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Abstract

In this paper, we investigate the effect of D-homothetic deformation on almost para-contact
metric manifolds. The main results of the paper are about some classes of almost paracontact
metric manifolds in which the characteristic vector field is parallel. It is shown that certain
classes are invariant under the D-homothetic deformation.

1. Introduction

Almost paracontact structures were first studied by [1] (Kaneyuki, 1985) and after the work of Zamkovoy in [2] (Zamkovoy,
2009), many authors have made contributions to the subject. In the literature, there are many studies on almost paracontact
manifolds from different perspectives in various dimensions. For recent studies, see [3]-[8]. In [9], Zamkovoy and Nakova
classified almost paracontact metric structures into the 212 classes by considering the covariant derivative of the fundamental
2-form Φ of the structure with respect to the Levi-Civita connection. The main goal of this work is to study D-homothetic
deformations on these structures. We examine the almost paracontact metric structure after the deformation and investigate
some certain classes after the deformation. Mostly, we focused on the classes having parallel characteristic vector fields.

2. Almost paracontact metric structures

Definition 2.1. A differentiable manifold M of dimension (2n+1) is said to be have an almost paracontact structure (φ ,ξ ,η),
if it has an endomorphism φ , a 1-form η and a vector field ξ such that

φ
2 = I−η⊗ξ , η(ξ ) = 1, φ(ξ ) = 0, η ◦φ = 0, (2.1)

and there exists a distribution D : p ∈M −→ Dp = Kerη such that an almost paracomplex structure is induced by the tensor
field φ . The vector field ξ is said to be the Reeb (or characteristic) vector field of (φ ,ξ ,η).

For each p ∈M, the tangent space TpM can be stated as the direct sum

TpM = Dp⊕SpanR{ξ (p)}

and a vector U ∈ TpM can be uniquely decomposed as

u = hU + vU,
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where hU = φ 2U ∈ Dp and vU = η(U)ξ (p) ∈ SpanR{ξ (p)} [9]. Let g be a semi-Riemannian metric of signature (n,n+1)
on an almost paracontact manifold M with

g(φU,φV ) =−g(U,V )+η(U)η(V ). (2.2)

Then the metric g is said to be a compatible metric and the quadruple (φ ,ξ ,η ,g) is called an almost paracontact metric
structure on M. The 2-form Φ given with

Φ(U,V ) := g(φU,V )

is called the fundamental 2-form of the structure.
The basis (namely, φ -basis) {e1,φe1, · · · ,en,φen,ξ} with

g(ei,e j) =−g(φei,φe j) = δi j, g(ei,φe j) = 0, i, j = 1, · · · ,n,

is an orthonormal basis on (φ ,ξ ,η ,g) see [2]. For the almost contact case, see [10]. It can be seen that the (0,3)- tensor F (the
fundamental tensor) given with

F(U,V,W ) = (∇U Φ)(V,W ) = g((∇U φ)V,W ),

satisfies the followings

F(U,V,W ) =−F(U,W,V ), (2.3)
F(U,φV,φW ) = F(U,V,W )+η(V )F(U,W,ξ )−η(W )F(U,V,ξ ),

for any U,V,W ∈ T M. In [9], Zamkovoy and Nakova classified almost paracontact metric manifolds by considering the space
F of tensors F which satisfy (2.3). Initially, they decomposed this space into four subspaces Wi (i = 1,2,3,4), i.e.

F = W1⊕W2⊕W3⊕W4,

where Wi’s are defined by

W1 = {F ∈F |F(U,V,W ) = F(hU,hV,hW )},

W2 = {F ∈F |F(U,V,W ) =−η(V )F(hU,hW,ξ )+η(W )F(hU,hV,ξ )},

W3 = G11 = {F ∈F |F(U,V,W ) = η(U)F(ξ ,hV,hW )},

W4 = G12 = {F ∈F |F(U,V,W ) = η(U)[(η(V )F(ξ ,ξ ,hW )−η(W )F(ξ ,ξ ,hV )]}.

Then W1 and W2 are written as sums of U(n)×1 irreducible components G1,G2,G3,G4 and G5, · · · ,G10 respectively, where
U(n) is the paraunitary group, with the following relations [9]:

G1 F(U,V,W ) = 1
2n−1 [g(U,φV )θF(φW )−g(U,φW )θF(φV )−g(φU,φV )θF(hW )+g(φU,φW )θF(hU)]

G2 F(φU,φV,W ) =−F(U,V,W ), θF = 0

G3 F(ξ ,V,W ) = F(U,ξ ,W ) = 0, F(U,V,W ) =−F(V,U,W )

G4 F(ξ ,V,W ) = F(U,ξ ,W ) = 0, S(U,V,W )F(U,V,W ) = 0

G5 F(U,V,W ) = θF (ξ )
2n [η(V )g(φU,φW )−η(W )g(φU,φV )]

G6 F(U,V,W ) =− θ∗F (ξ )
2n [η(V )g(U,φW )−η(W )g(U,φV )]

G7 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ ), ;F(U,V,ξ ) =−F(V,U,ξ ) =−F(φU,φV,ξ ), θ ∗F(ξ ) = 0

G8 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ ), ;F(U,V,ξ ) = F(V,U,ξ ) =−F(φU,φV,ξ ), θF(ξ ) = 0

G9 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ ), ;F(U,V,ξ ) =−F(V,U,ξ ) = F(φU,φV,ξ )

G10 F(U,V,W ) =−η(V )F(U,W,ξ )+η(W )F(U,V,ξ );F(U,V,ξ ) = F(V,U,ξ ) = F(φU,φV,ξ )

G11 F(U,V,W ) = η(U)F(ξ ,φV,φW )

G12 F(U,V,W ) = η(U)[η(V )F(ξ ,ξ ,W )−η(W )F(ξ ,ξ ,V )]

where θF(U) = gi jF(ei,e j,U), θ ∗F(U) = gi jF(ei,φe j,U), (called Lee forms of the structure).
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3. The projection maps of the structure tensor F

In this section, we recall the projection maps of the tensor F . The vector space F is decomposed as the direct sums of the
subspaces Wi (i = 1,2,3,4) and G j ( j = 1, ...,12) mean that any F ∈F can be uniquely represented in the form

F(U,V,W ) =
4

∑
i=1

FWi(U,V,W ),

and

F(U,V,W ) =
12

∑
j=1

F i(U,V,W )

respectively, where FWi ∈ Wi and F j ∈ G j. Thereby, M ∈ Gi⊕G j⊕ ... if and only if the structure tensor F of M satisfies
F = F i +F j + .... The projections (F i(i = 1, ...,12)) are defined as follows [9]

F1(U,V,W ) =
1

2n−1
[g(U,φV )θF1(φW )−g(U,φW )θF1(φV )

−g(φU,φV )θF1(φ 2W )+g(φU,φW )θF(φ
2V )],

F2(U,V,W ) =
1
2
[F(φ 2U,φ 2V,φ 2W )−F(φU,φ 2V,φW )]

− 1
2n−1

[g(U,φV )θF1(φW )−g(U,φW )θF1(φV )

−g(φU,φV )θF1(φ 2W )+g(φU,φW )θF(φ
2V )],

F3(U,V,W ) =
1
6
[F(φ 2U,φ 2V,φ 2W )+F(φU,φ 2V,φW )

+F(φ 2V,φ 2W,φ 2U)+F(φV,φ 2W,φU)

F(φ 2W,φ 2U,φ 2V )+F(φW,φ 2U,φV )],

F4(U,V,W ) =
1
2
[F(φ 2U,φ 2V,φ 2W )+F(φU,φ 2V,φW )]

−1
6
[F(φ 2U,φ 2V,φ 2W )+F(φU,φ 2V,φW )

+F(φ 2V,φ 2W,φ 2U)+F(φV,φ 2W,φU)

F(φ 2W,φ 2U,φ 2V )+F(φW,φ 2U,φV )],

F5(U,V,W ) =
θF5(ξ )

2n
[η(V )g(φU,φW )−η(W )g(φU,φV )],

F6(U,V,W ) = −
θ ∗F6(ξ )

2n
[η(V )g(U,φW )−η(W )g(U,φV )],

F7(U,V,W ) = −1
4

η(Y )[F(φ 2U,φ 2W,ξ )−F(φU,φW,ξ )

−F(φ 2W,φ 2U,ξ )+F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

−F(φU,φV,ξ )−F(φ 2V,φ 2U,ξ )+F(φV,φU,ξ )]

+
θ ∗F6(ξ )

2n
[η(V )g(U,φW )−η(W )g(U,φV )],

F8(U,V,W ) = −1
4

η(V )[F(φ 2U,φ 2W,ξ )−F(φU,φW,ξ )

+F(φ 2W,φ 2U,ξ )−F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

−F(φU,φV,ξ )+F(φ 2V,φ 2U,ξ )−F(φV,φU,ξ )]

−θF5(ξ )

2n
[η(V )g(φU,φW )−η(W )g(φU,φV )],
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F9(U,V,W ) = −1
4

η(V )[F(φ 2U,φ 2W,ξ )+F(φU,φW,ξ )

−F(φ 2W,φ 2U,ξ )−F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

+F(φU,φV,ξ )−F(φ 2V,φ 2U,ξ )−F(φV,φU,ξ )],

F10(U,V,W ) = −1
4

η(V )[F(φ 2U,φ 2W,ξ )+F(φU,φW,ξ )

+F(φ 2W,φ 2U,ξ )+F(φW,φU,ξ )]+
1
4

η(W )[F(φ 2U,φ 2V,ξ )

+F(φU,φV,ξ )+F(φ 2V,φ 2U,ξ )+F(φV,φU,ξ )],

F11(U,V,W ) = η(U)F(ξ ,φ 2V,φ 2W ),

F12(U,V,W ) = η(U)[η(V )F(ξ ,ξ ,φ 2W )−η(W )F(ξ ,ξ ,φ 2V )].

4. Almost paracontact metric structures with parallel Reeb vector field

This section is dedicated to investigating the almost paracontact metric structures equipped with parallel Reeb vector field ξ .
In [9], it is stated that the vector field ξ is Killing only in the classes G1,G2,G3,G4,G5,G8,G9,G11 and in their direct sums. As
it is known, the vector field ξ is said to be parallel if ∇U ξ = 0, and Killing if g(∇U ξ ,V )+g(∇V ξ ,U) = 0, for any vector field
U,V . So, as a natural result of these definitions, we can say that if a vector field is not Killing, then it is not parallel. Thus, the
characteristic vector field ξ of the classes G6,G7,G10,G12 and of their direct sums can not be parallel. So, let us consider the
remaining classes.

For the classes Gi (i = 1,2,3,4,11), set V = ξ and substitute W with φW . Then, we get

F i(U,ξ ,φW ) = g((∇U φ)(ξ ),φW ) = 0.

Since η(∇U ξ ) = 0 for any U , and from the equation (2.2), we get g(∇U ξ ,W ) = 0, which means ∇ξ = 0, since g is non-
degenerate.
For the class G5, set V = ξ in the defining relation of G5. Then we get

g(φ(∇U ξ ),W ) =
θF(ξ )

2n
g(φ 2U,W ).

From the equation (2.1), we get

∇U ξ =
θF(ξ )

2n
φU,

which is non-zero since the class G5 is non-trivial. Thus, the vector field ξ is not parallel in G5.
For the classes Gi, (i = 8,9), assume that the vector field ξ is parallel. Under this assumption, one can easily see that F i = 0.
However, since these classes are non-trivial, we come up with the result that ξ is not parallel in these classes.
In addition, it is known from [9] that, if an almost paracontact metric structure is of the classes Gi⊕G j⊕ ..., then the structure
tensor F is of the form F = F i +F j + .... So, it is clear that a class, which is a direct sum of some classes having a parallel
characteristic vector field, is also equipped with a parallel characteristic vector field.
After all, we can give the following theorem:

Theorem 4.1. The characteristic vector field ξ is parallel only in the classes G1,G2,G3,G4,G11 and in their direct sums.

5. D-homothetic deformation on an almost paracontact metric structure

The idea of a D-homothetic deformation on a contact metric manifold (especially on Sasakian and K-contact structures) was
introduced by Tanno ([11], [12]).
Let (φ ,ξ ,η ,g) be an almost paracontact metric structure on a (2n+ 1)−dimensional manifold M and λ 6= 0 be a positive
constant. Set,

φ̄ = φ , ξ̄ =
1
λ

ξ , η̄ = λη , ḡ =−λg+λ (λ +1)η⊗η .

Then, it can be seen that

Kerη̄ = Kerη , φ̄
2 = I− η̄⊗ ξ̄ , η̄(ξ̄ ) = 1
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and for any U,V ∈ X(M),
ḡ(φ̄U, φ̄V ) =−ḡ(U,V )+ η̄(U)η̄(V ).

Hence, (φ̄ , ξ̄ , η̄ , ḡ) is also an almost paracontact metric structure on M [2].
This is called a D−homothetic deformation of (φ ,ξ ,η ,g). In this paper, we consider this deformation. Let ∇ and ∇̄ be the
Levi-Civita connections of the metrics g and ḡ, respectively. Then by the Koszul formula and the definition of ḡ,

2ḡ(∇̄UV,W ) = −2λg(∇̄UV,W )+2λ (λ +1)η(∇̄UV )η(W ) (5.1)
= −2λg(∇UV,W )+λ (λ +1)[2g(∇UV,ξ )η(W )

+η(U)(g(∇V ξ ,W )−g(∇W ξ ,V ))

+η(V )(g(∇U ξ ,W )−g(∇W ξ ,U))

+η(W )(g(∇U ξ ,V )+g(∇V ξ ,U))].

To obtain the relation between η(∇̄UV ) and η(∇UV ), take W = ξ in the equation (5.1). So we get,

η(∇̄UV ) = η(∇UV )+
λ +1

2λ
[−η(U)g(∇ξ ξ ,V ) (5.2)

−η(V )g(∇ξ ξ ,U)+g(∇U ξ ,V )+g(∇V ξ ,U)].

If we apply the equation (5.2) into the equation (5.1), we get the following

g(∇̄UV,W ) = g(∇UV,W )+
(λ +1)2

2λ
η(W )[−η(U)g(∇ξ ξ ,V ) (5.3)

−η(V )g(∇ξ ξ ,U)+g(∇U ξ ,V )+g(∇V ξ ,U)]

−λ +1
2

[η(U)(g(∇V ξ ,W )−g(∇W ξ ,V ))

+η(V )(g(∇U ξ ,W )−g(∇W ξ ,U)))

+η(W )(g(∇U ξ ,V )+g(∇V ξ ,U))].

By means of the equation (5.3), we may obtain the relations between ∇̄ and ∇ under some certain assumptions. The next
section is devoted to studying the D− homothetic deformations of the structure with a parallel characteristic vector field.

6. D-homothetic deformations of the structures with parallel Reeb vector field

In this section, we examine the D−homothetic deformations of the almost paracontact structures with a parallel characteristic
vector field.

Let (M,φ ,ξ ,η ,g) be an almost paracontact metric manifold with parallel characteristic vector field ξ (i.e. ∇U ξ = 0, for any
U ∈ X(M) and (φ̄ , ξ̄ , η̄ , ḡ) be the D-homothetic deformed structure as defined above. Then we state the followings:

Proposition 6.1. Let (M,φ ,ξ ,η ,g) be an almost paracontact metric manifold with parallel characteristic vector field ξ . Then
the followings hold

i ∇̄UV = ∇UV,
ii F̄(U,V,W ) =−λF(U,V,W ),

iii θ̄F̄(U) = θF(U),

for any U,V,W ∈ X(M), where F̄ and θ̄ are the fundamental tensor and the Lee form of the deformed structure, respectively.

Proof. By assuming ∇ξ = 0 in the equation (5.3), we directly get the equation (i).
For the equation (ii), we have the following

F̄(U,V,W ) = ḡ((∇̄U φ̄)(V ),W ) =−λg((∇U φ)(V ),W )+λ (λ +1)η((∇U φ)(V ))η(W )

= −λF(U,V,W )+λ (λ +1)η((∇U φ)(V ))η(W ).

On the other hand, since

0 =U [g(φV,ξ )] = g(∇U φV,ξ )+g(φV,∇U ξ )⇒ g(∇U φV,ξ ) = 0,

we have
η((∇U φ)(V )) = g((∇U φ)(V ),ξ ) = g(∇U φV,ξ )−g(φ(∇UV ),ξ ) = 0.

Thus, the equation (ii) is proved.
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For the proof of (iii), consider the φ− basis {ei,φei,ξ}(i = 1, ...,n) for the structure (φ ,ξ ,η ,g). Then {ēi, ¯φei, ξ̄} is the φ−
basis for the structure (φ̄ , ξ̄ , η̄ , ḡ), where

ēi =
1√
λ

ei, ¯φei =
1√
λ

φei, ξ̄ =
1
λ

ξ (λ > 0)

and
ḡ(ēi, ēi) =−ḡ( ¯φei, ¯φei) =−ḡ(ξ̄ , ξ̄ ) =−1.

Since ξ is parallel, by (i) ∇̄ = ∇. So, by direct calculation we get

F̄(ēi, ēi,U) =−F(ei,ei,U),

F̄( ¯φei, ¯φei,U) =−F(φei,φei,U),

F̄(ξ̄ , ξ̄ ,U) = F(ξ ,ξ ,U) = 0.

So, by the definition of the from θ , we have

θ̄F̄(U) = −
n

∑
i=1

F̄(ēi, ēi,U)+
n

∑
i=1

F̄( ¯φei, ¯φei,U)

= −
n

∑
i=1

(−F(ei,ei,U))+
n

∑
i=1

(−F(φei,φei,U))

= θF(U).

Theorem 6.2. Let (φ ,ξ ,η ,g) belongs to the class G1. Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G1.

Proof. Let (φ ,ξ ,η ,g) belongs to the class G1. Then the fundamental tensor F satisfied the defining relation of the class G1,
that is

F(U,V,W ) =
1

2n−1
[g(U,φV )θF(φW )−g(U,φW )θF(φV )−g(φU,φV )θF(hW )+g(φU,φW )θF(hV )]. (6.1)

On the other hand, by the proposition (4.1), the vector field ξ is parallel and so, the equations in the proposition (6.1) hold. By
routine calculation, it can be seen that F̄ also satisfies the equation (6.1). Thus, (φ̄ , ξ̄ , η̄ , ḡ) is also in G1.

Theorem 6.3. Let (φ ,ξ ,η ,g) belongs to the class G2. Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G2.

Proof. Let (φ ,ξ ,η ,g) belongs to the class G2. Then the fundamental tensor F satisfies the defining relation of the class G2,
that is

F(φU,φV,W ) =−F(U,V,W ), θF = 0. (6.2)

Since ξ is parallel, F̄(U,V,W ) =−λF(U,V,W ) and θ̄F̄(U) = θF(U). Thus, F̄ also satisfies the equation (6.2).

Theorem 6.4. Let (φ ,ξ ,η ,g) belongs to the class G3 . Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G3.

Proof. Let F satisfies the defining relation of G3, that is,

F(ξ ,V,W ) = F(U,ξ ,W ) = 0, F(U,V,W ) =−F(V,U,W ). (6.3)

Since ξ is parallel in the class G3, F̄(U,V,W ) =−λF(U,V,W ) and so F̄ also satisfies (6.3).

Theorem 6.5. Let (φ ,ξ ,η ,g) belongs to the class G4 . Then (φ̄ , ξ̄ , η̄ , ḡ) is also in G4.

Proof. It can be seen by direct calculation since ξ is parallel in G4.

Theorem 6.6. Let (φ ,ξ ,η ,g) belongs to the class G11 . Then so is the structure (φ̄ , ξ̄ , η̄ , ḡ).

Proof. It can see seen from the definition class and the proposition (6.1).
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