Turk. J. Math. Comput. Sci. 14(2)(2022) 340–345 © MatDer DOI : 10.47000/tjmcs.974413

Wilker-type Inequalities for k-Fibonacci Hyperbolic Functions

SURE KÖME

Department of Mathematics, Faculty of Art and Science, Nevşehir Hacı Bektaş Veli University, 50300, Nevsehir, Turkey.

Received: 25-07-2021 • Accepted: 22-09-2022

ABSTRACT. In this paper, we introduce the Wilker–Anglesio's inequality and parameterized Wilker inequality for the k–Fibonacci hyperbolic functions using classical analytical techniques.

2010 AMS Classification: 11B39, 26D20

Keywords: Wilker's inequality, Wilker-Anglesio inequality, parameterized Wilker-Anglesio inequality, *k*–Fibonacci hyperbolic functions.

1. INTRODUCTION

The inequalities

 $\left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} > 2 \tag{1.1}$

and

$$\left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} > 2 + cx^3 \tan x$$

were formulated by Wilker [15], where $0 < x < \frac{\pi}{2}$ and *c* is constant. Several proofs of Wilker's inequality were introduced by Sumner et al. [14], Guo et al. [6], Zhang and Zhu [19] and Zhu [20]. Moreover, Anglesio proposed the sharp inequality

$$\left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} > 2 + \frac{16}{\pi^4} x^3 \tan x,$$
(1.2)

where $0 < x < \frac{\pi}{2}$ and the constant $\frac{16}{\pi^4}$ is best possible and it can not be changed with a larger number. Also, Huygens [8] proved an important inequality, that is

$$2\left(\frac{\sin x}{x}\right) + \frac{\tan x}{x} > 3.$$

In recent years, some authors have studied the generalization and some applications of the Wilker (1.1) inequality and Wilker-Anglesio (1.2) inequality [5, 12, 16, 21, 22]. Also, Wu and Srivastava [16] presented a generalization of Wilker's inequality as

Email address: sure.kome@nevsehir.edu.tr (S. Köme)

$$\frac{\lambda}{\lambda+\mu}\left(\frac{\sin x}{x}\right)^p + \frac{\mu}{\lambda+\mu}\left(\frac{\tan x}{x}\right)^q > 1,$$

where $0 < x < \frac{\pi}{2}$, $\lambda > 0$, $\mu > 0$, $p \le \frac{2q\mu}{\lambda}$, q > 0 or $q \le \min\{\frac{-\lambda}{\mu}, -1\}$. Recently, some authors have studied the applications of Wilker and Anglesio type inequalities for hyperbolic functions [1, 11, 17]. Wu and Debnath [17] introduced the Wilker-Anglesio and parameterized Wilker inequality for hyperbolic functions as follows:

$$\left(\frac{\sinh x}{x}\right)^2 + \frac{\tanh x}{x} > 2 + \frac{8}{45}x^3 \tanh x,$$
$$\frac{\lambda}{\lambda + \mu} \left(\frac{\sin x}{x}\right)^p + \frac{\mu}{\lambda + \mu} \left(\frac{\tan x}{x}\right)^q > 1,$$

where $0 < x < \frac{\pi}{2}$, $\lambda > 0$, $\mu > 0$, $p \le \frac{2q\mu}{\lambda}$, q > 0 or $q \le \min\{\frac{-\lambda}{\mu}, -1\}$. Moreover, Bahşi, in [1], studied the Wilker–Anglesio and parameterized Wilker inequality for Fibonacci hyperbolic functions. In this paper, our purpose is to establish the Wilker-Anglesio and parameterized Wilker's inequality for *k*–Fibonacci hyperbolic functions and extend the study in [1] for different *k* values.

2. Preliminaries

Fibonacci sequence, F_n , is one of the most popular sequences in mathematics. The classical Fibonacci sequence is defined by $F_{n+2} = F_{n+1} + F_n$, for $n \in \mathbb{N}$, with initial conditions $F_0 = 0$, $F_1 = 1$. Until now, several authors have studied the applications and generalizations of the Fibonacci sequence [3, 4, 9, 10, 13, 18]. For $n \ge 1$ and any positive real number k, a remarkable generalization of the Fibonacci sequence, the k-Fibonacci sequence, $\{F_{k,n}\}_{n\in\mathbb{N}}$, was defined by,

$$F_{k,n+1} = kF_{k,n} + F_{k,n-1}$$

with the initial conditions $F_{k,0} = 0$, $F_{k,1} = 1$ in [2]. The characteristic equation of $F_{k,n}$ is

$$r^2 - kr - 1 = 0. (2.1)$$

The zeros of the Eq. (2.1) are $\sigma_k = \frac{k + \sqrt{k^2+4}}{2}$ and $\gamma_k = \frac{k - \sqrt{k^2+4}}{2}$. Recently, some authors have studied the generalizations and relations with the special inequalities of hyperbolic functions. Stakhov and Rozin [13] defined a new class of hyperbolic functions, the symmetrical Fibonacci hyperbolic functions, as:

$$sFs(x) = \frac{\alpha^x - \alpha^{-x}}{\sqrt{5}}$$

and

$$cFs(x) = \frac{\alpha^x + \alpha^{-x}}{\sqrt{5}},$$

where α is positive root of the characteristic equation of the Fibonacci sequence. Falcon and Plaza [4] defined k-Fibonacci hyperbolic functions as:

$$sF_kh(x) = \frac{\sigma_k^x - \sigma_k^{-x}}{\sqrt{k^2 + 4}}$$

and

$$cF_kh(x) = \frac{\sigma_k^x + \sigma_k^{-x}}{\sqrt{k^2 + 4}}.$$

In addition, the *k*-Fibonacci hyperbolic functions $sF_kh(x)$ and $cF_kh(x)$ are increasing on $(0, +\infty)$. Also some properties, which we use in this study, for the *k*-Fibonacci hyperbolic functions are as follows [4]:

- $sF_kh(x) = -sF_kh(-x)$,
- $cF_kh(x) = cF_kh(-x)$,

•
$$tF_kh(x) = -tF_kh(-x)$$

•
$$[cF_kh(x)]^2 - [sF_kh(x)]^2 = \frac{4}{k^2+4}$$

•
$$tF_kh(x) = \frac{sF_kh(x)}{cF_kh(x)}$$
.

Also, the derivative of the k-Fibonacci hyperbolic functions, with respect to x, are

$$[cF_kh(x)]^{(m)} = \begin{cases} \ln(\sigma_k)^m sF_kh(x), & \text{odd } m\\ \ln(\sigma_k)^m cF_kh(x), & \text{even } m, \end{cases}$$

and

$$[sF_kh(x)]^{(m)} = \begin{cases} \ln(\sigma_k)^m cF_kh(x), & \text{odd } m\\ \ln(\sigma_k)^m sF_kh(x), & \text{even } m \end{cases}$$

3. Some Lemmas

In order to prove the main results in Sections 4 and 5, we first introduce the following lemmas.

Lemma 3.1 ([7]). If $x_i > 0$, $\lambda_i > 0$ and $\sum_{i=1}^n \lambda_i = 1$, then

$$\sum_{i=1}^n \lambda_i x_i \ge \prod_{i=1}^n x_i^{\lambda_i}.$$

Lemma 3.2. For all nonzero real numbers x and any positive real number k, the following inequality holds:

$$\frac{2}{\sqrt{k^2 + 4}} \le cF_k h(x) \le \frac{k^2 + 4}{4\ln(\sigma_k^3)} \left(\frac{sF_k h(x)}{x}\right)^3.$$
(3.1)

Proof. From $cF_kh(0) = \frac{2}{\sqrt{k^2+4}}$, $cF_kh(x) = cF_kh(-x)$, and $cF_kh(x)$ is increasing on $(0, +\infty)$, the left hand side of the equation (3.1) is true. Now we prove the right hand side of the inequality of (3.1).

Case (I) : For x > 0, define a function $f : \mathbb{R}^+ \to \mathbb{R}$ by

$$f(x) = \frac{sF_k h^3(x)}{x^3 cF_k h(x)}$$

By differentiating with respect to *x*, we have

$$\begin{aligned} f'(x) &= \frac{sF_kh(x)^2}{x^4cF_kh(x)^2} \Big(2\ln(\sigma_k)xsF_kh(x)^2 + \frac{12\ln(\sigma_k)x}{k^2 + 4} - 3sF_kh(x)cF_kh(x) \Big) \\ &= \frac{sF_kh(x)^2}{x^4cF_kh(x)^2} f_1(x), \\ f'_1(x) &= 4\ln(\sigma_k)sF_kh(x)cF_kh(x) \Big(x\ln(\sigma_k) - \frac{sF_kh(x)}{cF_kh(x)} \Big) \\ &= 4\ln(\sigma_k)sF_kh(x)cF_kh(x)f_2(x), \\ f'_2(x) &= \ln(\sigma_k) \left(\frac{sF_kh(x)}{cF_kh(x)} \right)^2 > 0. \end{aligned}$$

This means that $f_2(x)$ is increasing on $(0, +\infty)$. Hence, we conclude from $f_2(0) = f_1(0)$ that $f_2(x) > 0$ and $f_1(x)$ is increasing and positive on $(0, +\infty)$. Therefore, f(x) is increasing on $(0, +\infty)$. By using

$$\lim_{x \to 0^+} f(x) = \frac{4 \ln(\sigma_k)^3}{k^2 + 4},$$

we conclude that

$$cF_kh(x) < \frac{k^2 + 4}{4\ln(\sigma_k)^3} \left(\frac{sF_kh(x)}{x}\right)^3.$$

Case (II) : Let x < 0 or -x > 0. Since $sF_kh(x) = -sF_kh(-x)$, $cF_kh(x) = cF_kh(-x)$, the proof is the same as in the Case (I). Therefore, the proof is completed.

4. Wilker-Anglesio's Inequality for k-Fibonacci Hyperbolic Functions

Theorem 4.1. For nonzero real number x and any positive real number k, the following inequality holds:

$$\left(\frac{sF_kh(x)}{x}\right)^2 + \left(\frac{tF_kh(x)}{x}\right) > \frac{8\ln(\sigma_k)^2}{k^2 + 4} + \frac{32\ln(\sigma_k)^5}{45(k^2 + 4)}x^3tF_kh(x).$$

Proof. From $sF_kh(-x) = -sF_kh(x)$ and $tF_kh(-x) = -tF_kh(x)$, we get

$$\left(\frac{sF_kh(-x)}{-x}\right)^2 + \left(\frac{tF_kh(-x)}{-x}\right) = \left(\frac{sF_kh(x)}{x}\right)^2 + \left(\frac{tF_kh(x)}{x}\right).$$

Hence, it is enough to prove that Theorem 4.1 is true for x > 0. Now we define a function $g : \mathbb{R}^+ \to \mathbb{R}$ by

$$g(x) = \frac{\frac{k^2 + 4}{4 \ln(\sigma_k)^2} \left(\frac{sF_k h(x)}{x}\right)^2 + \frac{1}{\ln(\sigma_k)} \frac{tF_k h(x)}{x} - 2}{x^3 tF_k h(x)}.$$
(4.1)

Then, differentiating the Eq. (4.1) with respect to *x*, we have

$$\begin{aligned} g'(x) &= \frac{1}{4\sqrt{k^2 + 4}\ln(\sigma_k)x^6sF_kh^2(x)} \Big(2xcF_kh(4x) + 24x^2\ln(\sigma_k)sF_kh(2x) - \frac{5}{\ln(\sigma_k)}sF_kh(4x) \\ &+ \frac{10}{\ln(\sigma_k)}sF_kh(2x) - 20xcF_kh(2x) + \frac{36x}{\sqrt{k^2 + 4}} + \frac{32x^3\ln(\sigma_k)^2}{\sqrt{k^2 + 4}} \Big) \\ &= \frac{g_1(x)}{4\sqrt{k^2 + 4}\ln(\sigma_k)x^6sF_kh^2(x)}, \\ g_1'(x) &= 8\sqrt{k^2 + 4}cF_kh^2(x)\Big(6x^2\ln(\sigma_k)^2 - \frac{18}{8}(k^2 + 4)sF_kh^2(x) \\ &+ x\ln(\sigma_k)sF_kh(x)\Big((k^2 + 4)cF_kh(x) - \frac{1}{cF_kh(x)}\Big)\Big) \\ &= 8\sqrt{k^2 + 4}cF_4h^2(x)g_2(x), \\ g_2'(x) &= \frac{1}{cF_kh^2(x)}\Big(\frac{-7}{2}(k^2 + 4)\ln(\sigma_k)sF_kh(x)cF_kh^3(x) - \ln(\sigma_k)sF_kh(x)cF_kh(x) \\ &+ 2(k^2 + 4)x\ln(\sigma_k)^2cF_kh^4(x) + 8x\ln(\sigma_k)^2cF_kh^2(x) - \frac{4}{k^2 + 4}x\ln(\sigma_k)^2\Big) \\ &= \frac{g_3(x)}{cF_kh^2(x)}, \\ g_3'(x) &= 4\ln(\sigma_k)^2sF_kh(2x)\Big(\frac{8}{\sqrt{k^2 + 4}}x\ln(\sigma_k) - 3sF_kh(2x) + 2x\ln(\sigma_k)cF_kh(2x)\Big) \\ &= 4\ln(\sigma_k)sF_kh(2x)g_4(x), \\ g_4'(x) &= 4\ln(\sigma_k)sF_kh(2x)\Big(x\ln(\sigma_k) - \frac{sF_kh(x)}{cF_kh(x)}\Big) \\ &= 4\ln(\sigma_k)sF_kh(2x)g_5(x), \\ g_5'(x) &= \ln(\sigma_k)\Big(\frac{sF_kh(x)}{cF_kh(x)}\Big)^2 > 0. \end{aligned}$$

Hence, we can conclude that $g_5(x)$ is increasing on the interval $(0, +\infty)$. From $g_5(0) = g_4(0) = g_3(0) = g_2(0) = g_1(0) = 0$, we see that the functions $g_5(x)$, $g_4(x)$, $g_3(x)$, $g_2(x)$ and $g_1(x)$ are increasing and positive on $(0, +\infty)$. Therefore, g(x)

is increasing on $(0, +\infty)$. Moreover, we use

$$\lim_{x \to 0^+} g(x) = \frac{8}{45} \ln(\sigma_k)^3.$$

Hence, we conclude from

$$\left(\frac{\frac{k^{2}+4}{4\ln(\sigma_{k})^{2}}\left(\left(\frac{sF_{k}h(x)}{x}\right)^{2}+\frac{tF_{k}h(x)}{x}\right)-2}{x^{3}tF_{k}h(x)}\right) > \left(\frac{\frac{k^{2}+4}{4\ln(\sigma_{k})^{2}}\left(\frac{sF_{k}h(x)}{x}\right)^{2}+\frac{tF_{k}h(x)}{x\ln(\sigma_{k})}-2}{x^{3}tF_{k}h(x)}\right)$$

that

$$\left(\frac{sF_kh(x)}{x}\right)^2 + \left(\frac{tF_kh(x)}{x}\right) > \frac{8\ln(\sigma_k)^2}{k^2 + 4} + \frac{32\ln(\sigma_k)^5}{45(k^2 + 4)}x^3tF_kh(x).$$

This proves the theorem.

5. PARAMETERIZED WILKER'S INEQUALITY FOR K-FIBONACCI HYPERBOLIC FUNCTIONS

 $n\lambda + au$

Next theorem establishes parameterized Wilker's inequality for k-Fibonacci hyperbolic functions.

Theorem 5.1. For the *k*-Fibonacci hyperbolic functions, the following inequality holds:

$$\frac{\lambda}{\lambda+\mu} \left(\frac{sF_kh(x)}{x}\right)^p + \frac{\mu}{\lambda+\mu} \left(\frac{tF_kh(x)}{x}\right)^q > \left(\frac{2\ln(\sigma_k)}{\sqrt{k^2+4}}\right)^{\frac{1}{\lambda+\mu}}$$

where $x \neq 0$, $\lambda > 0$, $\mu > 0$, $p \ge \frac{2q\mu}{\lambda}$ and q > 0.

Proof. From Lemma 3.1 and Theorem 4.1, we get

$$\begin{split} &\frac{\lambda}{\lambda+\mu} \left(\frac{sF_kh(x)}{x}\right)^p + \frac{\mu}{\lambda+\mu} \left(\frac{tF_kh(x)}{x}\right)^q \geq \left(\frac{sF_kh(x)}{x}\right)^{\frac{p\lambda}{\lambda+\mu}} \left(\frac{tF_kh(x)}{x}\right)^{\frac{q\mu}{\lambda+\mu}} \\ &= \left(\frac{sF_kh(x)}{x}\right)^{\frac{p\lambda}{\lambda+\mu}} \left(\frac{sF_kh(x)}{x}\right)^{\frac{q\mu}{\lambda+\mu}} \left(\frac{1}{cF_kh(x)}\right)^{\frac{q\mu}{\lambda+\mu}} > \left(\frac{sF_kh(x)}{x}\right)^{\frac{p\lambda+q\mu}{\lambda+\mu}} \left(\frac{sF_kh(x)}{x}\right)^{\frac{-3q\mu}{\lambda+\mu}} \left(\frac{k^2+4}{4\ln(\sigma_k)^3}\right)^{\frac{-q\mu}{\lambda+\mu}} \\ &= \left(\frac{sF_kh(x)}{x}\right)^{\frac{p\lambda-2q\mu}{\lambda+\mu}} \left(\frac{k^2+4}{4\ln(\sigma_k)^3}\right)^{\frac{-q\mu}{\lambda+\mu}} > \left(\frac{2\ln(\sigma_k)}{\sqrt{k^2+4}}\right)^{\frac{p\lambda-2q\mu}{\lambda+\mu}} \left(\frac{4\ln(\sigma_k)^3}{k^2+4}\right)^{\frac{q\mu}{\lambda+\mu}} > \left(\frac{2\ln(\sigma_k)}{\sqrt{k^2+4}}\right)^{\frac{p\lambda+q\mu}{\lambda+\mu}} . \end{split}$$

Now we give some applications of the Wilker–type inequalities for *k*–Fibonacci hyperbolic functions. **Corollary 5.2.** Let $x \neq 0$, $\lambda \ge \mu > 0$ and (p, q) = (2, 1). Then,

$$\frac{\lambda}{\lambda+\mu}\left(\frac{sF_kh(x)}{x}\right)^2 + \frac{\mu}{\lambda+\mu}\left(\frac{tF_kh(x)}{x}\right) > \left(\frac{4\ln(\sigma_k)^2}{k^2+4}\right).$$

Corollary 5.3. *Let* $x \neq 0$, $p \ge q > 0$ *and* $(\lambda, \mu) = (2, 1)$ *. Then,*

$$2\left(\frac{sF_kh(x)}{x}\right)^p + \left(\frac{tF_kh(x)}{x}\right)^q > 3\left(\frac{2\ln(\sigma_k)}{\sqrt{k^2+4}}\right)^p.$$

6. RESULTS AND DISCUSSION

We formulate the Wilker–type inequality and Wilker–Anglesio type inequality for k–Fibonacci hyperbolic functions. In particular, if we get k = 1, our results reduce to the study in [1]. As a result, this study contributes to the literature by providing essential information for the extension of Wilker and Wilker–Anglesio type inequalities for the hyperbolic functions.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this article.

AUTHORS CONTRIBUTION STATEMENT

The author have read and agreed to the published version of the manuscript.

References

- [1] Bahşi, M., Wilker-type inequalities for hyperbolic Fibonacci functions, Journal of Inequalities and Applications, 1(2016), 1–7.
- [2] Falcon, S., Plaza, A., On the Fibonacci k-numbers, Chaos, Solitons & Fractals, 32(5)(2007), 1615–1624.
- [3] Falcon, S., Plaza, A., The k-Fibonacci sequence and the Pascal 2-triangle, Chaos, Solitons & Fractals, 33(1)(2007), 38–49.
- [4] Falcon, S., Plaza, A., The k-Fibonacci hyperbolic functions, Chaos, Solitons & Fractals, 38(2)(2008), 409-420.
- [5] Guo, B.N., Li, W., Qiao, B.M., Qi, F., On new proofs of inequalities involving trigonometric functions, RGMIA Research Report Collection, 3(1)(2000).
- [6] Guo, B.N., Li, W., Qi, F., Proofs of Wilker's inequalities involving trigonometric functions, Inequality Theory and Applications, 2(2003), 109–112.
- [7] Hardy, G.H., Littlewood J.E., Pólya, G., Inequalities, Cambridge University Press, 1952.
- [8] Huygens C., Oeuvres Completes: Société Hollandaise des Sciences, Den Haag, 1885.
- [9] Kocer, E.G., Tuglu, N., Stakhov, A., Hyperbolic functions with second order recurrence sequences, Ars Combinatoria, 88(2008), 65-81.
- [10] Koshy, T., Fibonacci and Lucas numbers with Applications, John Wiley & Sons, Washington, 2011.
- [11] Neuman, E., Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions, Applied Mathematics and Computation, 230(2014), 211–217.
- [12] Pinelis, I., L'Hospital rules for monotonicity and the Wilker-Anglesio inequality, The American Mathematical Monthly, **111**(10)(2004), 905–909.
- [13] Stakhov, A., Rozin, B., On a new class of hyperbolic functions, Chaos, Solitons & Fractals, 23(2)(2005), 379–389.
- [14] Sumner, J.S., Jagers, A.A., Vowe, M., Anglesio, J., *Inequalities involving trigonometric functions*, American Mathematical Monthly, 98(3)(1991), 264–267.
- [15] Wilker, J.B., Sumner, J.S., Jagers, A.A., Vowe, M., Anglesio, J., E3306, The American Mathematical Monthly., 98(3)(1991), 264–267.
- [16] Wu, S.H., Srivastava, H.M, A weighted and exponential generalization of Wilker's inequality and its applications, Integral Transforms and Special Functions, 18(8)(2007), 529–535.
- [17] Wu, S H., Debnath, L., Wilker-type inequalities for hyperbolic functions, Applied Mathematics Letters, 25(5)(2012), 837-842.
- [18] Yazlık, Y., Köme, C., A new generalization of Fibonacci and Lucas p-numbers, Journal of Computational Analysis and Applications, 25(4)(2018), 657–669.
- [19] Zhang, L., Zhu, L., A new elementary proof of Wilker's inequalities, Mathematical Inequalities and Applications, 11(1)(2008), 149.
- [20] Zhu, L., A new simple proof of Wilker's inequality, Mathematical Inequalities and Applications 8(4)(2005), 749.
- [21] Zhu, L., On Wilker-type inequalities, Mathematical Inequalities and Applications, 10(4)(2007), 727.
- [22] Zhu, L., Inequalities for hyperbolic functions and their applications, J. Inequal. Appl., 1(2010), 130821.