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1. Introduction

The inequalities (
sin x

x

)2

+
tan x

x
> 2 (1.1)

and (
sin x

x

)2

+
tan x

x
> 2 + cx3 tan x

were formulated by Wilker [15], where 0 < x < π
2 and c is constant. Several proofs of Wilker’s inequality were

introduced by Sumner et al. [14], Guo et al. [6], Zhang and Zhu [19] and Zhu [20]. Moreover, Anglesio proposed the
sharp inequality (

sin x
x

)2

+
tan x

x
> 2 +

16
π4 x3 tan x, (1.2)

where 0 < x < π2 and the constant 16
π4 is best possible and it can not be changed with a larger number. Also, Huygens [8]

proved an important inequality, that is

2
(

sin x
x

)
+

tan x
x
> 3.

In recent years, some authors have studied the generalization and some applications of the Wilker (1.1) inequality
and Wilker-Anglesio (1.2) inequality [5, 12, 16, 21, 22]. Also, Wu and Srivastava [16] presented a generalization of
Wilker’s inequality as
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S. Köme, Turk. J. Math. Comput. Sci., 14(2)(2022), 340–345 341

λ

λ + µ

(
sin x

x

)p

+
µ

λ + µ

( tan x
x

)q
> 1,

where 0 < x < π
2 , λ > 0, µ > 0, p ≤ 2qµ

λ
, q > 0 or q ≤ min{−λ

µ
,−1}. Recently, some authors have studied

the applications of Wilker and Anglesio type inequalities for hyperbolic functions [1, 11, 17]. Wu and Debnath [17]
introduced the Wilker-Anglesio and parameterized Wilker inequality for hyperbolic functions as follows:(

sinh x
x

)2

+
tanh x

x
> 2 +

8
45

x3 tanh x,

λ

λ + µ

(
sin x

x

)p

+
µ

λ + µ

( tan x
x

)q
> 1,

where 0 < x < π
2 , λ > 0, µ > 0, p ≤ 2qµ

λ
, q > 0 or q ≤ min{−λ

µ
,−1}. Moreover, Bahşi, in [1], studied the

Wilker−Anglesio and parameterized Wilker inequality for Fibonacci hyperbolic functions. In this paper, our purpose
is to establish the Wilker-Anglesio and parameterized Wilker’s inequality for k−Fibonacci hyperbolic functions and
extend the study in [1] for different k values.

2. Preliminaries

Fibonacci sequence, Fn, is one of the most popular sequences in mathematics. The classical Fibonacci sequence
is defined by Fn+2 = Fn+1 + Fn, for n ∈ N, with initial conditions F0 = 0, F1 = 1. Until now, several authors
have studied the applications and generalizations of the Fibonacci sequence [3, 4, 9, 10, 13, 18]. For n ≥ 1 and any
positive real number k, a remarkable generalization of the Fibonacci sequence, the k−Fibonacci sequence, {Fk,n}n∈N,
was defined by,

Fk,n+1 = kFk,n + Fk,n−1

with the initial conditions Fk,0 = 0, Fk,1 = 1 in [2]. The characteristic equation of Fk,n is

r2 − kr − 1 = 0. (2.1)

The zeros of the Eq. (2.1) are σk =
k+
√

k2+4
2 and γk =

k−
√

k2+4
2 . Recently, some authors have studied the generalizations

and relations with the special inequalities of hyperbolic functions. Stakhov and Rozin [13] defined a new class of
hyperbolic functions, the symmetrical Fibonacci hyperbolic functions, as:

sFs(x) =
αx − α−x

√
5

and

cFs(x) =
αx + α−x

√
5
,

where α is positive root of the characteristic equation of the Fibonacci sequence. Falcon and Plaza [4] defined
k−Fibonacci hyperbolic functions as:

sFkh(x) =
σx

k − σ
−x
k

√
k2 + 4

and

cFkh(x) =
σx

k + σ
−x
k

√
k2 + 4

.

In addition, the k−Fibonacci hyperbolic functions sFkh(x) and cFkh(x) are increasing on (0,+∞). Also some properties,
which we use in this study, for the k−Fibonacci hyperbolic functions are as follows [4]:

• sFkh(x) = −sFkh(−x),
• cFkh(x) = cFkh(−x),
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• tFkh(x) = −tFkh(−x),
• [cFkh(x)]2 − [sFkh(x)]2 = 4

k2+4 ,
• tFkh(x) = sFkh(x)

cFkh(x) .
Also, the derivative of the k−Fibonacci hyperbolic functions, with respect to x, are

[cFkh(x)](m) =

ln(σk)msFkh(x), odd m
ln(σk)mcFkh(x), even m,

and

[sFkh(x)](m) =

ln(σk)mcFkh(x), odd m
ln(σk)msFkh(x), even m.

3. Some Lemmas

In order to prove the main results in Sections 4 and 5, we first introduce the following lemmas.

Lemma 3.1 ( [7]). If xi > 0, λi > 0 and
∑n

i=1 λi = 1, then

n∑
i=1

λixi ≥

n∏
i=1

xi
λi .

Lemma 3.2. For all nonzero real numbers x and any positive real number k, the following inequality holds:

2
√

k2 + 4
≤ cFkh(x) ≤

k2 + 4
4 ln(σ3

k)

(
sFkh(x)

x

)3

. (3.1)

Proof. From cFkh(0) = 2
√

k2+4
, cFkh(x) = cFkh(−x), and cFkh(x) is increasing on (0,+∞), the left hand side of the

equation (3.1) is true. Now we prove the right hand side of the inequality of (3.1).
Case (I) : For x > 0, define a function f : R+ → R by

f (x) =
sFkh3(x)

x3cFkh(x)
.

By differentiating with respect to x, we have

f ′(x) =
sFkh(x)2

x4cFkh(x)2

(
2 ln(σk)xsFkh(x)2 +

12 ln(σk)x
k2 + 4

− 3sFkh(x)cFkh(x)
)

=
sFkh(x)2

x4cFkh(x)2 f1(x),

f ′1(x) = 4 ln(σk)sFkh(x)cFkh(x)
(
x ln(σk) −

sFkh(x)
cFkh(x)

)
= 4 ln(σk)sFkh(x)cFkh(x) f2(x),

f ′2(x) = ln(σk)
(

sFkh(x)
cFkh(x)

)2

> 0.

This means that f2(x) is increasing on (0,+∞). Hence, we conclude from f2(0) = f1(0) that f2(x) > 0 and f1(x) is
increasing and positive on (0,+∞). Therefore, f (x) is increasing on (0,+∞). By using

lim
x→0+

f (x) =
4 ln(σk)3

k2 + 4
,

we conclude that

cFkh(x) <
k2 + 4

4 ln(σk)3

(
sFkh(x)

x

)3

.
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Case (II) : Let x < 0 or −x > 0. Since sFkh(x) = −sFkh(−x), cFkh(x) = cFkh(−x), the proof is the same as in the
Case (I). Therefore, the proof is completed. □

4. Wilker-Anglesio’s Inequality for k−Fibonacci Hyperbolic Functions

Theorem 4.1. For nonzero real number x and any positive real number k, the following inequality holds:(
sFkh(x)

x

)2

+

(
tFkh(x)

x

)
>

8 ln(σk)2

k2 + 4
+

32 ln(σk)5

45(k2 + 4)
x3tFkh(x).

Proof. From sFkh(−x) = −sFkh(x) and tFkh(−x) = −tFkh(x), we get(
sFkh(−x)
−x

)2

+

(
tFkh(−x)
−x

)
=

(
sFkh(x)

x

)2

+

(
tFkh(x)

x

)
.

Hence, it is enough to prove that Theorem 4.1 is true for x > 0. Now we define a function g : R+ → R by

g(x) =
k2+4

4 ln(σk)2

(
sFkh(x)

x

)2
+ 1

ln(σk)
tFkh(x)

x − 2

x3tFkh(x)
. (4.1)

Then, differentiating the Eq. (4.1) with respect to x, we have

g′(x) =
1

4
√

k2 + 4 ln(σk)x6sFkh2(x)

(
2xcFkh(4x) + 24x2 ln(σk)sFkh(2x) −

5
ln(σk)

sFkh(4x)

+
10

ln(σk)
sFkh(2x) − 20xcFkh(2x) +

36x
√

k2 + 4
+

32x3 ln(σk)2

√
k2 + 4

)
=

g1(x)

4
√

k2 + 4 ln(σk)x6sFkh2(x)
,

g′1(x) = 8
√

k2 + 4cFkh2(x)
(
6x2 ln(σk)2 −

18
8

(k2 + 4)sFkh2(x)

+x ln(σk)sFkh(x)
(
(k2 + 4)cFkh(x) −

1
cFkh(x)

) )
= 8

√
k2 + 4cF4h2(x)g2(x),

g′2(x) =
1

cFkh2(x)

(
−7
2

(k2 + 4) ln(σk)sFkh(x)cFkh3(x) − ln(σk)sFkh(x)cFkh(x)

+2(k2 + 4)x ln(σk)2cFkh4(x) + 8x ln(σk)2cFkh2(x) −
4

k2 + 4
x ln(σk)2

)
=

g3(x)
cFkh2(x)

,

g′3(x) = 4 ln(σk)2sFkh(2x)
( 8
√

k2 + 4
x ln(σk) − 3sFkh(2x) + 2x ln(σk)cFkh(2x)

)
= 4 ln(σk)2sFkh(2x)g4(x),

g′4(x) = 4 ln(σk)sFkh(2x)
(
x ln(σk) −

sFkh(x)
cFkh(x)

)
= 4 ln(σk)sFkh(2x)g5(x),

g′5(x) = ln(σk)
(

sFkh(x)
cFkh(x)

)2

> 0.

Hence, we can conclude that g5(x) is increasing on the interval (0,+∞). From g5(0) = g4(0) = g3(0) = g2(0) = g1(0) =
0, we see that the functions g5(x), g4(x), g3(x), g2(x) and g1(x) are increasing and positive on (0,+∞). Therefore, g(x)
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is increasing on (0,+∞). Moreover, we use

lim
x→0+

g(x) =
8

45
ln(σk)3.

Hence, we conclude from


k2+4

4 ln(σk)2

((
sFkh(x)

x

)2
+

tFkh(x)
x

)
− 2

x3tFkh(x)

 >


k2+4
4 ln(σk)2

(
sFkh(x)

x

)2
+

tFkh(x)
x ln(σk) − 2

x3tFkh(x)


that

(
sFkh(x)

x

)2

+

(
tFkh(x)

x

)
>

8 ln(σk)2

k2 + 4
+

32 ln(σk)5

45(k2 + 4)
x3tFkh(x).

This proves the theorem.
□

5. ParameterizedWilker’s Inequality for k-Fibonacci Hyperbolic Functions

Next theorem establishes parameterized Wilker’s inequality for k−Fibonacci hyperbolic functions.

Theorem 5.1. For the k−Fibonacci hyperbolic functions, the following inequality holds:

λ

λ + µ

(
sFkh(x)

x

)p

+
µ

λ + µ

(
tFkh(x)

x

)q

>

(
2 ln(σk)
√

k2 + 4

) pλ+qµ
λ+µ

,

where x , 0, λ > 0, µ > 0, p ≥ 2qµ
λ

and q > 0.

Proof. From Lemma 3.1 and Theorem 4.1, we get

λ

λ + µ

(
sFkh(x)

x

)p

+
µ

λ + µ

(
tFkh(x)

x

)q

≥

(
sFkh(x)

x

) pλ
λ+µ

(
tFkh(x)

x

) qµ
λ+µ

=

(
sFkh(x)

x

) pλ
λ+µ

(
sFkh(x)

x

) qµ
λ+µ

(
1

cFkh(x)

) qµ
λ+µ

>

(
sFkh(x)

x

) pλ+qµ
λ+µ

(
sFkh(x)

x

) −3qµ
λ+µ

(
k2 + 4

4 ln(σk)3

) −qµ
λ+µ

=

(
sFkh(x)

x

) pλ−2qµ
λ+µ

(
k2 + 4

4 ln(σk)3

) −qµ
λ+µ

>

(
2 ln(σk)
√

k2 + 4

) pλ−2qµ
λ+µ

(
4 ln(σk)3

k2 + 4

) qµ
λ+µ

>

(
2 ln(σk)
√

k2 + 4

) pλ+qµ
λ+µ

.

□

Now we give some applications of the Wilker−type inequalities for k−Fibonacci hyperbolic functions.

Corollary 5.2. Let x , 0, λ ≥ µ > 0 and (p, q) = (2, 1). Then,

λ

λ + µ

(
sFkh(x)

x

)2

+
µ

λ + µ

(
tFkh(x)

x

)
>

(
4 ln(σk)2

k2 + 4

)
.

Corollary 5.3. Let x , 0, p ≥ q > 0 and (λ, µ) = (2, 1). Then,

2
(

sFkh(x)
x

)p

+

(
tFkh(x)

x

)q

> 3
(

2 ln(σk)
√

k2 + 4

)p

.

6. Results and Discussion

We formulate the Wilker−type inequality and Wilker−Anglesio type inequality for k−Fibonacci hyperbolic func-
tions. In particular, if we get k = 1, our results reduce to the study in [1]. As a result, this study contributes to the
literature by providing essential information for the extension of Wilker and Wilker−Anglesio type inequalities for the
hyperbolic functions.
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