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ON EIGENFUNCTIONS OF HILL’S EQUATION WITH

SYMMETRIC DOUBLE WELL POTENTIAL

Ayşe KABATAŞ

Department of Mathematics, Karadeniz Technical University, Trabzon, TURKEY

Abstract. Throughout this paper the asymptotic approximations for eigen-
functions of eigenvalue problems associated with Hill’s equation satisfying pe-

riodic and semi-periodic boundary conditions are derived when the potential
is symmetric double well. These approximations are used to determine the

Green’s functions of the related problems. Then, the obtained results are

adapted to the Whittaker-Hill equation which has the symmetric double well
potential and is widely investigated in the literature.

1. Introduction

Consider the Hill’s equation

y′′ + [λ− q(x)]y = 0, x ∈ [0, a] (1)

under the periodic boundary conditions y(0) = y(a), y′(0) = y′(a), or the semi-
periodic boundary conditions y(0) = −y(a), y′(0) = −y′(a). Here, λ is a real
parameter and the potential q(x) is a real-valued, absolutely continuous and peri-
odic function with period a such that∫ a

0

q(t)dt = 0.

The equation (1) is fundamental for the quantum mechanical treatment of atomic
and molecular phenomena. This kind of equation was first used by Hill [21] in mod-
elling of the moon motion. It also appears in the theory of particle orbits in linear
accelerators and alternating gradient synchrotrons, because the field structures are
periodic [10,25,32].
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The derivation of asymptotic formulae for eigenvalues and eigenfunctions of Hill’s
equation, when restrictive conditions were imposed on q, is of interest in its own
right and has a long history. Exact solutions of differential equations are unfor-
tunately rare in applied mathematics and physics. Asymptotical interpretation of
the differential equations plays an important role in understanding the behaviour
of such differential equations [5, 12, 27, 30, 31]. Motivation for studying eigenvalue
and eigenfunction asymptotics has come from several different types of problems
including instability intervals and gaps of eigenvalues [3,4,11,15,22,26], the deriva-
tion and properties of the Green’s function [7–9, 13, 14, 23], inverse spectral theory
and theory on reconstructing the potential function from knowledge of spectral
data [16,19], and the general theory of periodic potentials [2, 6, 18,24,28].

The main purpose of this paper is to determine asymptotic formulae for the
eigenfunctions of the Hill’s equation with q(x) being of a symmetric double well
potential under the periodic and semi-periodic boundary conditions . We call q
a double well potential, if there are points x1 < x2 < x3 in [0, a] such that q is
monotone decreasing on [0, x1] and [x2, x3] and is monotone increasing elsewhere.
In this work, it is assumed in particular that the potential function q is a continuous
function on [0, a] which is symmetric on [0, a] as well as on [0, a2 ] and non-increasing
on [0, a4 ] , that is, q(x) = q(a− x) = q(a2 − x), mathematically.

Denote by λn and µn (n = 0, 1, 2, ...) the periodic and semi-periodic eigenvalues
of (1), respectively. These eigenvalues are interlaced in the following way:

λ0 < µ0 ≤ µ1 < λ1 ≤ λ2 < µ2 ≤ µ3 < ...→ ∞.

Başkaya [4] obtained the asymptotic approximations of the periodic and semi-
periodic eigenvalues of (1) having symmetric double well potential such that, as
n→ ∞

λ2n+1

λ2n+2
=

4(n+ 1)2π2

a2
∓ 1

(n+ 1)π

∣∣∣ ∫ a/4

0

q′(t) sin

(
4(n+ 1)π

a
t

)
dt
∣∣∣

− a

16(n+ 1)2π2
[aq2(a) + 2a

∫ a/4

0

q(t)q′(t)dt

− 8

∫ a/4

0

tq(t)q′(t)dt] + o(n−2) (2)

and

µ2n

µ2n+1
=

(2n+ 1)2π2

a2
− a

4(2n+ 1)2π2
[aq2(a) + 2a

∫ a/4

0

q(t)q′(t)dt

− 8

∫ a/4

0

tq(t)q′(t)dt] + o(n−2). (3)
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In Section 2, the eigenfunctions of (1) corresponding to the eigenvalues, λn and
µn, given by (2) and (3) are investigated. By using the estimates on the eigenfunc-
tions, the Green’s function asymptotics related to the Hill’s equation are derived
in Section 3. Here, the method developed by Fulton [20] is followed. In Section
4, the obtained results for the eigenfunctions and Green’s functions are adapted to
the Whittaker-Hill equation

d2ψ

dz2
+ [λ+ 2kcos(2z) + 2lcos(4z)]ψ = 0

where λ, k, l are real. This equation arises after separating the wave equation using
paraboloidal coordinates [1] and is equivalent to a time-independent Schrödinger
equation,

− α
d2ψ

dθ2
+ V (θ)ψ = εψ,

that describes the internal rotational (torsinal) problem of a given molecular sys-
tem around a dihedral angle θ = 2z. ε = αλ/4 is the energy eigenvalue of the
eigenfunction ψ = ψ(θ) and V (θ) = V1 cos(θ) + V2 cos(2θ) is a period 2π func-
tion representing a symmetric periodic double well potential with V1 = −αk/2 and
V2 = −αl/2 (see [29]).

The following results obtained in [18] will be used to determine the eigen-
functions.

Let ϕ1(x, λ) and ϕ2(x, λ) be the linearly independent solutions of (1) with the
initial conditions

ϕ1(0, λ) = 1, ϕ′1(0, λ) = 0, ϕ2(0, λ) = 0, ϕ′2(0, λ) = 1. (4)

Theorem 1. [18, §4.3] Assume that ϕ1(x, λ) and ϕ2(x, λ) are the solutions of (1)
satisfying (4). Let q(x) be an absolutely continuous function. Then, as λ→ ∞,

ϕ1(x, λ) = cos(x
√
λ) +

1

2
λ−

1
2Q(x) sin(x

√
λ) +

1

4
λ−1

{
q(x)− q(0)− 1

2
Q2(x)

}
× cos(x

√
λ) + o(λ−1),

ϕ2(x, λ) = λ−
1
2 sin(x

√
λ)− 1

2
λ−1Q(x) cos(x

√
λ)

+
1

4
λ−

3
2

{
q(x) + q(0)− 1

2
Q2(x)

}
sin(x

√
λ) + o(λ−

3
2 )

where

Q(x) =

∫ x

0

q(t)dt. (5)
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2. Asymptotics of Eigenfunctions

In this section we obtain the asymptotic approximations for eigenfunctions of
(1) satisfying the periodic and semi-periodic boundary conditions.

Before, we prove the following lemma for q(x) being of a symmetric double well
potential.

Lemma 1. If q(x) is a symmetric double well potential on [0, a], then∫ x

0

q(t)dt = xq(x) +
a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt. (6)

Proof. Using integration by parts and q(x) = q(a − x) = q(a2 − x), it is obtained
that∫ x

0

q(t)dt = tq(t)
∣∣∣x
t=0

−
∫ x

0

tq′(t)dt

= xq(x)−

[∫ a/2

0

tq′(t)dt+

∫ x

a/2

tq′(t)dt

]

= xq(x)−

[
−
∫ a/2

0

tq′(a− t)dt+

∫ x

a/2

tq′(t)dt

]

= xq(x)−
∫ a/2

a

(a− t)q′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x) + a[q(t)]
∣∣∣a
t=a/2

−
∫ a

a/2

tq′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x) + a
[
q (a)− q

(a
2

)]
−

∫ a

a/2

tq′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x)−
∫ a

a/2

tq′(t)dt−
∫ x

a/2

tq′(t)dt

= xq(x)−

[∫ a/4

0

tq′(t)dt+

∫ a/2

a/4

tq′(t)dt

]
−
∫ x

a/2

tq′(t)dt

= xq(x)−

[
−
∫ a/4

0

tq′
(a
2
− t

)
dt+

∫ a/2

a/4

tq′(t)dt

]
−

∫ x

a/2

tq′(t)dt

= xq(x)−

[∫ a/4

a/2

(a
2
− t

)
q′(t)dt+

∫ a/2

a/4

tq′(t)dt

]
−
∫ x

a/2

tq′(t)dt

= xq(x) +
a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt.

□
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Theorem 2. Let q(x) be a symmetric double well potential on [0, a]. Then as
λ→ ∞, for the solutions of (1) with the initial conditions (4), we have

ϕ1(x, λ) = cos(x
√
λ) +

1

2
λ−

1
2 {xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt} sin(x
√
λ) +

1

4
λ−1{q(x)− q(0)− 1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} cos(x
√
λ) + o(λ−1), (7)

ϕ2(x, λ) = λ−
1
2 sin(x

√
λ)− 1

2
λ−1{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt} cos(x
√
λ) +

1

4
λ−

3
2 {q(x) + q(0)− 1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} sin(x
√
λ) + o(λ−

3
2 ). (8)

Proof. If we use Theorem 1 and substitute (6) in (5), the proof is done. □

Theorem 3. The eigenfunctions of the periodic problem having symmetric double
well potential satisfy, as n→ ∞

ϕ1(x, n) = cos
2(n+ 1)πx

a
+

a

4(n+ 1)π
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} sin 2(n+ 1)πx

a
+

a2

16(n+ 1)2π2

× {q(x)− q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt]2} cos 2(n+ 1)πx

a
+ o(n−2),

ϕ2(x, n) =
a

2(n+ 1)π
sin

2(n+ 1)πx

a
− a2

8(n+ 1)2π2
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} cos 2(n+ 1)πx

a
+

a3

32(n+ 1)3π3

× {q(x) + q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt]2} sin 2(n+ 1)πx

a
+ o(n−3).



HILL’S EQUATION WITH SYMMETRIC DOUBLE WELL POTENTIAL 639

Theorem 4. The eigenfunctions of the semi-periodic problem having symmetric
double well potential satisfy, as n→ ∞

ϕ1(x, n) = cos
(2n+ 1)πx

a
+

a

2(2n+ 1)π
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} sin (2n+ 1)πx

a
+

a2

4(2n+ 1)2π2

× {q(x)− q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt]2} cos (2n+ 1)πx

a
+ o(n−2),

ϕ2(x, n) =
a

(2n+ 1)π
sin

(2n+ 1)πx

a
− a2

2(2n+ 1)2π2
{xq(x) + a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt} cos (2n+ 1)πx

a

+
a3

4(2n+ 1)3π3
{q(x) + q(0)− 1

2
[xq(x) +

a

2

[
q
(a
2

)
− q

(a
4

)]
−
∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} sin (2n+ 1)πx

a
+ o(n−3).

To prove Theorem 3 and Theorem 4, the related eigenvalues given by (2) and
(3) are substituted in Theorem 2.

We also have asymptotic formulae for the derivatives of ϕ1(x, λ) and ϕ2(x, λ).
We will use them in calculation of the Green’s functions.

Lemma 2. Consider the equation (1) having symmetric double well potential. As
λ→ ∞, for the derivatives of its solutions, ϕ1(x, λ) and ϕ2(x, λ) which satisfy (4),
we have

ϕ′1(x, λ) = −λ
1
2 sin(x

√
λ) +

1

2
{xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt

−
∫ x

a/4

tq′(t)dt} cos(x
√
λ) +

1

4
λ−

1
2 {q(x) + q(0) +

1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} sin(x
√
λ) + o(λ−

1
2 ), (9)

ϕ′2(x, λ) = cos(x
√
λ) +

1

2
λ−

1
2 {xq(x) + a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt
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−
∫ x

a/4

tq′(t)dt} sin(x
√
λ)− 1

4
λ−1{q(x)− q(0) +

1

2
[xq(x) +

a

2
[q
(a
2

)
− q

(a
4

)
]−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt]2} cos(x
√
λ) + o(λ−1). (10)

Proof. Here, the proof of (9) will be shown. The proof of (10) is similar to that.
If q(x) is a piecewise continuous function, then, as λ→ ∞,

ϕ1(x, λ) = cos(x
√
λ) + λ−

1
2

∫ x

0

sin{(x− t)
√
λ}q(t) cos(t

√
λ)dt

+ λ−1

∫ x

0

sin{(x− t)
√
λ}q(t)dt

∫ t

0

sin{(t− u)
√
λ}q(u) cos(u

√
λ)du

+O(λ−
3
2 ) (11)

(see [18, §4.3]). The usual variation of constants formula [17, §2.5] gives

ϕ1(x, λ) = cos(x
√
λ) + λ−

1
2

∫ x

0

sin{(x− t)
√
λ}q(t)ϕ1(t, λ)dt.

If we arrange this formula, one can write

ϕ1(x, λ) = cos(x
√
λ) + λ−

1
2 {sin(x

√
λ)

∫ x

0

cos(t
√
λ)q(t)ϕ1(t, λ)dt

− cos(x
√
λ)

∫ x

0

sin(t
√
λ)q(t)ϕ1(t, λ)dt}. (12)

It is obtained by differentiating (12) with respect to x and substituting ϕ1(t, λ)
from (11) in the integral that

ϕ′1(x, λ) = −λ
1
2 sin(x

√
λ) + λ−

1
2 {λ

1
2 cos(x

√
λ)

∫ x

0

cos(t
√
λ)q(t)ϕ1(t, λ)dt

+ λ
1
2 sin(x

√
λ)

∫ x

0

sin(t
√
λ)q(t)ϕ1(t, λ)dt}

= −λ
1
2 sin(x

√
λ) +

∫ x

0

cos{(x− t)
√
λ}q(t)ϕ1(t, λ)dt

= −λ
1
2 sin(x

√
λ) +

∫ x

0

cos{(x− t)
√
λ}q(t) cos(t

√
λ)dt

+ λ−
1
2

∫ x

0

cos{(x− t)
√
λ}q(t)dt

∫ t

0

sin{(t− u)
√
λ}q(u) cos(u

√
λ)du

+O(λ−1). (13)

If differentiability conditions are imposed on q(x), (13) can be made more precise.
Assume that q(x) is absolutely continuous. This implies that q′(x) exists almost
everywhere and is integrable. Under these conditions, let consider the second term
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on the right of (13). We have∫ x

0
cos{(x− t)

√
λ}q(t) cos(t

√
λ)dt

=
1

2

∫ x

0

[
cos(x

√
λ) + cos{(x− 2t)

√
λ}

]
q(t)dt

=
1

2
Q(x) cos(x

√
λ) +

1

2

∫ x

0

cos{(x− 2t)
√
λ}q(t)dt

=
1

2
Q(x) cos(x

√
λ) +

1

2
[−1

2
λ−

1
2 q(t)sin{(x− 2t)

√
λ}

∣∣∣x
t=0

+
1

2
λ−

1
2

∫ x

0

q′(t) sin{(x− 2t)
√
λ}dt]

=
1

2
Q(x) cos(x

√
λ) +

1

4
λ−

1
2 [q(x) + q(0)] sin(x

√
λ)

+
1

4
λ−

1
2

∫ x

0

q′(t) sin{(x− 2t)
√
λ}dt.

The right-hand integral on the last equality is o(1) as λ → ∞ by the Riemann-
Lebesgue Lemma. So,∫ x

0

cos{(x− t)
√
λ}q(t) cos(t

√
λ)dt =

1

2
Q(x) cos(x

√
λ) +

1

4
λ−

1
2 [q(x) + q(0)]

× sin(x
√
λ) + o(λ−

1
2 ). (14)

Also, from [18, §4.3]∫ x

0

sin{(x− t)
√
λ}q(t) cos(t

√
λ)dt =

1

2
Q(x) sin(x

√
λ) +

1

4
λ−

1
2 [q(x)− q(0)]

× cos(x
√
λ) + o(λ−

1
2 ). (15)

For the third term on the right of (13), together with (15) we find

λ−
1
2
∫ x

0
cos{(x− t)

√
λ}q(t)dt

∫ t

0
sin{(t− u)

√
λ}q(u) cos(u

√
λ)du

=
1

2
λ−

1
2

∫ x

0

cos{(x− t)
√
λ}q(t)Q(t) sin(t

√
λ)dt+O(λ−1)

=
1

4
λ−

1
2

∫ x

0

[
sin(x

√
λ)− sin{(x− 2t)

√
λ}

]
q(t)Q(t)dt+O(λ−1)

=
1

4
λ−

1
2 sin(x

√
λ)

[
Q2(t)

2

] ∣∣∣x
t=0

+ o(λ−
1
2 )

=
1

8
λ−

1
2Q2(x) sin(x

√
λ) + o(λ−

1
2 ), (16)
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again by using the Riemann-Lebesgue Lemma. From (14) and (16), it is obtained
that

ϕ′1(x, λ) = −λ
1
2 sin(x

√
λ) +

1

2
Q(x) cos(x

√
λ) +

1

4
λ−

1
2

{
q(x) + q(0) +

1

2
Q2(x)

}
× sin(x

√
λ) + o(λ−

1
2 ). (17)

Using (6) in (5) and substituting this in (17) prove (9).
□

3. Asymptotics of Green’s Functions

In this section, we aim to improve asymptotic formulae for Green’s functions of
the periodic and semi-periodic problems with symmetric double well potential. The
Green’s function G(x, ζ, λ) is given by

G(x, ζ, λ) =

{
ϕ1(ζ,λ)ϕ2(x,λ)

w(λ) , 0 ≤ ζ ≤ x ≤ a
ϕ1(x,λ)ϕ2(ζ,λ)

w(λ) , 0 ≤ x ≤ ζ ≤ a
(18)

(see [20]). Here, ϕ1(x, λ) and ϕ2(x, λ) are linearly independent solutions of (1)
satisfying (4). And, we define w(λ) as follows

w(λ) := ϕ1(x, λ)ϕ
′
2(x, λ)− ϕ′1(x, λ)ϕ2(x, λ). (19)

It is known as the Wronskian function of ϕ1(x, λ) and ϕ2(x, λ).

Theorem 5. Suppose that the equation (1) has the symmetric double well poten-
tial and its independent solutions, ϕ1(x, λ) and ϕ2(x, λ) satisfy the initial conditions
(4). Then, the Green’s function of the problem is, as λ→ ∞

G(x, ζ, λ) = λ−
1
2 cos(ζ

√
λ) sin(x

√
λ)− 1

2
λ−1[D(x) cos(ζ

√
λ) cos(x

√
λ)

−D(ζ) sin(ζ
√
λ) sin(x

√
λ)] +

1

4
λ−

3
2 {[q(ζ) + q(x)− 1

2
(D2(ζ)

+D2(x))] cos(ζ
√
λ) sin(x

√
λ)−D(ζ)D(x) sin(ζ

√
λ) cos(x

√
λ)}

+ o(λ−
3
2 ), 0 ≤ ζ ≤ x ≤ a

where

D(x) := xq(x) +
a

2

[
q
(a
2

)
− q

(a
4

)]
−

∫ a/2

a/4

tq′(t)dt−
∫ x

a/4

tq′(t)dt. (20)

Similar result holds for 0 ≤ x ≤ ζ ≤ a changing the role of ζ and x.

Proof. We begin to the proof by evaluating the Wronskian function w(λ). For this
reason, we substitute (7), (8), (9) and (10) into (19). Hence,

w(λ) = 1− 1

4
λ−1

[
q(x)− q(0) +

1

2
D2(x)

]
cos2(x

√
λ) +

1

4
λ−1
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×
[
q(x) + q(0)− 1

2
D2(x)

]
sin2(x

√
λ)

+
1

4
λ−1D2(x) +

1

4
λ−1

[
q(x)− q(0)− 1

2
D2(x)

]
cos2(x

√
λ)

− 1

4
λ−1

[
q(x) + q(0) +

1

2
D2(x)

]
sin2(x

√
λ) + o(λ−1)

= 1− 1

4
λ−1D2(x) +

1

4
λ−1D2(x) + o(λ−1)

= 1 + o(λ−1).

From that, we can write

1

w(λ)
=

1

1 + o(λ−1)
= 1 + o(λ−1). (21)

Finally, using (7), (8), (21) in (18) we find

ϕ1(ζ, λ)ϕ2(x, λ)

w(λ)
= {cos(ζ

√
λ) +

1

2
λ−

1
2D(ζ) sin(ζ

√
λ) +

1

4
λ−1[q(ζ)− q(0)

− 1

2
D2(ζ)] cos(ζ

√
λ) + o(λ−1)}

× {λ−
1
2 sin(x

√
λ)− 1

2
λ−1D(x) cos(x

√
λ) +

1

4
λ−

3
2

×
[
q(x) + q(0)− 1

2
D2(x)

]
sin(x

√
λ) + o(λ−

3
2 )}{1 + o(λ−1)}

= {λ−
1
2 cos(ζ

√
λ) sin(x

√
λ)− 1

2
λ−1D(x) cos(ζ

√
λ) cos(x

√
λ)

+
1

4
λ−

3
2

[
q(x) + q(0)− 1

2
D2(x)

]
cos(ζ

√
λ) sin(x

√
λ)

+
1

2
λ−1D(ζ) sin(ζ

√
λ) sin(x

√
λ)− 1

4
λ−

3
2D(ζ)D(x)

× sin(ζ
√
λ) cos(x

√
λ) +

1

4
λ−

3
2

[
q(ζ)− q(0)− 1

2
D2(ζ)

]
× cos(ζ

√
λ) sin(x

√
λ) + o(λ−

3
2 )} ×

{
1 + o(λ−1)

}
= λ−

1
2 cos(ζ

√
λ) sin(x

√
λ)− 1

2
λ−1[D(x) cos(ζ

√
λ) cos(x

√
λ)

−D(ζ) sin(ζ
√
λ) sin(x

√
λ)] +

1

4
λ−

3
2

× {
[
q(ζ) + q(x)− 1

2

(
D2(ζ) +D2(x)

)]
cos(ζ

√
λ) sin(x

√
λ)

−D(ζ)D(x) sin(ζ
√
λ) cos(x

√
λ)}+ o(λ−

3
2 ).
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Thus, the proof is completed. □

Theorem 6. Green’s function of the periodic problem with symmetric double well
potential satisfies, as n→ ∞

G(x, ζ, n) =
a

2(n+ 1)π
cos

2(n+ 1)πζ

a
sin

2(n+ 1)πx

a
− a2

8(n+ 1)2π2

× [D(x) cos
2(n+ 1)πζ

a
cos

2(n+ 1)πx

a

−D(ζ) sin
2(n+ 1)πζ

a
sin

2(n+ 1)πx

a
]

+
a3

32(n+ 1)3π3
{
[
q(ζ) + q(x)− 1

2

(
D2(ζ) +D2(x)

)]

× cos
2(n+ 1)πζ

a
sin

2(n+ 1)πx

a
−D(ζ)D(x) sin

2(n+ 1)πζ

a

× cos
2(n+ 1)πx

a
}+ o(n−3)

for 0 ≤ ζ ≤ x ≤ a. Similar result holds for 0 ≤ x ≤ ζ ≤ a changing the role of ζ
and x.

Theorem 7. Green’s function of the semi-periodic problem with symmetric double
well potential satisfies, as n→ ∞

G(x, ζ, n) =
a

(2n+ 1)π
cos

(2n+ 1)πζ

a
sin

(2n+ 1)πx

a
− a2

2(2n+ 1)2π2

× [D(x) cos
(2n+ 1)πζ

a
cos

(2n+ 1)πx

a

−D(ζ) sin
(2n+ 1)πζ

a
sin

(2n+ 1)πx

a
] +

a3

4(2n+ 1)3π3

× {
[
q(ζ) + q(x)− 1

2

(
D2(ζ) +D2(x)

)]
cos

(2n+ 1)πζ

a

× sin
(2n+ 1)πx

a
−D(ζ)D(x) sin

(2n+ 1)πζ

a
cos

(2n+ 1)πx

a
}

+ o(n−3)

for 0 ≤ ζ ≤ x ≤ a. Similar result holds for 0 ≤ x ≤ ζ ≤ a changing the role of ζ
and x.

To prove Theorem 6 and Theorem 7, the related eigenvalues given by (2) and
(3) are used together with Theorem 5.
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4. The Whittaker-Hill Equation

Consider the Whittaker-Hill equation

y′′ + [λ+ 2k cos(2x) + 2ℓ cos(4x)]y = 0, x ∈ [0, 2π], λ, k, ℓ ∈ R (22)

under the periodic boundary conditions y(0) = y(2π), y′(0) = y′(2π), or the semi-
periodic boundary conditions y(0) = −y(2π), y′(0) = −y′(2π). Here, our goal is to
seek the eigenfunction and Green’s function asymptotics of the described problem.
This problem is a special case of (1) when q(x) = 2k cos(2x)+2ℓ cos(4x) and a = 2π.
Also, note that q is a continuous function on [0, 2π] which is symmetric on [0, 2π]
as well as on [0, π] and non-increasing on [0, π2 ], i. e., q(x) = q(2π − x) = q(π − x).
So, we say that q is a symmetric double well potential (see Figure 1). Last of all,
we can apply the obtained results in Sections 2 and 3 to this problem.

Figure 1. Graph of q when k = ℓ = 1

Following two theorems give the results about the eigenfunctions.

Theorem 8. The eigenfunctions of the Whittaker-Hill equation satisfying the pe-
riodic boundary conditions are, as n→ ∞

ϕ1(x, n) = cos((n+ 1)x) +
1

2(n+ 1)

[
ksin(2x) +

ℓ

2
sin(4x)

]
sin((n+ 1)x)

+
1

4(n+ 1)2
{2k cos(2x) + 2ℓ cos(4x)− 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} cos((n+ 1)x) + o(n−2),

ϕ2(x, n) =
1

n+ 1
sin((n+ 1)x)− 1

2(n+ 1)2

[
ksin(2x) +

ℓ

2
sin(4x)

]
cos((n+ 1)x)

+
1

4(n+ 1)3
{2k cos(2x) + 2ℓ cos(4x) + 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} sin((n+ 1)x) + o(n−3).
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Theorem 9. The eigenfunctions of the Whittaker-Hill equation satisfying the semi-
periodic boundary conditions are, as n→ ∞

ϕ1(x, n) = cos
(2n+ 1)x

2
+

1

2n+ 1

[
k sin(2x) +

ℓ

2
sin(4x)

]
sin

(2n+ 1)x

2

+
1

(2n+ 1)2
{2k cos(2x) + 2ℓ cos(4x)− 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} cos (2n+ 1)x

2
+ o(n−2),

ϕ2(x, n) =
2

2n+ 1
sin

(2n+ 1)x

2
− 2

(2n+ 1)2

[
k sin(2x) +

ℓ

2
sin(4x)

]
cos

(2n+ 1)x

2

+
2

(2n+ 1)3
{2k cos(2x) + 2ℓ cos(4x) + 2(k + ℓ)− 1

2
[k sin(2x)

+
ℓ

2
sin(4x)]2} sin (2n+ 1)x

2
+ o(n−3).

To prove Theorem 8 and Theorem 9, we take q(x) = 2k cos(2x)+ 2ℓ cos(4x) and
a = 2π in Theorem 3 and Theorem 4, respectively.

Following two theorems give the results about Green’s functions.

Theorem 10. Green’s function of the Whittaker-Hill equation under periodic bound-
ary conditions is, as n→ ∞

G(x, ζ, n) =
1

(n+ 1)
cos((n+ 1)ζ) sin((n+ 1)x)− 1

2(n+ 1)2
{[k sin(2x) + ℓ

2
sin(4x)]

× cos((n+ 1)ζ) cos((n+ 1)x)− [k sin(2ζ) +
ℓ

2
sin(4ζ)] sin((n+ 1)ζ)

× sin((n+ 1)x)}+ 1

4(n+ 1)3
{[2k[cos(2ζ) + cos(2x)] + 2ℓ[cos(4ζ)

+ cos(4x)]− 1

2
[(k sin(2ζ) +

ℓ

2
sin(4ζ))2 + (k sin(2x) +

ℓ

2
sin(4x))2]]

× cos((n+ 1)ζ) sin((n+ 1)x)− [k sin(2ζ) +
ℓ

2
sin(4ζ)][k sin(2x)

+
ℓ

2
sin(4x)] sin((n+ 1)ζ) cos((n+ 1)x)}+ o(n−3)

for 0 ≤ ζ ≤ x ≤ 2π. Similar result holds for 0 ≤ x ≤ ζ ≤ 2π changing the role of ζ
and x.

Theorem 11. Green’s function of the Whittaker-Hill equation under semi-periodic
boundary conditions is, as n→ ∞

G(x, ζ, n) =
2

2n+ 1
cos

(2n+ 1)ζ

2
sin

(2n+ 1)x

2
− 2

(2n+ 1)2
{[ksin(2x)
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+
ℓ

2
sin(4x)] cos

(2n+ 1)ζ

2
cos

(2n+ 1)x

2
− [k sin(2ζ) +

ℓ

2
sin(4ζ)]

× sin
(2n+ 1)ζ

2
sin

(2n+ 1)x

2
}+ 2

(2n+ 1)3
{[2k(cos(2ζ) + cos(2x))

+ 2ℓ(cos(4ζ) + cos(4x))− 1

2
[(k sin(2ζ) +

ℓ

2
sin(4ζ))2 + (k sin(2x)

+
ℓ

2
sin(4x))2]] cos

(2n+ 1)ζ

2
sin

(2n+ 1)x

2
− [k sin(2ζ) +

ℓ

2
sin(4ζ)]

× [k sin(2x) +
ℓ

2
sin(4x)] sin

(2n+ 1)ζ

2
cos

(2n+ 1)x

2
}+ o(n−3)

for 0 ≤ ζ ≤ x ≤ 2π. Similar result holds for 0 ≤ x ≤ ζ ≤ 2π changing the role of ζ
and x.

To prove Theorem 10 and Theorem 11, we first calculate (20) for q(x) = 2k cos(2x)+
2ℓ cos(4x) and a = 2π. We find

D(x) = 2kx cos 2x+ 2ℓx cos 4x+ 4πk + 4k

∫ π

π/2

t sin 2tdt+ 8ℓ

∫ π

π/2

t sin 4tdt

+ 4k

∫ x

π/2

t sin 2tdt+ 8ℓ

∫ x

π/2

t sin 4tdt

= k sin 2x+
ℓ

2
sin 4x.

Then, we substitute the obtained result of D(x) in Theorem 6 and Theorem 7,
respectively. The proof is done.
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