic process has the following 

property 

 

 

Then it can be said that the stochastic process 

 0 nSxX nn ,,  has Markov property and this property 

means that the transitions in the past do not have any effects 

on the current transitions. Above, probability ijp  is called 

transition probability and is the probability of going from 

state i at time n to state j at time n+1. In other words, at any 

time 𝑛, the future state 1nX  can only be determined by the 

current state nX   and independent of all other previous 

states 
10 ...,, nXX and the value of SX n   [24].  

Let P represent the transition probability matrix of a 

Markov chain and it can be given in (2): 
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At any state, sum of all transition probabilities equals 1, 

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In order to determine the transition probability matrix, maximum likelihood estimation (MLE) method can be used. Let                          
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An indicator function can be used to determine transition counts: 
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Suppose that at time k-1, the state of the process is 1kx  and at time k, the state of the process is kx . Then the transition 

probability is as follows:  
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The indicator function (.)I provides that only one transition can occur at time k. Using this function in (3), the following 

results can be drawn: 
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Let nij denote the number of transitions from state i to state j at time k. Then, the value of nij can be determined using the 

indicator function as follows: 
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The number of times that the process starts in state i can be given as follows: 

                                                                           ni = I (x0 = i )                                                                                                                    (7) 

Then the likelihood of the sequence MX :0  can be given as follows [25]: 
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In this function, one of the transition probabilities should be written according to the other transition probabilities using the 
fact that the sum of all transition probabilities equals 1: 
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After substituting this probability in (8), to maximize function )(xL , first, the logarithms should be taken: 
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After taking derivatives of this function and equating them to zero, the result is drawn: 
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A Markov chain having both recurrent states and transient 

states is a reducible chain and it can be partitioned into two 

closed classes consisting of transient and recurrent states 

[6]. For this type of Markov chain, the canonical form of 

the transition matrix can be generated and the matrix in 

question, P, is represented as follows: 


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where the square matrix S is the class of recurrent states, 

the matrix D and Q consist of the transitions from transient 

states to recurrent states and the transitions among transient 

states, respectively.  

If the closed class of recurrent states S is represented by C, 


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 States) (Recurrent
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where Q is transient matrix and the column vector CD is 

rearranged form of the structure of matrix D which is 

obtained summing concerned probabilities.  

Since the Markov chain is reducible, if it is assumed that 

the chain begins in a transient state, the expected (total) 

number of times the chain visits a (all) transient state(s) 

before it is absorbed in a recurrent state can be calculated. 

To achieve this, the inverse of the difference of I which is 

identity matrix and Q of rearranged matrix P in the 

canonical form exists and is called fundamental matrix, 

denoted by U and it is defined as follows: 

1)(  QIU                                                              (13) 

Let uij in U denote the expected number of times the chain 

visits transient state j before the chain enters an absorbing 

state, given that the chain begins in transient state i. 

Suppose that the matrix of eventual passage probabilities 

from the transient states to the recurrent states is denoted 

by CF and it is calculated using the formula UDFC  . In 

addition, suppose that the matrix of eventual passage 

probabilities from the transient states to the one of the 

recurrent states is denoted by Cf and it is calculated using 

the formula CC UDf   [26].     

Assume that
)(n

ijp  represents an n-step transition probability 

for the recurrent closed class CD consisting of N states, 

where i and j are two recurrent states existing in the same 

recurrent closed class in question. Let  
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where j  is the steady state probability for state j 

belonging to the corresponding recurrent class. Then the 

limiting probability vector for CD can be calculated using 

the equalities obtained by the following equation: 
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the class of recurrent states in Equation (11). 

The limiting probability of a transition from a transient state i 

to a recurrent state j in C is equal to the product of Cif , the 

probability of eventual passage from the transient states to 

the one of the recurrent states in question, and j , the steady 

state probability for state j belonging to the corresponding 

recurrent class. This can be formulated as follows: 
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If the initial state is transient state i, the limiting distribution 

of the process πʹ can be obtained as follows: 
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For an irreducible Markov chain, let ijm  expected number 

of transitions before the chain first reaches state j, given 

that it is currently in state i;  ijm  is called the mean first 

passage time from state i to state j. Assume that the chain is 

currently in state i. Then with probability ijp , it will make 

one transition to go from state i to state j. For k ≠ j, the 

chain next goes with probability ikp  to state k. In this case, 

it will make an average of kjm1 transitions to go from i to 

j. This reasoning implies that [24] 
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The Markov chain given as application in this study is a 

reducible Markov chain and consists of one irreducible 

chain including recurrent states, the calculation of 

conditional mean first passage times is appropriate for each 

transient state. In order to calculate the conditional mean 

first passage time from transient state i to any target 

recurrent state h, the following formula can be used. 
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     (17) 

where R is non-absorbing recurrent states [27].  

3. RESULTS AND DISCUSSION 

According to the theoretical framework given in Section 2, 

the state transition diagram of pilling process must firstly be 

determined. With this aim, the states of the stochastic 

process were defined based on the results of the pilling 

degrees measured by the PillGrade instrument given in 

Figure 4. Each number indicated in the figure shows the 

states. According to the assumed model, the states were 

constructed as follows: 

States


























    2degree pilling,1

 3degree pilling2  ,2

 4degree pilling3  ,3

 4.5degree pilling4     ,4

  4.5degree pilling,5

 

 

The forward arrows point out the deterioration of the fabric 
surface in terms of pilling and reverse arrows indicate the 

recovery due to the detaching of pills on the fabric surface. 

The stochastic process can remain on the current state since 

the pilling degree of the fabric may not change. If the 

pilling degree decreases by one or more degrees, the 

process can make a transition to the mentioned states and 

this situation shows that the fabric surface is deteriorated. 

On the other hand, as the detaching of pills on the fabric 

surface is more difficult to occur, except for the state 5, the 

process can move to at most one higher state. 

 

5 4 3 2 

1 

 

Figure 4. The state transition diagram of pilling process 

 

Based on the state transition diagram of pilling process in 

Figure 4, the transition probability matrix can be formed as 

follows: 
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Maximum likelihood estimation (MLE) method is used to 

obtain the value of the probabilities in the matrix P. 

According to the state transition diagram of pilling process, 

58 different wool fabrics with 150-300 g/m2 weight per unit 

area were pilled at every 250 cycles up to 2000 cycles. 

Then, it can be said that the number of discrete time 

points, n {0, 1, 2, 3, 4, 5, 6, 7, 8}, where the observations 

were obtained are 9. 

The probabilities in the transition probability matrix are 

estimated by using MLE. If shown for one of all transitions, 

12 wool fabrics make a transition from state 5 to state 3, 

and the number of fabrics remaining at state 5 at the end of 

2000 cycles is 274, then the probability of the transition 

from state 5 to state 3 is calculated as follows: 

0438.0
274

12
53 p  

 
After estimating the transitions of all the other states in the 

same way, the transition probability matrix P has the 

following probabilities:  
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The Markov chain presented above has both recurrent states 

and transient states. For this reason, this Markov chain is a 

reducible one and it can be partitioned into two closed 

classes consisting of transient and recurrent states [6]. 

States 1, 2 and 3 are the members of recurrent class and 

states 4 and 5 are those of transient class. The reorganized 

form of the matrix P is  
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The elements of the transition matrix P given in (11) is represented as follows: 
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Since the chain starting from state 5 will eventually visit one of the states in S and will never return state 4 or 5 again, this 

class of recurrent states S can be evaluated as an absorbing state.  

 

When the closed class of recurrent states S represented by C which consists of states 1, 2 and 3,  
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where  











0657.0

28.0
CD     and   










8832.00511.0

12.06.0
Q  

Suppose that the chain begins in transient state 5. In order to determine the expected number of times the chain visits a (all) 

transient state(s) before it is absorbed in a recurrent state, U given in (13) should be calculated.  
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One of the elements of U, 259.154 u means that the expected number of visits to transient state 4 before the chain enters 

one of the recurrent states, given that the chain begins in transient state 5 is 1.259 and according to the experimental 

process mentioned above, this quantity corresponds to cycles315cycles250259.1  . Let ui denote the expected number 

of times the chain visits all transient states before the chain enters an absorbing state, given that the chain begins in 

transient state i. For 5i ,  114.11855.9259.155545  uuu means that the expected number of visits all transient 

states before the chain enters an absorbing state, given that the chain begins in transient state 5 is 11.114 and similarly, 

based on the experimental process, this quantity equals approximately cycles2779cycles250114.11  . 

The matrix of eventual passage probabilities from transient states 4 and 5 to the recurrent states 1, 2 and 3 is  
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The matrix of eventual passage probabilities from transient states 4 and 5 to the recurrent states 1, 2 and 3 is  

                        C           C 
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Irrespective of the transient beginning state, chain is absorbed, and this means that the fabric will eventually be unusable.  

The limiting probability vector for the recurrent closed class DC  can be obtained using (14). 
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After solving the set of equations given above, the following results are obtained: 

 

[π1     π2    π3] = [ 0.8240   0.1674   0.0088 ] 
 

As stated previously, initial state is 5, π   is defined using (15) as follows: 
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As a result, the limiting distribution of the process is 

 

π = [ 0.8240   0.1674   0.0088   0   0 ]
  

 
This means that the long run proportions of time spend in state 1, 2 and 3 are equal to 0.8240, 0.1674 and 0.0088, 

respectively.  

 

The conditional mean first passage times for state 4 to enter recurrent state 1 for the first time given that the fabric will 

eventually be in unpleasant appearance can be determined. To calculate 41m , the conditional mean first passage times 21m  

and 31m  for the recurrent closed class C={1,2,3} must first be computed. These passage times from recurrent states 2 and 3 

to recurrent state 1 in C can be calculated as follows: 
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The solutions are 0216.521 m  and 315.831 m . 

Using the formula given in (17) to compute 41m , the following is obtained: 
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On the average, a fabric that will eventually be in 

unpleasant appearance will enter recurrent state 1 which is 

the worst situation with respect to appearance for the first 

time after 350025014   and 475025019  cycles 

when it is known that the pilling degree of the fabric is 4 

and 5, respectively. While the conditional mean first 

passage time from state 2 which is one of the unpleasant 

appearances to state 1 which is the worst unpleasant 

appearance is the shortest, as expected the conditional mean 
first passage time from state 5 which is the best appearance 

to state 1 is the longest. 

The number of cycles calculated above for the transitions 

between pilling degrees gives an idea about the durability 

of the fabrics and can also be used to estimate the useful 

life of the fabrics. Considering that 2000 cycles are used as 

the standard test time to simulate the pilling behaviour of 

the fabrics during usage and this test is equivalent to 40 

minutes, 3500 and 4750 cycles will be approximately 70 

and 95 minutes, respectively. It is clear that under real 

usage conditions, this period represents a very long time, 
and therefore this means that the fabrics with similar 

structure will have long life cycle.  

 

4. CONCLUSION 

In this study, the pilling degree changing of wool fabrics 

during pilling process was evaluated by using stochastic 

modelling based on Markov chains. Accordingly, 58 woven 

100% wool fabrics were tested in similar structure, and the 

model was applied using experimental data on pilling 

degree results of these fabrics. Pilling degree evaluation 
was composed of 5 degrees from 1 (severe pilling) to 5 

(non-pilling).  

In the first part of the study, an appropriate state transition 

diagram was designed, and probability transition matrix of 

corresponding Markov chain was obtained using MLE 

method and used to model the pilling process of these 

woollen woven fabrics. Afterwards, limiting distribution of 

the process was derived and since obtained Markov chain 

was reducible, conditional mean first passage times were 

calculated.  

The initial condition of pilling degree of the fabrics was 

considered as 5. Due to the pilling formed by the usage of 
the fabrics, the pilling degrees were expected to be 1, 2 or 3 

that were generally evaluated as low-quality fabrics in 

textile industry. The results of the limit probability 

distribution calculated at the end of the study also supported 

the expected situation in real life. For the woven wool 

fabrics with 150-300 g/m2 weight per unit area, the 

probability of that the fabrics remain in the pilling degree 4 

or pilling degree 5 after long-term use was 0, whereas these 

probabilities were calculated as 0.0088, 0.1674 and 0.8240 

for pilling degrees 3, 2 and 1, respectively.    

Conditional mean first passage times were also calculated. 
Accordingly, when the pilling degree of the fabric was 4, 
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the first time that the fabric would eventually be in the 

worst situation (state 1) is approximately 3500 cycles. This 

conditional mean first passage times can be used for 

simulation and optimization of the durability of fabrics 

regarding the pilling formation. The calculated pilling 

cycles number for the transitions between pilling degrees 

can be useful for the estimation of the life cycle of the 

fabrics. 

The results obtained from the study such as probabilities of 
transitions among the pilling formation states on wool 

fabrics, limiting probability distribution and conditional 

mean first passage times can be beneficial for the future 

works especially intended to be carried out on the 

computational methods of pilling mechanism. The number 

of cycles calculated for the transitions between pilling 

degrees gives an idea about the durability of the fabrics and 

can also be used to estimate the useful life of the fabrics. 

The findings obtained based on the result of the calculations 

made with the stochastic structure is in line with the real 

situation, and therefore the stochastic structure constructed 

can be used for different fabric types, as well. By using the 
data obtained from the experiments, different results can be 

obtained for the fabrics using the same stochastic structure.  

 

 

 

 

 

REFERENCES 

1. Özçelik KG, Kirtay, E. 2015. Part 1. Predicting the pilling tendency 

of the cotton interlock knitted fabrics by regression analysis. Journal 

of Engineered Fibers and Fabrics 10 (3), 110-120. 

2. Beltran R, Wang L, Wang X. 2006. Predicting the pilling tendency of 

wool knits. Journal of Textile Institute 97 (2), 129-136. 

3. Beltran R, Wang L, Wang X. 2006. Measuring the influence of fiber-

to-fabric properties on the pilling of wool fabrics. Journal of Textile 

Institute 97 (3), 197-204. 

4. Hearle JWS, Wilkins AH. 2006. Mechanistic modelling of pilling. 

Part I: Detailing of mechanisms. Journal of the Textile Institute 97 

(4), 359-368. 

5. Schindler WD, Hauser PJ. 2004. Chemical finishing of textiles. 

Cambridge, England: Woodhead Publishing Ltd. 

6. Taylor HM, Karlin S. 1998. An introduction to stochastic modeling. 

3rd Ed. USA: Academic Press. 

7. Kay R. 1986. A Markov model for analysing cancer markers & 

disease states in survival studies. Biometrics 42 (4), 855-865. 

8. Craig BA, Sendi PP. 2002. Estimation of the transition matrix of a 

discrete-time Markov chain. Health Economics 11, 33–42. 

9. Jackson CH, Sharples LD, Thompson SG, Duffy SW, Couto E. 2003. 

Multistate Markov models for disease progression with classification 

error. The Statistician 52 (2), 193–209. 

10. Yaesoubi R, Cohen T. 2011. Generalized Markov models of 

infectious disease spread: A novel framework for developing 

dynamic health policies. European Journal of Operations Research 

215 (3), 679–687.  

11. Malik M, Thomas LC. 2012. Transition matrix models of consumer 

credit ratings. International Journal of Forecasting 28, 261–272. 

12. Shi Q, Zheng YB, Wang RS, Li YW. 2011. The study of a new 

method of driving cycles construction. Procedia Engineering 16, 79–

87. 

13. Chierichetti F, Kumar R, Raghavan P, Sarlós T. 2012, April. Are 

Web users really Markovian? In: Proceedings of the 21st 

International Conference on World Wide Web, (609-618). Lyon, 

France. 

14. Paras MK, Pal R. 2018. Application of Markov chain for LCA: A 

study on the clothes ‘reuse’ in Nordic countries. Int. J. Adv. Manuf. 

Technol. 94, 191-201. 

15. Kumar R, Tewari PC, Khanduja D. 2018. Parameters optimization of 

fabric finishing system of a textile industry using teaching-learning-

based optimization algorithm. International Journal of Industrial 

Engineering Computations 9, 221-234. 

16. Baycan IO, Yildirim G. 2016. Analysing the nonlinear dynamics of 

the Turkish textile and apparel industries. Tekstil ve Konfeksiyon 26 

(4), 345-350. 

17. Badea L, Grigorescu A, Constantinescu A, Visileanu E. 2016. Time 

optimization of the textile manufacturing process using the stochastic 

process. Industria Textila 67(2), 205-209. 

18. Kumar R, Tewari PC, Khanduja D. 2016. Performance modeling and 

availability analysis of the fabric finishing system of a textile 

industry. International Journal of Engineering Science and 

Computing 6(8), 2563-2567. 

19. Afrinaldi F. 2020. Exploring product lifecycle using Markov chain, 

Procedia Manufacturing 43, 391–398. 

20. EN ISO 12945-2 Determination of fabric propensity to surface 

fuzzing & to pilling - Part 2: Modified Martindale method. 

21. Furferi R, Governi L, Volpe Y. 2015. Machine Vision-Based Pilling 

Assessment: A Review. Journal of Engineered Fibers and Fabrics 10 

(3), 79-93. 

22. Jackson T, Keyes NM, Harris P, Holden JB. 2005, January. A 

preliminary report: Fuzz & pilling surface changes on cotton fabrics 

measured by linetech industries' image analysis system. In: Beltwide 

Cotton Conferences (2219-2228). New Orleans, Louisiana, USA. 

23. Zhang J, Wang X, Palmer, S. 2007. Objective grading of fabric 

pilling with wavelet texture analysis. Textile Research Journal 77 

(11), 871–879. 

24. Winston WL, Goldberg JB. 2004. Operations research: Applications 

and algorithms, 4th Ed. USA: Thomson Brooks/Cole.  

25. Singer P, Helic D, Taraghi B, Strohmaier M. 2014. Deteching 

memory and structure in human navigation patterns using Markov 

chain models of varying order. PLos One 9 (7). 

26. Sheskin TJ. 2011. Markov chains and decision processes for 

engineers and managers. USA: CRC Press. 

27. Sheskin TJ. 2013. Conditional mean first passage time in a Markov 

chain. International Journal of Management Science and Engineering 

Management 8 (1), 32-37. 

 
 

 
 
 
 

 

 

 
 

 

 

 

 


