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Abstract. Nonlocal boundary value problem of the first kind for an ordinary

linear second order differential equation with positive parameter at the highest

derivative is considered. The existence and uniqueness, as well as, a uniformly
stable estimate of classical solution is established under accurate condition on

coefficients and location of nonlocal data carriers of multipoint boundary value

condition. An essentiality of the revealed condition is confirmed by ill-posed
problem examples.

1. Introduction

The article of A.N. Tikhonov [1] gave the reason for a wide range study in the
field of parameterized differential equations. The joint paper of A.V. Bitsadze and
A.A. Samarskii [2] motivated a lot of research in the field of differential problems
which are identifiable as nonlocal boundary problems.

In our paper, we consider nonlocal boundary value problem (NLBVP) of the first
kind1 for ordinary differential equation (ODE)

εu′′(x) + a(x)u′(x)− b(x)u(x) = −f(x), 0 < x < 1

with a positive parameter ε > 0. Herein, for an unknown solution, we consider the
nonlocal boundary value condition (NLBVC) which is given by linear combination
of the values in boundary and interior points of [0, 1]. Our task is to study the
question of a uniformly stable solvability of such NLBVP in respect of the classical
solution from C2(0, 1) ∩ C[0, 1].

In [3], for Sturm-Liouville operator the NLBVP of the first kind

[k(x)u′]′ − q(x)u = −f(x), 0 < x < 1, u(0) = 0, u(1) =

n∑
i=1

αiu(ξi)

was researched for k(x) ∈ C1[0, 1], f(x), q(x) ∈ C[0, 1], k(x) ≥ m0 > 0, q(x) ≥ 0.
The existence, uniqueness and a priori estimate of classical solution was established
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for the case if all coefficients αi, i = 1, ..., n have the same sign and satisfy the
condition

−∞ <

n∑
i=1

αi ≤ 1.

For the same problem, but under the condition that αi, i = 1, ..., n have an
arbitrary sign and satisfy the condition

n∑
i=1

(αi + |αi|)
2

ξi∫
0

1

k(τ)
dτ <

1∫
0

1

k(τ)
dτ,

the existence and uniqueness of classical solution was proved in [4].
In [5], it was proved that singularly perturbed NLBVP of the first kind

−ε2y′′(x) + g(x)y(x) = h(x), 0 < x < 1, y(0) = 0, ℓ̂y = d,

has a unique solution if and only if the solution of Dirichlet problem

ε2u′′(x)− g(x)u(x) = 0, u(0) = 0, u(1) = 1

satisfies the condition ℓ̂u ̸= 0, where g(x) ≥ K2 > 0, K ∈ R, ℓ̂y ≡ y(1)−
m∑
i=1

ciy(si),

si ∈ (0, 1).
In [6], the existence, uniqueness and a priori estimate of classical solution

||u||W 2
2 [0,1]

≤ C||f ||L2[0,1]

were proved for NLBVP{
[k(x)u′(x)]′ + r(x)u′(x)− q(x)u(x) = −f(x), 0 < x < 1,
u(0) = 0, u(1) = αu(ζ)− βu(η),

where k(x) ∈ C1[0, 1], f(x), r(x) and q(x) ∈ C[0, 1], k(x) ≥ m0 > 0, |r(x)| < µ,
q(x) ≥ 0, x ∈ [0, 1], µ < m0, ζ ∈ (0, 1), η ∈ (0, 1), in addition, α > 0, β > 0,
−∞ < α− β ≤ 1 if ζ < η, α ≤ 1 if η < ζ.

In [7], the existence, uniqueness and a priori estimate of classical solution were
proved for NLBVP with double-side NLBVC of the first kind{

[k(x)u′(x)]′ + r(x)u′(x)− q(x)u(x) = −f(x), 0 < x < 1,
u(0) = α0u(ζ0)− β0u(η0), u(1) = α1u(ζ1)− β1u(η1)

where k(x) ∈ C1[0, 1], f(x), r(x), q(x) ∈ C[0, 1], k(x) ≥ m0 > 0, q(x) ≥ 0,
x ∈ [0, 1], ζi ∈ (0, 1), ηi ∈ (0, 1), i = 0, 1, max{ζ0, η0} < min{ζ1, η1}, in addition,
αi > 0, βi > 0, i = 0, 1, S0 ≤ 1, S1 ≤ 1, S0+S1 < 2, herewith S0 = α0−β0 for
η0 ≤ ζ0, S0 = α0 for ζ0 < η0, S1 = α1 − β1 for ζ1 ≤ η1, S1 = α1 for η1 < ζ1.

In [8, p. 68-72], a uniformly stable solvability was reported for parameterized
NLBVP {

−εu′′(x) + b(x)u(x) = f(x), 0 < x < 1,
u(0)− αu(ζ) = ϕ0, u(1)− βu(η) = ϕ1

where ε > 0, b(x), f(x) ∈ C[0, 1], b(x) ≥ b∗ > 0, 0 < ζ < η < 1, −∞ < α < 1,
−∞ < β < 1, αβ ̸= 0, φi = const, i = 0, 1.

In [9], the solution of NLBVP, which was formulated in [5], was constructed by
using the truncated orthogonal series and corresponding solution of the reduced
problem.
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In [10], under the condition that classical solution of the Dirichlet problem

−εw′′ + a(x)w′ + b(x)w = 0, 0 < x < 1, w(0) = 0, w(1) = 1

satisfies the inequality w(1)−
m−2∑
i=1

ciw(si) ̸= 0, the behaviour of exact solution was

analized for NLBVP

−εu′′ + a(x)u′ + b(x)u = f(x), 0 < x < 1, u(0) = A, u(1) =

m−2∑
i=1

ciu(si) +B,

where 0 < ε << 1, a(x) ≥ α > 0, a(x), b(x) and f(x) are sufficiently smooth
functions on [0, 1], si ∈ (0, 1), i = 1, 2, ...,m− 2.

In summary, it is natural that NLBVP’s solvability, as well as, the behaviour of
its classical solution depends on coefficients, their signs, values, and, at least, data
carriers location of given nonlocal condition. It is the reason why the aim of our
paper is to reveal explicit condition of a uniform solvability for parameterized linear
second order ODE with abstract double-side nonlocal condition of the first kind.
In general, naturally that the information on a uniform solvability of differential
problem is also actual for its numerical interpretation.

Additionally, sufficiently detailed overview on NLBVP for ODE is enclosed in
[3, 4, 6, 7, 13], the survey on boundary value problems respectively parameterized
ODE is represented by [14].

2. Differential problem

We consider the NLBVP

Lu(x) ≡ εu′′(x) + a(x)u′(x)− b(x)u(x) = −f(x), 0 < x < 1, (2.1)

ℓ0(u) ≡ u(0)−
m0∑
k=1

αku(ζk) = φ0, ℓ1(u) ≡ u(1)−
m1∑
l=1

βlu(ηl) = φ1, (2.2)

where ε > 0 is a parameter, a(x), b(x), f(x) ∈ C[0, 1], mi ≥ 2, i = 0, 1,
φi ∈ R, i = 0, 1, ζk ∈ (0, 1), k = 1, ...,m0, ηl ∈ (0, 1), l = 1, ...,m1 are so that

0 < ζ1 < ζ2 < ... < ζm0
< η1 < η2 < ... < ηm1

< 1, (2.3)

in addition, αk ∈ R, k = 1, ...,m0, βl ∈ R, l = 1, ...,m1 are nonzero coefficients.
Next condition is denoted by A:
- if all αk are not of the same sign, then αk > 0 only for k = 1, ...,mι, or αk > 0
only for k = mι + 1, ...,m0, where mι is some natural number, 1 ≤ mι < m0;
- if all βl are not of the same sign, then βl > 0 only for l = 1, ...,mκ, or βl > 0
only for l = mκ + 1, ...,m1, where mκ is some natural number, 1 ≤ mκ < m1.
Further, we will use the designations:

α =

m0∑
k=1

αk, α+ =

m0∑
k=1

αk + |αk|
2

, α− =

m0∑
k=1

αk − |αk|
2

,

β =

m1∑
l=1

βl, β+ =

m1∑
l=1

βl + |βl|
2

, β− =

m1∑
l=1

βl − |βl|
2

,

S0 =

 α+ + α−, if αmι
< 0, αmι+1

> 0,
α+, if αmι

> 0, αmι+1
< 0,

α, if αk, k = 1, ...,m0 have the same sign,



A UNIFORMLY STABLE SOLVABILITY OF NLBVP FOR PARAMETERIZED ODE 53

S1 =

 β+ + β−, if βmκ > 0, βmκ+1 < 0,
β+, if βmκ < 0, βmκ+1 > 0,
β, if βl, l = 1, ...,m1 have the same sign.

Definition. The function u(x) is a classical solution of NLBVP (2.1)-(2.2) if it
belongs to C2(0, 1) ∩ C[0, 1], satisfies the equation (2.1) and NLBVC (2.2).

Let each one of NLBVC (2.2) encloses different sign coefficients. Let us suppose
that classical solution u(x) of NLBVP (2.1)-(2.2) exists. Then, in view of the mean
value (MV) property [3, p. 1198-1199], by analogy with [13, p. 39], this classical
solution satisfies some reduced NLBVC

u(0)− α+u(ζ+)− α−u(ζ−) = φ0, u(1)− β+u(η+)− β−u(η−) = φ1, (2.4)

where ζ+ ∈ [ζ1, ζm0
], ζ− ∈ [ζ1, ζm0

], η+ ∈ [η1, ηm1
], η− ∈ [η1, ηm1

] and, therefore,
u(x) is classical solution of NLBVP (2.1),(2.4) too2. In respect of (2.4), we denote

ℓ0(u) ≡ u(0)− α+u(ζ+)− α−u(ζ−), ℓ1(u) ≡ u(1)− β+u(η+)− β−u(η−). (2.5)

Hence, for Si, i = 0, 1, we have

S0 =

 α+ + α−, if ζ− < ζ+,
α+, if ζ+ < ζ−,
α, if all αk, k = 1, ...,m0 have the same sign,

(2.6)

S1 =

 β+ + β−, if η+ < η−,
β+, if η− < η+,
β, if all βl, l = 1, ...,m1 have the same sign.

(2.7)

Additionally, in view of (2.3) and A, we have

ζ− ̸= ζ+, η− ̸= η+, max{ζ−, ζ+} < min{η−, η+}. (2.8)

Our first result is

Lemma 2.1. Let Si ≤ 1, φi ̸= 0, i = 0, 1. If u(x) is classical solution of the
problem (2.1),(2.4), then v(x) = u(x) + φ0q0(x) + φ1q1(x) is classical solution of
the problem

Lv(x) = −f1(x), 0 < x < 1, ℓ0(v) = 0, ℓ1(v) = 0 (2.9)

for f1(x) = f(x) − φ0Lq0(x) − φ1Lq1(x), where qi(x), i = 0, 1 are some cubic
polinoms .
Let Si ≤ 1, i = 0, 1. Let only one of φ0, φ1 be nonzero, i.e., φi∗ ̸= 0, i∗ ∈ {0, 1}.
If u(x) is classical solution of (2.1),(2.4), then v(x) = u(x)+φi∗qi∗(x) is classical
solution of the problem (2.9) for f1(x) = f(x)−φi∗Lqi∗(x), where qi∗(x) is some
cubic polinom.

Proof. Assume that q0(x), q1(x) ∈ C2(0, 1) are an arbitrary functions. Then it is
obvious that

Lv(x) = −[f(x)− φ0Lq0(x)− φ1Lq1(x)] = −f1(x)

2Thus we will say: ”the problem (2.1),(2.2) is reduciable to (2.1),(2.4)”, or, for example,
”condition (2.2) is redused to (2.4)”, or ”condition (2.2) is reduciable to (2.4)”, or ”(2.4) is

reduced nonlocal condition” and etc..
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i.e., v(x) satisfies the differential equation (2.9). Let us construct some polinomials
q0(x) and q1(x), so that the function v(x) will satisfy NLBVC (2.9). Put φi ̸= 0,
i = 0, 1. We look for the functions

q0(x) = c0(1− x)(η+ − x)(η− − x), (2.10)

q1(x) = c1x(ζ
+ − x)(ζ− − x), (2.11)

where an unknown constants c0 and c1 have to be defined. Since

ℓ0(q1) = 0, ℓ1(q0) = 0, (2.12)

then, in view of (2.5) and (2.4),

ℓ0(v) = φ0 + φ0ℓ0(q0) + φ1ℓ0(q1) = φ0[1 + ℓ0(q0)], (2.13)

ℓ1(v) = φ1 + φ0ℓ1(q0) + φ1ℓ1(q1) = φ1[1 + ℓ1(q1)]. (2.14)

Since v(x) has to satify (2.9), then, in view of (2.13) and (2.14), the equalities

1 + ℓ0(q0) = 0, 1 + ℓ1(q1) = 0 (2.15)

have to be satisfied for qi(x), i = 0, 1. Hence, we have

c0 = −(E0)
−1, (2.16)

c1 = −(D0)
−1, (2.17)

for

E0 = η+η−−α+(1−ζ+)(η+−ζ+)(η−−ζ+)−α−(1−ζ−)(η+−ζ−)(η−−ζ−), (2.18)

D0 = (1−ζ+)(1−ζ−)−β+η+(ζ+−η+)(ζ−−η+)−β−η−(ζ+−η−)(ζ−−η−), (2.19)

where E0 ̸= 0, D0 ̸= 0 since E0 > 0, D0 > 0. Indeed, in view of (2.8), from
(2.18) and (2.19), correspondingly, we get

E0 >

{
(1− [α+ + α−])(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ− < ζ+,
(1− α+)(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ+ < ζ−,

(2.20)

D0 >

{
(1− [β+ + β−])η−(η− − ζ+)(η− − ζ−), if η+ < η−,
(1− β+)η−(η− − ζ+)(η− − ζ−), if η− < η+.

(2.21)

Then from (2.20) and (2.21), correspondingly, in view of (2.6) and (2.7), we have

E0 >

 (1− S0)(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ− < ζ+, 0 < S0 ≤ 1,
(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ− < ζ+, −∞ < S0 ≤ 0,
(1− S0)(1− ζ−)(η+ − ζ−)(η− − ζ−), if ζ+ < ζ−, 0 ≤ S0 ≤ 1,

D0 >

 (1− S1)η
−(η− − ζ+)(η− − ζ−), if η+ < η−, 0 < S1 ≤ 1,

η−(η− − ζ+)(η− − ζ−), if η+ < η−, −∞ < S1 ≤ 0,
(1− S1)η

−(η− − ζ+)(η− − ζ−), if η− < η+, 0 ≤ S1 ≤ 1.

Hence, E0 > 0, D0 > 0, therefore, E0 ̸= 0, D0 ̸= 0. Thus, in view of (2.16) and
(2.17), the polinomials (2.10) and (2.11) are defined. In view of (2.12) and (2.15),
v(x) satisfies nonlocal conditions of (2.9). Since u(x) ∈ C2(0, 1) ∩ C[0, 1], then
v(x) ∈ C2(0, 1)∩C[0, 1] too, therefore, v(x) is classical solution of NLBVP (2.9).

By similar way, it is easy to prove the second statement for the case if one of two
data φi, i = 0, 1 is zero, but another one is nonzero. Lemma 2.1 is proved. □
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Let all coefficients αk, k = 1, ...,m0 have the same sign and all coefficients
βl, l = 1, ...,m1 have the same sign, (the signs of αk and βl can be different).
Then, by analogy with (2.4), the classical solution of NLBVP (2.1),(2.2) satisfies
the condition

u(0)− αu(ζ) = φ0, u(1)− βu(η) = φ1,

for some ζ ∈ [ζ1, ζm0
], η ∈ [η1, ηm1

], so that ζ < η in view of (3).

Corollary 2.2. Let Si ≤ 1, φi ̸= 0, i = 0, 1. If u(x) is some classical solution of
the problem

Lu(x) = −f(x), 0 < x < 1, u(0)− αu(ζ) = φ0, u(1)− βu(η) = φ1

for ζ < η, then v(x) = u(x)+φ0q0(x)+φ1q1(x) is classical solution of the problem

Lv(x) = −f1(x), 0 < x < 1, v(0)− αv(ζ) = 0, v(1)− βv(η) = 0

for f1(x) = f(x)−φ0Lq0(x)−φ1Lq1(x), q0(x) = c0(1−x)(η−x), q1(x) = c1x(ζ−x),
c0 = −[η − α(1− ζ)(η − ζ)]−1, c1 = −[(1− ζ)− βη(η − ζ)]−1.

Proof. This is provable by analogy with Lemma 2.1. Corollary 2.2 is proved. □

Corollary 2.3. The statement of Corollary 2.2 is true for the case if all coefficients
αk, k = 1, ...,m0 have the same sign, but there are different sign coefficients among
βl, l = 1, ...,m1 (or vice versa).

Proof. This is provable by analogy with Lemma 2.1. Corollary 2.3 is proved. □

3. A uniform stability estimate

Here, we establish a uniformly stable estimate. Our basic result is

Theorem 3.1. Let a(x) ≥ a0 > 0, b(x) ≥ b0 ≥ 0, x ∈ [0, 1]. Let conditions (2.3),
A hold. If S0 ≤ 1, S1 ≤ 1 and, in addition, S1 < 1 if b0 = 0, then a uniformly
stable estimate

|u(x)| ≤ C(|φ0|+ |φ1|+ max
0≤y≤1

|f(y)|), 0 ≤ x ≤ 1 (3.1)

holds for classical solution of NLBVP (2.1),(2.2).

Proof. Let u(x) be some classical solution of NLBVP (2.1),(2.2). Since (2.2) is
reduciable to (2.4), then u(x) is classical solution of NLBVP (2.1),(2.4). In view
of Lemma 2.1, the function v(x) = u(x) +φ0q0(x) +φ1q1(x) is classical solution of
NLBVP (2.9). Assume that a uniformly stable estimate holds for v(x), i.e.,

|v(x)| ≤ C1 max
0≤y≤1

|f1(y)|, 0 ≤ x ≤ 1 (3.2)

for some independent of ε constant C1, where f1(x) = f(x)−φ0Lq0(x)−φ1Lq1(x).
Then, by virtue of the triangle inequality,

|u(x)| ≤ C1 max
0≤y≤1

|f1(y)|+ |φ0| max
0≤y≤1

|q0(y)|+ |φ1| max
0≤y≤1

|q1(y)|, 0 ≤ x ≤ 1,

so that
|u(x)| ≤ C1 max

0≤y≤1
|f(y)|+ C2|φ0|+ C3|φ1|, 0 ≤ x ≤ 1.

Thus, if (3.2) is true, then (3.1) is also true for the constant C = max{C1, C2, C3}.
So, to prove (3.1) it will be sufficient to obtain the estimate (3.2) for the solution
of NLBVP (2.9). Further, to establish (3.2) we will consider three subcases:
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first - all coefficients αk, k = 1, ...,m0 have the same sign and all coefficients βl,
l = 1, ...,m1 have the same sign (the signs of αk and βl can be different);
second - each one of two nonlocal conditions (2.2) encloses different sign coefficients;
third - one condition of (2.2) has the same sign coefficients, but another one encloses
different sign coefficients.
Subcase 1. Put αk, k = 1, ...,m0 have the same sign, βl, l = 1, ...,m1 have the same
sign (the signs of αk and βl can be different). Our task is to prove the estimate (3.2)
for classical solution of NLBVP (2.9). By virtue of MV property [3, p. 1198-1199]
in respect of NLBVC (2.9), we get

v(0) = αv(ζ), v(1) = βv(η) (3.3)

for some ζ ∈ [ζ1, ζm0
], η ∈ [η1, ηm1

]. If α < 0, then, in view of Bolzano theorem,
v(x0) = 0 at some point x0 ∈ (0, ζ), i.e., v(x) satisfies boundary value condition
(BVC) of the first kind at x0. If α > 0, then ω0(0) = ω0(ζ) for the function

ω0(x) = v(x)
(α− 1)x+ ζ

ζ
. (3.4)

By virtue of Rolle’s theorem, ω′
0(x0) = 0 at some point x0 ∈ (0, ζ). Hence,

v′(x0)− h0v(x0) = 0, h0 =
1− α

ζ − x0(1− α)
, (3.5)

so that h0 ≥ 0 since our theorem condition requires the bound S0 ≤ 1. It means
that v(x) satisfies BVC of the third kind at x0 if 0 < α < 1, or of the second kind
if α = 1.

Similarly, for β < 0 we obtain BVC of the first kind v(x1) = 0 at some point
x1 ∈ (η, 1), as well as, for β > 0 we get BVC of the third kind if 0 < β < 1, or of
the second kind if β = 1 at some point x1 ∈ (η, 1), i.e.,

v′(x1) + h1v(x1) = 0, h1 =
1− β

β(1− x1) + x1 − η
, (3.6)

so that h1 ≥ 0 since the theorem condition requires the bound S1 ≤ 1. Note that
to get (3.6) we use the function

ω1(x) = v(x)
β(x− 1) + η − x

η − 1
(3.7)

and corresponding equalities ω1(1) = ω1(η), ω
′
1(x1) = 0.

In summary, we revealed that on some interval [x0, x1] the function v(x) satisfies
the boundary value problem (BVP)

Lv(x) = −f1(x), x0 < x < x1, δ0v
′(x0)− h0v(x0) = 0, δ1v

′(x1) + h1v(x1) = 0,

where δ0 = 1 if α > 0 and δ1 = 1 if β > 0, in addition, δ0 = 0, h0 = 1 if α < 0, and
δ1 = 0, h1 = 1 if β < 0. Hence, in view of the variable replacement

t = (x1 − x0)
−1(x− x0), (3.8)

we get that the function ṽ(t) = v(x(t)) satisfies the BVP{
L̃ṽ(t) ≡ εṽ′′(t) + ã(t)ṽ′(t)− b̃(t)ṽ(t) = −f̃1(t), 0 < t < 1,

h̃0ṽ(0)− δ0ṽ
′(0) = 0, h̃1ṽ(1) + δ1ṽ

′(1) = 0,
(3.9)

where

ã(t) = (x1 − x0)a(x(t)), b̃(t) = (x1 − x0)
2b(x(t)), f̃1(t) = (x1 − x0)

2f1(x(t)),
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x(t) = (x1 − x0)t+ x0, ã(t) ≥ (η1 − ζm0
)a0, b̃(t) ≥ (η1 − ζm0

)2b0, 0 ≤ t ≤ 1,

in addition, h̃0, δ0, h̃1, δ1 are defined by the specification

δ0 = 0, h̃0 = 1 for α < 0,

δ0 = 1, h̃0 = (x1 − x0)h0 for 0 < α ≤ 1,

δ1 = 0, h̃1 = 1 for β < 0,

δ1 = 1, h̃1 = (x1 − x0)h1 for 0 < β ≤ 1,

herewith, h̃1 + (η1 − ζm0
)2b0 > 0 since the theorem condition requires S1 < 1 for

b0 = 0 (it means that 0 < β < 1 for b0 = 0) and, therefore, we have h̃1 > 0.
Further, for classical solution of BVP (3.9), by virtue of [12, p. 100-103], we get a
uniform on ε stability estimate

|ṽ(t)| ≤ C4 max
0≤y≤1

|L̃ṽ(y)|, 0 ≤ t ≤ 1, (3.10)

therefore, in view of the variable replacement,

|v(x)| ≤ C4 max
x0≤y≤x1

|f1(y)|, x0 ≤ x ≤ x1, (3.11)

where C4 is an ε-independent constant. Since ζ ∈ (x0, x1) and η ∈ (x0, x1), then

|v(ζ)| ≤ C4 max
x0≤x≤x1

|f1(x)|, |v(η)| ≤ C4 max
x0≤x≤x1

|f1(x)|.

Hence, in view of NLBVC (2.9),

|v(0)| ≤ C5 max
0≤x≤1

|f1(x)|, |v(1)| ≤ C5 max
0≤x≤1

|f1(x)|, (3.12)

where C5 = C4 max{|α|, |β|}. Now, in view of (3.12), we interpret the solution of
NLBVP (2.9) as classical solution of Dirichlet problem

Lv(x) = −f1(x), 0 < x < 1, v(0) = γ0, v(1) = γ1, (3.13)

where
|γi| ≤ C5 max

0≤x≤1
|f1(x)|, i = 0, 1. (3.14)

Then, by virtue of [12, p. 100-103], we obtain a unifromly stable estimate

|v(x)| ≤ C6

(
|γ0|+ |γ1|+ max

0≤y≤1
|Lv(y)|

)
, 0 ≤ x ≤ 1, (3.15)

where C6 is some ε-independent constant. In view of (3.14), the estimate (3.2) is
true. Therefore, a uniform on ε stability estimate (3.1) is proved.
Subcase 2. Put that each one of two conditions (2.2) encloses different sign coeffi-
cients. Then u(x) satisfies some reduced condition (2.4). We will prove the estimate
(3.2). Further, we admit that v(0) ̸= 0 and v(1) ̸= 0, since for the case if v(0) = 0
or v(1) = 0 the estimate (3.2) is provable by the same approach which we use here.

Firstly, assume that ζ− < ζ+ in respect of (2.4).
a) If sign[v(0)v(ζ−)] ̸= 1 or sign[v(0)v(ζ+)] ̸= 1, then there is some point x0,
x0 ∈ (0, ζ−) or x0 ∈ (0, ζ+) correspondingly, so that v(x0) = 0.
b) If sign[v(0)v(ζ−)] = 1 and sign[v(0)v(ζ+)] = 1, then, by virtue of MV
propety[3, p. 1198-1199] in respect of the first nonlocal condition (2.4), we have

(1 + |α−|)v(ζ0) = α+v(ζ+)

for some ζ0 ∈ [0, ζ−], herewith ζ0 < ζ+. Then, in view of the condition S0 ≤ 1,

v(ζ0) = α0v(ζ
+), α0 =

α+

1 + |α−|
, 0 < α0 ≤ 1. (3.16)



58 DOVLET DOVLETOV

Hence, by using the function

ŵ0(x) = v(x)
(α0 − 1)x+ ζ+ − α0ζ0

ζ+ − ζ0
,

we get ŵ0(ζ0) = ŵ0(ζ
+), so that, by virtue of Rolle’s theorem, ŵ′(x0) = 0 at

some point x0 ∈ (ζ0, ζ
+), and, therefore,

v′(x0)− h0v(x0) = 0, h0 =
1− α0

(α0 − 1)x0 + ζ+ − α0ζ0
, h0 ≥ 0. (3.17)

Now, assume that ζ+ < ζ− in respect of (2.4).
a) If sign[v(0)v(ζ+)] ̸= 1 or sign[v(0)v(ζ−)] ̸= 1, then there is some point x0,
x0 ∈ (0, ζ+) or x0 ∈ (0, ζ−) correspondingly, so that v(x0) = 0.
b) If sign[v(0)v(ζ+)] = 1 and sign[v(0)v(ζ−)] = 1, then there is some value α̃0,
0 < α̃0 < α+, so that, in view of the condition S0 ≤ 1,

v(0) = α̃0v(ζ
+), 0 < α̃0 < 1. (3.18)

Hence, by using

ω̃0(x) = v(x)
(α̃0 − 1)x+ ζ+

ζ+
,

we get ω̃0(0) = ω̃0(ζ
+), then ω̃′(x0) = 0 at some point x0, x0 ∈ (0, ζ+), and,

therefore,

v′(x0)− h0v(x0) = 0, h0 =
1− α̃0

ζ+ − x0(1− α̃0)
, h0 > 0. (3.19)

In summary, we revealed that at some point x0 the solution of (2.9) satisfies one
of the left-side BVC:

ℓx0,1(v) ≡ v(x0) = 0, 0 < x0 < ζ− < ζ+,
ℓx0,2(v) ≡ v(x0) = 0, 0 < x0 < ζ+, 0 < ζ− < ζ+,
ℓx0,3(v) ≡ v′(x0)− h0v(x0) = 0, h0 ≥ 0, 0 < x0 < ζ+, 0 < ζ− < ζ+,
ℓx0,4(v) ≡ v(x0) = 0, 0 < x0 < ζ+ < ζ−,
ℓx0,5(v) ≡ v(x0) = 0, 0 < x0 < ζ−, 0 < ζ+ < ζ−,
ℓx0,6(v) ≡ v′(x0)− h0v(x0) = 0, h0 > 0, 0 < x0 < ζ+ < ζ−.

By similar way, we reveal that at some point x1 the solution of (2.9) satisfies one
of the right-side BVC:

ℓx1,1(v) ≡ v(x1) = 0, η+ < η− < x1 < 1,
ℓx1,2(v) ≡ v(x1) = 0, η+ < x1 < 1, η+ < η− < 1,
ℓx1,3(v) ≡ v′(x1) + h1v(x1) = 0, h1 ≥ 0, η+ < x1 < 1, η+ < η− < 1,
ℓx1,4(v) ≡ v(x1) = 0, η− < η+ < x1 < 1,
ℓx1,5(v) ≡ v(x1) = 0, η− < x1 < 1, η− < η+ < 1,
ℓx1,6(v) ≡ v′(x1) + h1v(x1) = 0, h1 > 0, η− < η+ < x1 < 1,

where similarly (3.16)-(3.17), by using

ŵ1(x) = v(x)
(β0 − 1)x+ η+ − β0η0

η+ − η0
,

we define

h1 =
1− β0

β0(η0 − x1) + x1 − η+
, β0 =

β+

1 + |β−|
,
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for ℓx1,3(v) = 0, as well as, similarly (3.18)-(3.19), by using

ω̃1(x) = v(x)
(β̃0 − 1)x+ η+ − β̃0

η+ − 1

for the case if sign[v(1)v(η+)] = sign[v(1)v(η−)] = 1, we define

h1 =
1− β̃0

β̃0(1− x1) + x1 − η+

for ℓx1,6(v) = 0. Here, β̃0 is an appropriate value, so that v(1) = β̃0v(η
+),

herewith 0 < β̃0 < β+, so 0 < β̃0 < 1 since S1 ≤ 1 in view of theorem condition.
Further, let v(x) satisfies some pair of BVC ℓx0,i(v) = 0, ℓx1,j(v) = 0,

i = 1, ..., 6, j = 1, ..., 6.
2.1. Assume, that ζ−, ζ+, η−, η+ ∈ (x0, x1). Note, it is always fulfiled for any pair
ℓx0,i(v) = 0, ℓx1,j(v) = 0, i = 1, 4, 6, j = 1, 4, 6. Similarly to the Subcase 1, by
virtue of (3.8), we obtain the BVP (3.9)

L̃ṽ(t) = −f̃1(t), 0 < t < 1, h̃0ṽ(0)− δ0ṽ
′(0) = 0, h̃1ṽ(1) + δ1ṽ

′(1) = 0,

where

δ0 = 0, h̃0 = 1 for conditions ℓx0,i(v) = 0, i = 1, 2, 4, 5,

δ0 = 1, h̃0 = (x1 − x0)h0 for conditions ℓx0,i(v) = 0, i = 3, 6,

δ1 = 0, h̃1 = 1 for conditions ℓx1,j(v) = 0, j = 1, 2, 4, 5,

δ1 = 1, h̃1 = (x1 − x0)h1 for conditions ℓx1,j(v) = 0, j = 3, 6,

herewith, h̃1 + (η1 − ζm0
)2b0 > 0 for ℓx1,j(v) = 0, j = 1, 2, 4, 5, 6 since h̃1 > 0,

in addition, h̃1 + (η1 − ζm0
)2b0 > 0 for ℓx1,3(v) = 0 in view of the theorem

requirement S1 < 1. Then the estimate (3.10) holds for ṽ(x). Since (3.10) results
in (3.11), then, in view of ζ−, ζ+, η−, η+ ∈ (x0, x1), we get

|v(ζ−)| ≤ C4 max
x0≤x≤x1

|f1(x)|, |v(ζ+)| ≤ C4 max
x0≤x≤x1

|f1(x)|, (3.20)

|v(η−)| ≤ C4 max
x0≤x≤x1

|f1(x)|, |v(η+)| ≤ C4 max
x0≤x≤x1

|f1(x)|. (3.21)

In view of (3.20) and (3.21), the estimate (3.12) follows from NLBVC (2.9) for
C5 = C4 max{|α−|+ |α+|, |β−|+ |β+|}. Therefore, we can interpret the solution of
NLBVP (2.9) as classical solution of the Dirichlet’s problem (3.13) and, by virtue of
[12, p. 100-103], state that a unifromly stable estimate (3.15) holds. Hence, in view
of (3.14), we get the estimate (3.11). At least, the validity of (3.11) is sufficient to
confirm that (3.1) is true.
2.2. Assume, that only one of two points ζ− or ζ+ belongs to (x0, x1), as well
as, only one of two points η− or η+ belongs to (x0, x1) (it is available in respect
of any pair of the conditions ℓx0,i(v) = 0, ℓx1,j(v) = 0, i = 2, 3, 5, j = 2, 3, 5).
Then, since (3.10)-(3.11) holds, then one of two estimates (3.20) holds, as well as,
one of two estimates (3.21) holds too. Thus, the NLBVP (2.9) is reduciable to the
problem

Lv(x) = −f1(x), 0 < x < 1, v(0) = α∗v(ζ∗) + φ∗
0, v(1) = β∗v(η∗) + φ∗

1, (3.22)

where

|φ∗
0| ≤ C5 max

0≤x≤1
|f1(x)|, |φ∗

1| ≤ C5 max
0≤x≤1

|f1(x)|, (3.23)
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C5 = C4 max{|α−| + |α+|, |β−| + |β+|}, the pair α∗ and ζ∗ is performed by α−

and ζ−, or by α+ and ζ+ correspondingly, the pair β∗ and η∗ is performed by β+

and η+, or by β− and η−. So, in view of the theorem condition, −∞ < α∗ ≤ 1,
−∞ < β∗ ≤ 1, β∗ < 1 if b0 = 0. Now, firstly by virtue of Lemma 2.1 in respect of
the problem (3.22), and then, by reasoning similar Section 1, we obtain the analogy
of (3.1) for the problem (3.22), i.e.,

|v(x)| ≤ C(|φ∗
0|+ |φ∗

1|+ max
0≤y≤1

|f1(y)|), 0 ≤ x ≤ 1. (3.24)

Then, in view of (3.23), the estimate (3.24) results in (3.2), and, therefore, the
estimate (3.1) is true.
2.3. Assume, that three of four points ζ−, ζ+, η−, η+ belong to (x0, x1). Then, by
combined reasoning of 2.1-2.2, one can prove that the estimate (3.1) is true.
Subcase 3. Assume, that one of two conditions (2.2) encloses the coefficients of the
same sign, but another one encloses different sign coefficients. Then (3.1) can be
proved by virtue of combined approach of Subcases 1-2. Theorem 3.1 is proved. □

4. The existence and uniqueness

Firstly, we prove

Lemma 4.1. Let (2.3) and the condition A are fulfiled, Si ≤ 1, φi ̸= 0, i = 0, 1.
If u(x) is some classical solution of NLBVP (2.1),(2.2), then

v(x) = u(x) + φ0q0(x) + φ1q1(x)

is classical solution of the problem

Lv(x) = −f1(x), 0 < x < 1, ℓ0(v) = 0, ℓ1(v) = 0 (4.1)

for f1(x) = f(x) − φ0Lq0(x) − φ1Lq1(x), where q0(x) = c0(1 − x)
m1∏
l=1

(ηl − x),

q1(x) = c1x
m0∏
k=1

(x−ζk), herewith an appropriate constant ci ∈ R, ci ̸= 0, i = 0, 1.

If v(x) is some classical solution of (4.1), then u(x) = v(x)−φ0q0(x)−φ1q1(x)
is classical solution of NLBVP (2.1),(2.2) for f(x) = f1(x)+φ0Lq0(x)+φ1Lq1(x).

Let only one of φi, i ∈ {0, 1} be nonzero, put φi∗ ̸= 0, i∗ ∈ {0, 1}. If u(x)
is some classical solution of NLBVP (2.1),(2.2), then v(x) = u(x) + φi∗qi∗(x) is
classical solution of the problem (4.1) for the function f1(x) = f(x)− φi∗Lqi∗(x).
Vice versa, if v(x) is some classical solution of (4.1), then u(x) = v(x)−φi∗q∗(x)
is classical solution of NLBVP (2.1),(2.2) for f(x) = f1(x) + φi∗Lqi∗(x).

Proof. Put φi ̸= 0, i = 0, 1. Obviously that Lv(x) = −f1(x), 0 < x < 1 for
qi(x) and any nonzero ci, i = 0, 1. Let us find ci, i = 0, 1, so that the v(x) will
satisfy NLBVC (4.1). Note,

ℓ0(q1) = 0, ℓ1(q0) = 0. (4.2)

Since v(x) has to satisfy the NLBVC (4.1), then the expressions

l0(v) = φ0[1 + ℓ0(q0)] = 0, l1(v) = φ1[1 + ℓ1(q1)] = 0 (4.3)

have to be true, therefore,

1 + ℓ0(q0) = 0, 1 + ℓ1(q1) = 0 (4.4)
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have to be true too. Hence,

c0 = −(E0)
−1, c1 = −(D0)

−1, (4.5)

where

E0 =

m1∏
l=1

ηl −
m0∑
k=1

αk(1− ζk)

m1∏
l=1

(ηl − ζk), (4.6)

D0 =

m0∏
k=1

(1− ζk)−
m1∑
l=1

βlηl

m0∏
k=1

(ηl − ζk), (4.7)

herewith E0 ̸= 0, D0 ̸= 0, moreover, E0 > 0, D0 > 0. Actually, by virtue of the
condition S0 ≤ 1 in respect of (4.6), we have

E0 >



m1∏
l=1

ηl > 0, if αk < 0, k = 1, ...,m0,

(1− α)
m1∏
l=1

ηl ≥ 0, if αk > 0, k = 1, ...,m0,

(1− S0)
m1∏
l=1

ηl ≥ 0, if all αk, k = 1, ...,m0 have not the same sign,

where, in view of (2.6), S0 = α+ for ζ+ < ζ−, S0 = α− + α+ for ζ− < ζ+.
Indeed, it is clear for the case if all coefficients αk, k = 1, ...,m0 have the same
sign, as well as, for the case if ζ+ < ζ−. Let us confirm that E0 > 0 for the case
if all αk, k = 1, ...,m0 have not the same sign and ζ− < ζ+. In view of (4.6),

E0 >

m1∏
l=1

ηl − (1− ζmι
)α−

m1∏
l=1

(ηl − ζmι
)− (1− ζmι+1)α

+
m1∏
l=1

(ηl − ζmι+1),

then

E0 >

m1∏
l=1

ηl − (1− ζmι)(α
− + α+)

m1∏
l=1

(ηl − ζmι).

Hence, E0 >
m1∏
l=1

ηl > 0 for −∞ < S0 ≤ 0, E0 > [1 − (α− + α+)]
m1∏
l=1

ηl ≥ 0 for

0 < S0 ≤ 1, where S0 = α− + α+. Thus, we proved finally that E0 > 0, then
E0 ̸= 0, therefore, the constant c0 is definable by the first formula (4.5). Similarly,
by virtue of the condition S1 ≤ 1 for (4.7), it is easy to confirm that D0 > 0 and
prove that the constant c1 is definable by the second formula of (4.5).

Let us prove second statement of lemma. Obviously,

Lu(x) = Lv(x)−
2∑

i=1

φiLqi(x) = −f1(x)−
2∑

i=1

φiLqi(x) = −f(x), 0 < x < 1,

in addition, since v(x) satisfies NLBVC (4.1), then, in view of (4.2)-(4.5), we get

ℓ0(u) = ℓ0(v)− φ0ℓ0(q0)− φ1ℓ0(q1) = −φ0ℓ0(q0) = φ0,

ℓ1(u) = ℓ1(v)− φ0ℓ1(q0)− φ1ℓ1(q1) = −φ1ℓ1(q1) = φ1.

To finish this proof, by the same way as in above it is easy to confirm, that the
third statement of lemma is true. Lemma 4.1 is proved. □

Theorem 4.2. Let a(x) ≥ a0 > 0, b(x) ≥ b0 ≥ 0 for x ∈ [0, 1]. Let (2.3) and
the condition A are fulfilled. If Si ≤ 1, i = 0, 1 and, in addition, S1 < 1 if
b0 = 0, then classical solution of NLBVP (2.1),(2.2) exists and is a unique.
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Proof. Because all conditions of Theorem 3.1 are fulfiled, then the uniqueness of
classical solution follows from stabilty estimate (3.1).

In view of Lemma 4.1, to prove the existence, it is sufficient to establish that
classical solution of the differential problem (4.1) exists. The problem (4.1) is
equivalent to the differential problem

[k(x)v′]′ − q(x)v = −f̃1(x), 0 < x < 1, ℓ0(v) = 0, ℓ1(v) = 0, (4.8)

where

k(x) = exp
(1
ε

x∫
0

a(t)dt
)
, q(x) = b(x)k(x), f̃1(x) = f1(x)k(x),

therefore, it will be sufficient to prove that classical solution of (4.8) exists. To
prove it let us use the fact that for any continuous function F (x), x ∈ [0, 1] the
differential problem

[k(x)v′]′ − v/k(x) = F (x), 0 < x < 1, ℓ0v = 0, ℓ1v = 0 (4.9)

has the solution

v(x) = A sinh(P (x)) +B cosh(P (x)) +

x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt, (4.10)

where

P (x) =

x∫
0

(
k(τ)

)−1
dτ, (4.11)

A = −
[
ℓ1(sP )

]−1{
Bℓ1(cP ) + ℓ1

( x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt

)}
,

B = −
[
ℓ0(cP )− ℓ0(sP )

ℓ1(cP )

ℓ1(sP )

]−1{
ℓ0

( x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt

)

−ℓ0(sP )

ℓ1(sP )
ℓ1

( x∫
0

sinh
(
P (x)− P (t)

)
F (t)dt

)}
,

herewith for the convenience we use next designation

sP (x) = sinh(P (x)), cP (x) = cosh(P (x)). (4.12)

Actually, written in the square brackets expression is nonzero for A and B. Indeed,
since the function P (x) is nonnegative and strictly increasing in [0, 1], then

ℓ1(sP ) >

{
sP (1) > 0, if βl < 0, l = 1, ...,m1,
sP (1)− βsP (ηm1) > 0, if βl > 0, l = 1, ...,m1.

(4.13)

If all coefficients βl, l = 1, ...,m1 have not the same sign, then, in view of the MV
property [3, p. 1198-1199],

ℓ1(sP ) = sP (1)− β+sP (η̃
+)− β−sP (η̃

−), (4.14)
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where η̃+, η̃− ∈ [η1, ηm1
].3 In view of (4.14), if η̃− < η̃+, then

ℓ1(sP ) > sP (1)− β+sP (ηm1) > 0.

If η̃+ < η̃−, then β+ + β− = S1, then, in view of (4.14), we get

ℓ1(sP ) > sP (1)− S1sP (ηmκ
) > 0.

In summary, we proved that
ℓ1(sP ) > 0. (4.15)

Now, let us prove that the expression inside square brackets for B is nonzero too.
Let us denote this expression by G, i.e.,

G = ℓ0(cP )− ℓ0(sP )×
ℓ1(cP )

ℓ1(sP )
.

Additionally, we denote

Φ(x) = cP (x)− sP (x)×
ℓ1(cP )

ℓ1(sP )
.

Since

G = 1−
m0∑
k=1

αkcP (ζk) +

m0∑
k=1

αksP (ζk)×
ℓ1(cP )

ℓ1(sP )
,

then, by virtue of MV property, there are some points4 ζ̃, ζ̃+, ζ̃− ∈ [ζ1, ζm0
], so

that

G =

 1− αΦ(ζ̃), if αk, k = 1, ...,m0 have the same sign,

1− α+Φ(ζ̃+)− α−Φ(ζ̃−), if all αk, k = 1, ...,m0 have not
the same sign.

(4.16)

Further, in respect of Φ(x), x ∈ [0, ζm0 ], we have

Φ(x) = cP (x)− sP (x)×
cP (1)−

m1∑
l=1

βlcP (ηl)

sP (1)−
m1∑
l=1

βlsP (ηl)

=
[
sinh

(
P (1)− P (x)

)
−

m1∑
l=1

βl sinh
(
P (ηl)− P (x)

)]
× 1

ℓ1(sP )
.

Hence, by virtue of MV property [3, p. 1198-1199], for x ∈ [0, ζm0 ] we obtain that

Φ(x) =
sinh

(
P (1)− P (x)

)
− β sinh

(
P (η̂)− P (x)

)
ℓ1(sP )

for some η̂ ∈ [η1, ηm1
] if βl, l = 1, ...,m1 have the same sign. However, if all βl,

l = 1, ...,m1 have not the same sign5, then

Φ(x) =
sinh

(
P (1)− P (x)

)
− β+ sinh

(
P (η̂+)− P (x)

)
− β− sinh

(
P (η̂−)− P (x)

)
ℓ1(sP )

3Note, η̃+ < η̃− if η+ < η−, or, alternatively, η̃− < η̃+ if η− < η+, where η+ and η−

are some designated points respectively NLBVC (2.4).
4Note, ζ̃+ < ζ̃− if ζ+ < ζ−, or, alternatively, ζ̃− < ζ̃+ if ζ− < ζ+, where ζ+ and ζ−

are some designated points respectively NLBVC (2.4).
5Note, η̂+ < η̂− if η+ < η−, or, alternatively η̂− < η̂+ if η− < η+, where η+ and η−

are defined in respect of NLBVC (2.4).
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for some η̂+ ∈ [η1, ηm1
], η̂− ∈ [η1, ηm1

]. Hence, in view of (4.15), for x ∈ [0, ζm0
]

we have:

Φ(x) >
sinh(P (1)− P (x))

ℓ1(sP )
, if β < 0; (4.17)

Φ(x) >
sinh(P (1)− P (x))− β sinh(P (η̂)− P (x))

ℓ1(sP )
, if 0 < β ≤ 1; (4.18)

Φ(x) >
sinh(P (1)− P (x))− S1 sinh(P (η̂−)− P (x))

ℓ1(sP )
, if η̂+ < η̂−, (4.19)

herewith S1 = β+ + β−;

Φ(x) >
sinh(P (1)− P (x))− S1 sinh(P (η̂+)− P (x))

ℓ1(sP )
, if η̂− < η̂+, (4.20)

herewith S1 = β+. Since S1 ≤ 1, then for x ∈ [0, ζm0
], in view of (4.17)-(4.20),

we obtain the inequality

Φ(x) > 0. (4.21)

Further, for the case if βl, l = 1, ...,m1 have the same sign we get

Φ′(x) = −
sinh

(
P (1)− P (x)

)
− β sinh

(
P (η̂)− P (x)

)
k(x)ℓ1(sP )

,

for the case if all βl, l = 1, ...,m1 are not of the same sign we get

Φ′(x) = −
sinh

(
P (1)− P (x)

)
− β+ sinh

(
P (η̂+)− P (x)

)
− β− sinh

(
P (η̂−)− P (x)

)
k(x)ℓ1(sP )

.

Hence,

Φ′(x) = −Φ(x)

k(x)
.

Now, in view of (4.21), for x ∈ [0, ζm0
] we have

Φ′(x) < 0. (4.22)

Then Φ(x) is strictly decreasing positive function in [0, ζm0
], in addition, in view

of (4.11), Φ(0) = 1, therefore, 0 < Φ(x) < 1 for x ∈ (0, ζm0
]. Hence, in view of

(4.16)-(4.20), we get

G >

 1− (α+ + α−)Φ(ζ̃−), if ζ̃− < ζ̃+,

1− α+Φ(ζ̃+), if ζ̃+ < ζ̃−,
1− Φ(ζ1), if αk, k = 1, ...,m0 have the same sign.

(4.23)

Since S0 ≤ 1, then

G > 0. (4.24)

Thus, in view of (4.15) and (4.24), the coefficients A and B are uniquely definable
in respect of the formula (4.10), i.e., the function v(x) is the solution of the
differential problem (4.9). Further, by substituting

F (x) =
[
q(x)− 1/k(x)

]
v(x)− f̃1(x) (4.25)

into the equation (4.9), we obtain that the problem (4.9) is equivivalent to the
Fredholm’s integral equation of the second kind

v(x) =

1∫
0

K(x, t)v(t)dt+ f̂(x), (4.26)
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where 
K(x, t) = K0(x, t) +

m0∑
k=1

[Zk(x, t) + Z̃k(x, t)]

+
m1∑
l=1

[Hl(x, t) + H̃l(x, t)] +
3∑

i=1

Ri(x, t),
(4.27)

herewith:

K0(x, t) =

{
sinh

(
P (x)− P (t)

)[
q(t)− 1/k(t)

]
, if (x, t) ∈ Qx,

0, if (x, t) ∈ Qx

for Qx = {0 ≤ x ≤ 1, 0 ≤ t ≤ x}, Qx = {0 ≤ x ≤ 1, x ≤ t ≤ 1};

Zk(x, t) =

{
G−1αkcP (x) sinh(P (ζk)− P (t))[q(t)− 1/k(t)], if (x, t) ∈ Qζk ,
0, if (x, t) ∈ Qζk

and

Z̃k(x, t) = −ℓ1(cP )Zk(x, t)

ℓ1(sP )
tanh(P (x))

for Qζk = {0 ≤ x ≤ 1, 0 ≤ t ≤ ζk}, Qζk
= {0 ≤ x ≤ 1, ζk ≤ t ≤ 1}, k = 1, ...,m0;

Hl(x, t) =

{
[ℓ1(sP )G]−1βlℓ0(sP )cP (x) sinh(P (ηl)− P (t))[q(t)− 1/k(t)], if (x, t) ∈ Qηl

,
0, if (x, t) ∈ Qηl

and

H̃l(x, t) = −GHl(x, t)

ℓ1(sP )
tanh(P (x))

for Qηl
= {0 ≤ x ≤ 1, 0 ≤ t ≤ ηl}, Qηl

= {0 ≤ x ≤ 1, ηl ≤ t ≤ 1}, l = 1, ...,m1;
in addition, for (x, t) ∈ Q1, Q1 = {0 ≤ x ≤ 1, 0 ≤ t ≤ 1}

R1(x, t) =
ℓ0(sP )cP (x)

Gℓ1(sP )
sinh(P (1)− P (t))[q(t)− 1/k(t)],

R2(x, t) = −ℓ1(cP )R1(x, t)

ℓ1(sP )
tanh(P (x))

and

R3 = − sP (x)

ℓ1(sP )
sinh

(
P (1)− P (t)

)
[q(t)− 1/k(t)];

at least for x ∈ [0, 1] f̂(x) = −G−1cP (x)T2 + [ℓ1(sP )]
−1sP (x)T1

−[Gℓ1(sP )]
−1ℓ1(cP )sP (x)cP (x)T2 −

x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt,

(4.28)

where

T1 = ℓ1

( x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt

)
,

T2 =
ℓ0(sP )

ℓ1(sP )
T1 − ℓ0

( x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt

)
.

Since the summands of (4.27) are continuous functions in [0, 1]×[0, 1], then the sum
K(x, t) is also the continuous function in [0, 1]× [0, 1]. Therefore, the Fredholm’s
alternative holds for the integral equation (4.26) in respect of the Hilbert space

L2(0, 1). Because f̃1(x) = f1(x)k(x), f1(x) ∈ C[0, 1], then, in view of the formula
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for f̂(x), we have f̂(x) ∈ C[0, 1]. Since K(x, t) ∈ C([0, 1]× [0, 1]), f̂(x) ∈ C[0, 1],
then, belonged to L2(0, 1) solution of the integral equation (4.26) belongs to C[0, 1]
actually. Then for v(x) ∈ C[0, 1], k(x) ∈ C1([0, 1] and q(x) ∈ C[0, 1], the integral
1∫
0

K(x, t)v(t)dt, as the function of x, belongs to C2[0, 1]. In addition, from the

formula for f̂(x) it follows that f̂(x) ∈ C2[0, 1] since f̃1(x) ∈ C[0, 1]. In summary,
any solution from L2(0, 1) of the integral equation (4.26) belongs to C2[0, 1]. Then

it is sufficient to prove that (4.26) has only the trivial solution if f̂(x) ≡ 0 on [0, 1].

Put f̂(x) ≡ 0 on [0, 1] for the integral equation (4.26). Then f̃1(x) ≡ 0 on [0, 1].

Indeed, since f̂(0) = 0, then, in view of (4.12) and (4.28), T2 = 0. Therefore,

f̂(x) =
sP (x)

ℓ1(sP )
T1 −

x∫
0

sinh
(
P (x)− P (t)

)
f̃1(t)dt.

Hence,

f̂ ′(x) =
cP (x)

k(x)ℓ1(sP )
T1 −

1

k(x)

x∫
0

cosh
(
P (x)− P (t)

)
f̃1(t)dt,

herewith, since we put f̂(x) ≡ 0, then f̂ ′(x) ≡ 0 on [0, 1]. Since f̂ ′(0) = 0, then
T1 = 0, therefore,

x∫
0

cosh
(
P (x)− P (t)

)
f̃1(t)dt ≡ 0

on [0, 1]. Hence, similarly [13, p. 46], we obtain that f̃1(x) ≡ 0 on [0, 1]. Since

f̃1(x) = f1(x)k(x), then f1(x) ≡ 0 on [0, 1]. Since f1(x) ≡ 0, then, in view of
Theorem 3.1, the NLBVP (4.1) has only trivial solution v(x) ≡ 0. Hence, because
the problem (4.1) is equivalent to the differential problem (4.8), (4.8) is equivalent
to the differential problem (4.9) for the defined by (4.25) function F (x) and (4.9)
is equivivalent to the integral equation (4.26), then (4.26) has only trivial solution

if f̂(x) ≡ 0 on [0, 1].
Thus we proved that the solution v(x) of the integral equation (4.26) exits and

belongs to C2[0, 1], then, in view of the equivalence, v(x) is classical solution of
NLBVP (4.1) at the same time. By virtue of Lemma 4.1, since classical solution
v(x) of NLBVP (4.1) exits, then classical solution u(x) of NLBVP (2.1),(2.2) exists
too. Theorem 4.2 is proved. □

5. Ill-posed statement examples

Next examples show that stated for NLBVP (2.1)-(2.2) condition on Si, i = 0, 1
is essential for well-posedness of the problem.
Example 1. The problem

εu′′(x) + a(x)u′(x) = 0, 0 < x < 1, u(0) = u(ζ), u(1) = u(η)

is ill-posed, it has infinite number of solutions u(x) = const. It shows the essentiality
of condition S1 < 1 for the case if b0 = 0.
Example 2. The problem

εu′′(x) + a(x)u′(x) = 0, 0 < x < 1, u(0) = u(ζ), u(1) = u(η) + 1
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is ill-posed, it has no solution for 0 < ζ < η < 1. Indeed, assume that some
solution of the problem exists, then u′(ξ) = 0 at some point ξ ∈ (0, ζ), therefore,
u′(x) ≡ 0 on [ξ, 1], then u(x) = const on [0, 1], so that it conflicts with the condition
u(1) = u(η) + 1. It shows the essentiality of condition S1 < 1 for the case b0 = 0.
Example 3. The problem

εu′′(x) + u′(x) = 1, 0 < x < 1, u(0) = 0, u(1) = u(η)

is ill-posed, it has the unstable on parameter solution

u(x) = −(1− η)[exp(−x/ε)− 1][exp(−1/ε)− exp(−η/ε)]−1 + x,

u(x) → −∞ at each nonzero point x if ε → 0. It shows the essentiality of condition
S1 < 1 for the case if b0 = 0.
Example 4. The problem

εu′′(x) + au′(x)− bu(x) = 0, 0 < x < 1, u(0) = 0, u(1) = βu(η) (5.1)

is ill-posed, in general, for each β > 1, η ∈ (0, β−1), a = const > 0, b = const ≥ 0.
It always has infinite number of solutions for some parameter value ε = ε∗. This fact
shows the essentiality of condition S1 ≤ 1, i = 0, 1. Let us confirm the ill-posedness.
(i) If b = 0, then for an arbitrary constant C the function

u(x) = C exp(−ax/ε)− C (5.2)

satisfies the equation (5.1) and the condition u(0) = 0. By choosing C ̸= 0 and
substituting (5.2) into nonlocal condition (5.1) we get

β =
1− e−a/ε

1− e−aη/ε
. (5.3)

Note, the equality (5.3) is impossible for −∞ < β ≤ 1, η ∈ (0, 1). However, for
β > 1 and for each η ∈ (0, β−1) the formula (5.3) is true for some value ε = ε∗.
Indeed, for each ε > 0 the function g(ε) = (1 − e−a/ε)/(1 − e−aη/ε) is positive
and continuous, limε→+0 g(ε) = 1, limε→+∞ g(ε) = η−1, the g(ε) reachs the
value β at some argument ε∗ since 1 < β < η−1. So, g(ε∗) = β, i.e., (5.3) is
true for ε = ε∗, therefore, u(x) is solution of (5.1). Since C ̸= 0 is an arbitrary
constant for (5.2), then (5.1) has infinite number of solutions.
(ii) If b > 0, then for an arbitrary constant C the function

u(x) = C exp(λ1x)− C exp(λ2x) (5.4)

satisfies the equation (5.1) and the condition u(0) = 0 for

λ1 = −a/2ε−
√
(a/2ε)2 + b/ε, λ2 = −a/2ε+

√
(a/2ε)2 + b/ε.

By choosing C ̸= 0 and substituting (5.4) into (5.1) we get

β = eλ1(1−η) 1− eλ2−λ1

1− eη(λ2−λ1)
=

eλ1 − eλ2

eλ1η − eλ2η
. (5.5)

The equality (5.5) is impossible for −∞ < β ≤ 0. Moreover, (5.5) is impossible
for 0 < β ≤ 1 too. It follows from the relation h(1) − βh(η) ̸= 0 for the
function h(t) = eλ1t − eλ2t, t ∈ (0, 1] in view of h(t) < 0, h′(t) < 0. However,
for β > 1, the formula (5.5) is true for some value ε = ε∗ in respect of each
η ∈ (β−1, 1). Indeed, since z(ε) = h(1)/h(η) is positive and continuous function
in (0,+∞), limε→+0 z(ε) = +∞, limε→+∞ z(ε) = η−1, then z(ε∗) = β for some
ε∗ ∈ (0,+∞). So, (5.5) is true for ε = ε∗, then u(x) is solution of (5.1) for
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λi = λi(ε
∗). Since C ̸= 0 is an arbitrary constant for (5.4), then (5.1) has infinite

number of solutions.

6. Conclusion

In this article we studied NLBVP of the first kind for linear second order ODE
with positive parameter at the highest derivative. We researched the well-posed
solvability of the problem in respect of classical solution. Under new and accurate
condition on coefficients and nonlocal carriers of NLBVC, we obtained a uniform on
parameter stability estimate of classical solution, proved existence and uniqueness.
We demonstrated examples of ill-posed problems for some cases if coefficients of
NLBVC does not satisfy stated herein well-posedness condition, i.e., we confirmed,
in general, that established in our paper condition is essential.
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