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 In this study, harmonic response analysis of isotropic elliptically curved thin plate structures has 

been conducted. The structure has been excited by a harmonic load, whose maximum magnitude 

is 100 N. The structure has been considered under fixed from both straight edges boundary 

conditions. The effect of the elliptical geometry on the harmonic response of the structure in terms 

of the critical frequency region, phase angle, stress, and displacement has been examined. For this 

purpose, the vertex to co-vertex ratio has been variated from 3 to 4 by 0.1 intervals. All analyses 

have been performed via ANSYS Workbench by employing the Mode Superposition Method. The 

results indicated that the elliptical geometry has a significant impact on the harmonic response of 

elliptically curved thin plate structures. 
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1. Introduction 

The vibration behavior of a structure is a significant 

research field in which researchers conducted various 

studies to understand the effects of damage [1-3], 

geometry [4-6], material [7-9], and other parameters [10-

17] on this concept. Related to vibrational behavior, the 

harmonic response is another essential concept for 

understanding a steady-state response of a structure under 

sinusoidal loads. The principal interest of the harmonic 

response analysis is the resonance frequency region since 

excessive vibrations, stress, displacement, and noise 

occurs near or at that region. Some studies that cover 

vibration analysis including the harmonic response of 

various structures have been briefly presented as follows. 

Kıral examined the harmonic response of laminated 

composite beams under various boundary conditions and 

considering different stacking sequences [18]. Ramesha et 

al. performed a modal analysis and harmonic response 

analysis of free-free and ball bearing constrained 

crankshaft considering 0 -5000 Hz excitation frequency 

range [19]. Yu et al. conducted both modal and harmonic 

response analysis of some key components of a ditch 

device [20]. Zhang et al. employed a harmonic analysis for 

coupled plate structures by considering the dynamic 

stiffness method [21]. Jiaqiang et al. measured the 

harmonic response of a solar dish power generation system 

considering the wind-induced vibration [22]. Çeçen and 

Aktaş performed both modal and harmonic response 

analyses of carbon fiber laminate reinforced concrete 

railway sleepers [23].  Rahmani and Moslemi Petrudi 

examined the nonlinear vibrations and dynamic response 

of self-excitation of a cantilever nanocomposite tube, 

which contains flowing fluid. They employed Galerkin 

Method and Euler-Bernoulli Beam Theory to solve the 

corresponding Ordinary Differential Equations to evaluate 

the behavior of the structure [24]. Cruceanu and Sorohan 

employed the Finite Element Analysis to evaluate the 

harmonic response of a railway wheelset [25]. Zeng et al. 

investigated the vibration response characteristics of a 

cracked rotating compressor blade using the Finite 

Element Analysis. They measured the impact of the 

aerodynamic force, angular acceleration, and crack 

properties on the vibrational characteristics of the 

compressor blade [26]. Jena et al. performed a dynamic 

response analysis for fractionally damped beam structures 

under external loads. They employed Homotopy Analysis 

Method to evaluate the vibrational response of the beam 

structure [27]. Gawryluk et al. measured the dynamic 

response of a composite beam, which rotates at a constant 

speed due to harmonic excitation. For this purpose, they 

used the Finite Element Method and an experimental setup 

[28]. Son et al. performed a shock and harmonic response 
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analysis for unmanned aerial vehicle’s nose landing gear 

having air damper. They built a dynamic model which 

comprises a main mass and a wheel mass that are linked to 

each other by U-shaped landing gear. They evaluated the 

harmonic response of the system by considering the ratio 

between the displacement amplitude and the amplitude of 

the base excitation [29]. Kumar and Sarangi used the Finite 

Element Method to conduct the harmonic response 

analysis for carbon nanotube-reinforced functionally 

graded beam structure. For this purpose, they considered 

X, Δ, and O type functionally graded carbon nanotube 

beam structures modelled in ANSYS [30]. Praharaj and 

Datta investigated the dynamic behavior of thin plate 

structures subjected to a moving load and resting on a 

fractional viscoelastic foundation. They examined the 

effects of the foundation parameters, fractional-order 

derivative, acceleration, and velocity of the subjected 

moving load on the dynamic response of the structure [31]. 

Abed and Majeed measured the impact of the boundary 

conditions on the harmonic response of cross-ply and 

angle-ply composites having different materials and 

thicknesses [32]. Aghazadeh investigated the dynamics of 

fluid conveying axially functionally graded pipes. For this 

purpose, a higher-order shear deformation theory is 

employed to satisfy zero-shear conditions to obtain 

realistic results [33]. Liu et al. examined the dynamic 

response of curvilinearly stiffened plates by employing the 

Finite Element Method. They measured the influence of 

the temperature on the dynamic behavior of the isotropic 

structure [34]. Alavi and Eipakchi evaluated the dynamic 

response of viscoelastic annular sector plates subjected to 

asymmetric impulsive and harmonic transverse force. 

They used Hamilton’s principle to derive the equation of 

the motion by considering the first-order shear 

deformation theory [35]. Heydarpour et al. developed a 

differential quadrature method based on the Heaviside 

function and a non-uniform rational B-spline-based multi-

time integration scheme to examine the nonlinear dynamic 

response of laminated composite cylindrical shells. They 

measured the impacts of the geometrical properties, 

impulse loading types, time durations, loading location, 

and the number of layers on the nonlinear dynamic 

response of the structure [36]. Yulin et al. investigated the 

dynamic response of a three-beam system having 

intermediate elastic connections, under mass-spring, and 

subjected to a moving load. For this purpose, they 

employed the Finite Sine-Fourier Transform to obtain the 

dynamic ordinary differential equations, which are solved 

to evaluate the dynamic response of the structure [37]. 

Eyvazian et al. investigated the dynamics of 

nanocomposite cylindrical shells subjected to a moving 

harmonic load. For this purpose, they employed the first-

order shear deformation theory in accordance with the 

nonlocal strain gradient theory to obtain the equations of 

motion of the cylindrical nanoshell resting on an elastic 

foundation [38]. Oke and Khulief performed a dynamic 

response analysis for fluid conveying composite pipes 

whose inner wall has a surface discontinuity. For this 

purpose, they employed Hamilton’s principle and wavelet-

based Finite Element Method [39]. 

Elliptically curved plate structures are employed in 

various engineering fields such as aerospace, automotive, 

ships, etc. Therefore, investigating the harmonic response 

of elliptical plates considering their geometry can provide 

significant knowledge to these fields. To the best of the 

author’s knowledge, although numerous studies address 

the harmonic response of various structures, the harmonic 

response of elliptically curved structures has not been 

covered.  Besides, the effect of the structure’s geometry on 

the harmonic response has not been measured in the 

literature. 

In this study, the harmonic response of the isotropic 

elliptically curved thin plates has been investigated. 

Besides, the effect of the structure’s geometry on the 

harmonic response has been examined by variating the co-

vertex – vertex ratio. For these purposes, the structures 

have been modeled via the commercial finite element 

software ANSYS [40]. The co-vertex – vertex ratio values 

have been ranged from 3 to 4 by 0.1 intervals. The 

harmonic response analyses have been conducted by 

considering a sinusoidal load, which alternates between 0-

100N. The damping ratio has been chosen as ξ=0.02 [18]. 

The analysis results have been interpreted by considering 

the variation of the resonance frequency, maximum stress, 

and deformation at the resonance frequency. The 

contributions of the study can be expressed as follows: 

• Investigating the free vibration and harmonic response 

characteristics of an elliptically curved thin plate 

structure. 

• Examining the effect of the structural dimensions on 

the first two natural frequencies of the elliptically 

curved thin plate structure. 

• Measuring the impact of the co-vertex – vertex ratio 

of the elliptically curved plate on the phase angle and 

critical frequency value where excessive vibrations 

occur. 

• Measuring the impact of the co-vertex – vertex ratio 

of the elliptically curved plate on the maximum 

response and maximum stress occurred due to the 

subjected harmonic load.  

 

2. Harmonic Response Analysis  

The harmonic response analysis has been evaluated 

considering the governing equation of motion of the 

system, which is 
 

𝑀{�̈�} + �̇�{�̇�} + 𝐾{𝑞} = {𝐹} (1) 

where M, C, and K are the mass, damping, and stiffness 
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matrix respectively. {q} represents the generalized 

displacement vector including in-plane and out-of-plane 

displacements [41] and F is the harmonic (sinusoidal) 

force which can be written in complex notation as: 
 

𝐹 = 𝐹𝑚𝑎𝑥𝑒
𝑗𝛼𝑒𝑗𝜔𝑡  (2) 

 

where ω and α is the excitation frequency and the phase 

angle of the applied force, respectively. The response of a 

system is also harmonic, which can be defined as: 
 

𝑦 = 𝑦𝑚𝑎𝑥𝑒
𝑗𝜂𝑒𝑗𝜔𝑡  (3) 

 

where η is the phase angle of the response. It can be 

concluded from the Equations (2) and (3) the phase angles 

of the load and response can be different, while the 

frequencies should be the same. Note that the phase shift 

of the force may exist if multiple loads are applied in 

different phase angles. Besides, the displacement phase 

shift may be present in the existence of damping or applied 

forces. [42] The mass, damping, and stiffness matrices can 

be evaluated by employing the Classical Plate Theory. The 

corresponding mathematical expressions and considered 

assumptions can be found in any textbook [41].  

The solution of the governing equation given in 

Equation 1 in the presence of harmonic loads is: 
 

(−𝜔2𝑀 + 𝑗𝜔𝐶 + 𝐾){𝑦} = {𝐹} (4) 
 

Following the brief harmonic response theory given 

above, the harmonic response analysis of elliptically 

curved thin plates has been conducted via ANSYS 

Workbench 18.2 software. For this purpose, a number of 

1000 SHELL181 elements have been considered since the 

SHELL181 element satisfies the assumptions and required 

degrees of freedom for a thin structure [41]. As seen from 

Figure 1, the structure has fixed from both straight edges. 

A distributed harmonic force with 100 N maximum 

magnitude and 00 phase angle has been applied. To 

measure the effects of the structural geometry on the 

harmonic response, the ratio of the vertex-co-vertex (Rc) 

has been increased from 3 to 4 by considering 0.1 intervals. 

The thickness of the structure is remained constant 

everywhere and is taken as 1.5 mm. As seen from Figure 

2, other geometrical parameters have been considered as 

independent and constant values. Table 1 presents the 

considered material properties [41] of the structure to 

perform harmonic analysis. Before proceeding with the 

harmonic response analysis, the first two natural frequency 

values of all structures have been evaluated by performing 

a free vibration analysis. The results have been evaluated 

by considering the 0-1500 Hz frequency range to include 

the second natural frequency values (see Table 2) of all 

considered structures. 

As the solution method, the Mode Superposition 

Method has been considered since it uses the eigenvectors 

of the free vibration problem providing accurate results 

and costs less time when compared with the Full Method 

[41]. 

 
 

Figure 1. Elliptically curved thin plate 

 

 
 

Figure 2. Dimensions of the elliptically curved plate structure 

 

Table 1. Material properties of the elliptically curved thin plate  
 

Property Symbol Value 

Modulus of 

Elasticity 

(GPa) 

E 200 

Shear 

Modulus 

(GPa) 

G 76.9 

Density 

(kg/m3) 
ρ 7850 

Poisson’s 

Ratio 
υ 0.3 

 

Afterward, the frequency response and the corresponding 

phase angle responses have been evaluated for each 

structure to determine the most critical frequency and 

corresponding phase angle values for the structure. By 

using these critical values, the maximum stress and 

displacement have been obtained. The evaluated results 

have been interpreted with respect to the change in the Rc.  

 

3. Numerical Results  

Table 2 gives the variation of the first two natural 

frequencies of the elliptically curved structure with respect 

to changes in respect to the ratio of the vertex to co-vertex 

(Rc) of the structure.  

It is seen from Table 2 that the first two natural 

frequencies decrease as the Rc value increases. Besides the 

numerical difference between the first and the second 

natural frequencies becomes smaller for higher Rc values. 

Such differences take place due to the difference in the 

stiffness characteristics of the elliptically curved structure. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Variation of the fundamental frequency, phase angle, stress, and displacement with respect to Rc 

 

Table 2. The variation of the first two natural frequencies of 
elliptically curved thin plate structures with respect to Rc  
 

Rc 3.0 3.1 3.2 3.3 

Freq.1 (Hz) 977.35 973.02 968.97 965.19 

Freq.2 (Hz) 1380.90 1328.20 1274.70 1221.50 

Rc 3.4 3.5 3.6 3.7 

Freq.1 (Hz) 961.67 958.39 955.06 952.21 

Freq.2 (Hz) 1169.40 1119.10 1070.90 1025.20 

Rc 3.8 3.9 4.0  

Freq.1 (Hz) 949.54 941.61 903.63  

Freq.2(Hz) 982.12 947.04 977.31  

 

Figure 3 gives the variation of the critical frequency, 

phase angle, stress, and displacement responses of 

elliptically curved thin plate structure with respect to Rc 

values. It is seen from Figure 3 that the critical frequency 

of the elliptically curved structure decreases as the Rc value 

increases.  Besides, the critical frequency has been 

evaluated close to the second natural frequency for Rc 

values ranged between 3-3.8. However, it approximates 

the fundamental frequency for Rc=3.9 and 4.  

As seen from Figure 3 that the difference in the critical 

frequency is almost linear.  Since the damping ratio has 

been considered as ξ=0.02, a difference in phase angle has 

occurred. The phase angle has been evaluated as 83.60 for 

3-3.3 Rc values, while it has been obtained as 93.6 for the 

remained Rc values. In other words, the maximum 

response occurred at the critical frequency value takes 

place slightly earlier than the fundamental or the second 

frequency for Rc values lower than and equal to 3.3 when 

compared with those frequencies for Rc values bigger than 

3.3.  

It can be interpreted that the phase angle is not affected 

considerably by the co-vertex – vertex ratio since the 

difference is small.  

Figures 4 and 5 show the bode diagram of the 

displacement-frequency response and the phase difference 

between the response and the applied force for Rc= 3 and 

4 respectively. It is seen that the critical response for the 

structure with Rc =3 has been obtained for the frequency 

region close to the second natural frequency. On the other 

hand, the region becomes closer to the fundamental 

frequency for the structure having Rc =4 ratio. As also seen 

in Figure 3, the phase angle of the structure having Rc =3 

ratio is smaller than those of the structure with Rc =4.  

The maximum stress and displacement values have been 

evaluated for the excitation frequency equal to the 

fundamental frequency. 
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Figure 4. The displacement-frequency bode diagram of the elliptically curved thin plate having (a) Rc=3 and (b) Rc=4 ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The phase shift between the response and applied force of the elliptically curved thin plate having (a) Rc=3 and (b) Rc=4 

ratio 

 

The damping ratio has been taken as ξ=0.02 [18] to 

prevent the structure from resonance in which failure may 

occur due to excessive displacement response. As seen in 

Figure 3, the maximum stress increases as the Rc increases. 

Similarly, the maximum displacement increases up to 2.5 

times as the Rc value reaches 4 from 3. Both displacement 

and stress values vary almost in a linear form in 

accordance with the co-vertex – vertex ratio. The 

maximum stress value is obtained for Rc=4 as 180.07 MPa 

while the minimum stress is obtained for Rc=3 106.54 

MPa.  The maximum displacement value is observed for 

Rc=4 as 0.64 mm whereas the minimum displacement is 

evaluated for Rc=3 as 0.24 mm.   

As seen in Figures 6 and 7, the maximum displacement 

and stress locations are the same for both Rc=3 and 4. On 

the other hand, the displacement and stress distributions 
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vary. It is seen from Figures 6 and 7 that at the most critical 

frequency, a wider area has been stressed and displaced for 

the structure with Rc =4 ratio when compared with that of 

having Rc =3 ratio. The behavior of the structure shown in 

Figure 6 also represents the second mode shape for Rc=3 

and the first mode shape for Rc=4. Therefore, it can be 

concluded that the maximum stress and displacement 

occurred in the region where the highest displacements 

have been observed in the relevant mode shape. 

Considering the stress and displacement regions shown 

in Figures 6 and 7, it is seen that both displacement and 

stress values in locations close to the fixed edge differ for 

structures with Rc=3 and Rc =4. It is seen that these values 

are higher for the structure having Rc=3 than that of Rc=4. 

A similar interpretation can be made for the width of the 

displacement and stress regions. As seen from Figures 6 

and 7 the displacement and stress regions of the structure 

having Rc=3 ratio are narrower than these of the structure 

having Rc=4 ratio regardless of the magnitude of the stress 

and displacement. Therefore, it can be concluded that the 

difference in co-vertex – vertex ratio does not only affect 

the maximum stress and displacement values, but also the 

distribution of the stress and displacement along with the 

structure.  
 

4. Conclusions  

In this study, harmonic response analysis of elliptically 

curved thin plate structure has been conducted. The effect 

of the vertex to co-vertex ratio on the harmonic response 

has been examined considering the critical frequency 

region, phase angle, stress, and displacement. All analyses 

have been conducted by considering the Mode 

Superposition Method. According to the results of the 

study, the following conclusions can be drawn. 

• The first two natural frequencies of elliptically curved 

thin plate structures decrease as the vertex to the co-

vertex ratio (Rc) increases. Besides, the numerical 

difference between those two frequencies become 

smaller as the Rc  value increases. 

 

 

 

Figure 6. Critical displacement response of the elliptically curved thin plate having (a) Rc=3 and (b) Rc=4 ratio 
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Figure 7. Critical stress distribution of the elliptically curved thin plate having (a) Rc=3 and (b) Rc=4 ratio 

 

• The critical frequency, which causes the highest stress 

and displacement values, decreases as the Rc ratio 

increases. Besides, the critical frequency region 

approximates the second natural frequency for Rc=3-

3.8 values whereas it approaches the fundamental 

frequency for Rc=3.9 and 4.0. 

• The phase angle increases from 83.6 to 93.6 for Rc 

values higher than 3.3 

• The maximum stress increases with respect to the 

increment in Rc values. Likewise, the maximum 

displacement increases up to 2.5 times as the Rc value 

increases from 3 to 4. 

• The maximum stress and displacement are located in 

the region where the highest displacement of the 

relevant mode shapes has been observed. 

• The numerical results indicate that the variation of the 

maximum stress, maximum displacement, and the 

natural frequency values are almost in a linear form in 

accordance with the co-vertex – vertex ratio. On the 

other hand, although it seems that the phase angle 

changes abruptly as the co-vertex – vertex ratio 

reaches 3.4, the difference is considerably small. 

Therefore, it can be concluded that the phase angle is 

not affected significantly by the change in the co-

vertex – vertex ratio.  

• It is concluded that the co-vertex – vertex ratio also 

affects the stress and displacement regions of the 

structure. The stress and displacement values that 

occurred near the fixed edges are evaluated higher for 

the structure having Rc=3 than that of Rc=4. Besides, 

the stress and displacement regions of the structure 

having Rc=3 ratio are narrower than those of the 

structure having Rc=4 ratio regardless of both 

displacement and stress values. 

• The future works may comprise the impacts of the 

characteristics of the curvature and dimensions of the 
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structure on the harmonic response of curved 

structures. Besides, the effects of the fiber orientation 

on the response of the structure may be examined by 

taking the plate structure as a composite one. 
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