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Abstract: Educational assessment tests are designed to measure the same 

psychological constructs over extended periods. This feature is important 

considering that test results are often used for admittance to university programs. 

To ensure fair assessments, especially for those whose results weigh heavily in 

selection decisions, it is necessary to collect evidence demonstrating that the 

assessments are not biased and to confirm that the scores obtained from different 

test forms have statistical equality. Therefore, test equating has important functions 

as it prevents bias generated by differences in the difficulty levels of different test 

forms, allows the scores obtained from different test forms to be reported on the 

same scale, and ensures that the reported scores communicate the same meaning. 

In this study, these important functions were evaluated using real college admission 

test data from different test administrations. The kernel equating method under the 

non-equivalent groups with covariates design was applied to determine whether 

the scores that were obtained from different periods and measured the same 

psychological constructs were statistically equivalent. The non-equivalent groups 

with covariates design was specifically used because the test groups of the 

admission test are non-equivalent and there are no anchor items. Results from the 

analyses showed that the test forms had different score distributions and that the 

relationship was non-linear. Thus, the equating procedure was adjusted to eliminate 

these differences and thereby allowing the tests to be used interchangeably. 

1. INTRODUCTION 

Throughout much of human history, tests have been figured prominently as measurement tools 

in all areas of life. They are used for many purposes including monitoring the development 

process of individuals, determining the level of readiness for school, identifying the learning 

achievements of students, issuing diplomas or certificates, and deciding on proper treatment 

methods for psychological problems. This widespread use reveals the importance of tests in 

human life. Cronbach (1990) states that tests provide evidence for understanding individuals 

and gaining knowledge about human behavior. Anastasi (1988) defines psychological tests as 
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an objective, standardized measure of a psychological variable such as intelligence, ability, 

aptitude, interest, attitude, and behavior. 

One of the most common uses of tests is in schools. In pre-school, primary, and secondary 

school, basic life skills are taught, while in high school, the focus shifts to developing basic 

mental skills and orienting students to a future profession. Higher education programs, on the 

other hand, aim to equip individuals with the requisite set of skills and competencies associated 

with their profession of choice and at the same time, to enrich their intellectual, factual, and 

scientific knowledge. With the growing competitiveness in securing admittance to prestigious 

universities, it is common for students to take multiple admission tests to improve their chances 

of being accepted (Altıntaş & Kutlu, 2020). 

Different forms of tests are used for entrance exams to universities and other educational 

institutions, for personnel selection, and for exams administered in different years or periods to 

ensure the security and integrity of the assessment process. In some cases, parallel versions of 

a test are used to allow the students more than one chance to be evaluated in certain periods. 

However, the use of different test forms on different dates raises concerns over whether the 

difficulty level of these forms differs (Kolen & Brennan, 2014). If no adjustment for difficulty 

differences is made, it is not possible to fairly compare test-takers who have been issued 

different test forms. 

Similar questions asked in different formats, such as graphically, verbally, or symbolically, can 

be used multiple times in exams that measure the same construct, which is usually the case in 

exams administered for selection purposes. Although the use of parallel test forms that measure 

the same characteristics seems to be a reasonable way to ensure fairness (Kan, 2010) and exam 

security, the issue regarding the comparability of the scores obtained from these different tests 

is a source of concern. 

The construction of parallel forms depends in equal measure on expert judgment and empirical 

data. The judgment comes into play in determining whether the items on these parallel forms 

measure the same function, a decision that sometimes is quite difficult to make (Levine, 1955, 

p.4). Proving that two tests, which are supposed to measure the same construct, are 

psychometrically equal (equivalent) to one another is essential in terms of preventing possible 

sources of bias. 

Lord (1950) describes “comparability” in the sense that scores from two different tests each 

represent an equivalent amount of training or promises an equivalent degree of future success 

in a particular activity or other fields of knowledge. The comparability of scores obtained on 

different forms of a test depends on the accurate equating of these scores (Holland & Thayer, 

1985, p.109). In selection processes, the comparability of the scores acts as an important 

indicator that the selection procedures are fair. As emphasized by Dorans and Holland (2000, 

p.281), the comparability of measurements made by different methods and researchers under 

different conditions is an essential component of the scientific method. Psychological and 

educational measurements are no exception to this rule. 

Equating is a statistical process that is applied to confirm that scores on different test forms are 

comparable. Equating adjusts for differences in difficulty among forms that are built to be 

similar in difficulty and content (Kolen & Brennan, 2014). Equality/equivalence of test scores, 

or test equating was defined by Angoff (1971, 1982) as the conversion of the unit system of 

one form to the unit system of another form. Test equating is a numerical arrangement made to 

ensure that scores obtained from forms at different difficulty levels can be used interchangeably 

(Braun & Holland, 1982). Similarly, Felan (2002) stated that test equating is often used in 

situations where multiple forms of a test exist, where exams consisting of different forms are 

compared to each other, or when researchers want to overcome problems of practice effects. 
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A study by von Davier et al. (2004) argued that while there is no unified perspective on test 

equating, all equating approaches feature at least the five following “requirements”: (1) equal 

construct, (2) equal reliability, (3) symmetry, (4) equity, and (5) population invariance. Here, 

equality is expressed in terms of the persons taking the exam, equal reliability and population 

invariance are related to the size of the population, symmetry is a mathematical property, and 

equal structure is related to the nature and use of the tests. 

Since standardized tests are typically given at different times and with different test forms, the 

test that is administered by the test-takers must not unfairly affect the results capable of being 

attained (Andersson et al., 2013b). In effect, this means that the comparability of the scores 

obtained from a test and the interchangeability of the scores obtained in different years are 

important, insofar as they allow test-takers to compare their current scores with past and future 

scores. As is the case throughout the world, some tests are used in Turkey regularly (every year, 

twice a year, etc.) for the same purposes (selection, placement, etc.). The institutions 

responsible for developing and applying these tests accept that the different forms of the tests 

make equivalent measurements to realize the same purpose. The Ankara University 

Examination for Foreign Students (AYOS), which has been applied since 2011 for admission 

of international students to Turkish universities, especially Ankara University, is considered 

equivalent to each other. Research on the AYOS Basic Learning Skills Test (BLST) scores, 

such as measurement invariance and differential item functioning studies (Altıntaş & Kutlu, 

2019, 2020), has revealed that AYOS has equivalence in terms of individuals in different groups 

(i.e., country and gender) who took the test the same year. 

Although the psychological constructs measured by the test do not change, AYOS tests are 

developed for the same purpose and applied once every year. Hence, the groups taking the test 

are different (Kutlu & Bal, 2011). The gold standard is to use common items, also known as 

anchor items, to adjust for this kind of imbalance in ability between the test groups. However, 

AYOS does not include any common items. This study, therefore, follows the suggestion by 

Wiberg and Bränberg (2015) and uses background information about the test-takers. The idea 

behind this study is to investigate the equality of test forms that had no anchors, were assumed 

to measure the same construct and were applied to different groups in different years. This 

design is known as the non-equivalent groups with covariates (NEC) design (Wiberg & 

Bränberg, 2015). In the non-equivalent groups with anchor test (NEAT) design, the anchor test 

score is used as a proxy for the latent variable of ability, while in the NEC design, covariates 

instead act as proxies of ability. The latter can therefore be viewed as a generalization of the 

NEAT design since the anchor test score can be seen as a covariate. The NEC design allows for 

the inclusion of more than one covariate. 

Accordingly, the purpose of this research is to identify the statistical equality of the different 

test forms of the AYOS BLST using the kernel equating method under the NEC design. 

2. METHOD 

2.1. Research Model 

The basic research approach was used as the aim of this research was to equate AYOS tests that 

were administered in 2017 and 2018, and were assumed to measure the same psychological 

construct by testing existing techniques on real data. As part of this aim, we utilize covariates 

gathered at the time of the test administration within the NEC design to equate the test forms. 

Evaluation of the results is conducted by calculating the standard error of equating (SEE) and 

the standard error of equating difference (SEED). 

In basic research, which is a type of scientific research concerned with clarifying the underlying 

processes and better understanding the phenomena, the hypothesis is usually expressed as a 

theory (Fraenkel & Wallen, 2009). Basic research can be exploratory, descriptive, or 
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explanatory. Given that descriptive research is used to describe the characteristics of a 

population or phenomenon, which was part of the aim of this study, this specific type of basic 

research was applied. 

2.2. The Study Group of the Research 

The study group of this research consisted of 5,223 individuals who took the AYOS BLST – 

2,460 took it in 2017, and 2,763* took it in 2018. In the 2017 group, there were slightly more 

men (52.2%), while there were slightly more women (52.19%) in the 2018 group. Regarding 

the age groups, about half of the individuals from the 2017 and 2018 groups were below 19 

years of age (50.33% and 49.69%, respectively). 

2.3. Data Set and the Test Equating Design 

The research data included the test-takers’ responses to the AYOS tests applied in 2017 and 

2018. The AYOS is an assessment to determine international students’ qualifications for 

admission to Ankara University and other universities (those accepting the AYOS score) in 

Turkey. The test is simultaneously implemented in different countries (exam centers) in a single 

session once a year. In brief, the AYOS dataset consists of the test-takers’ scores (AYOS 2017 

and AYOS 2018) and two covariates, gender (with values of 1 if man and 0 if woman), and age 

(with values of 1 if 18 years of age or younger and 0 if age 19 years of age or older). This means 

that there are 2 x 2 = 4 possible combinations of covariates and that the frequency vector has a 

length of 81 x 4 = 324. The data were first sorted by age followed by gender and the test scores 

on AYOS 2017. 

The AYOS BLST is a non-verbal aptitude test with two sections and a total of 100 binary-

scored multiple-choice items. The first section tests letter, number, and shape relations as a 

measure of cognitive skills, such as analytical thinking, reasoning, and abstract and spatial 

thinking (with 60 items). The second section measures numerical thinking skills that require 

the use of mathematics and geometry knowledge (with 40 items). The scores obtained from the 

test are valid for two years. The test is newly developed every year following the psychometric 

properties of the test applied in the previous year. 

Table 1. Descriptive statistics of AYOS tests. 

AYOS BLST n X̅ S2 S KR-20** Ave. Dif. Skew. Kurt. 

2017 2.460 54.22 413.10 20.32 0.96 0.54 0.03 -0.86 

2018 2.763 57.14 387.15 19.68 0.96 0.57 -0.00 -0.77 
**The KR-20 formula was applied in cases where the items varied greatly in difficulty (Kuder & Richardson, 1937, p.160). 

Table 1 shows the mean, standard deviation, variance, KR-20 reliability, average difficulty, 

skewness, and kurtosis coefficient values for the AYOS 2017 and 2018 tests. The first 

noteworthy finding was that the KR-20 reliabilities of both tests were equal and quite high 

(0.96). The KR-20 value is an overall measure of internal consistency (Cronbach, 1951, p.300) 

and provides information about the purity of random errors. Therefore, the fact that the values 

obtained from both tests were quite high is evidence that the tests involving the identification 

of number, shape, and letter relationships do measure the cognitive skills they aim to measure 

as a whole. Although the mean score on the 2018 test was higher than that on the 2017 test, 

both tests have values close to the average difficulty value of 0.50, which indicates that the 

 

 Individuals from whom data on gender and age variables were collected were included in the study 

group. 
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students’ scores generally hover around 50 points, which is the average score of the tests. This 

also shows that students can answer about 50% of the items on the test. Moreover, since the 

skewness coefficient of the score distribution in both tests is positive, the distribution is skewed 

to the right of what is considered normal. The kurtosis coefficients were negative for both tests, 

meaning that the score distributions, when compared to the normal distribution, were slightly 

flattened. The two score distributions are also presented in a histogram, which is given in Figure 

1. 

Figure 1. AYOS BLST Score Distributions. 

 

Figure 1 shows that the score distributions are slightly skewed, with relatively few test-takers 

having low scores and many having high scores. This is reflected in the SEE plot (Figure 3). 

Considering the test design, a NEAT design is typically preferred in the test score equating, but 

some tests do not have common items. If the groups are non-equivalent, an equivalent groups 

(EG) design cannot be applied (Sansivieri & Wiberg, 2017). When the test groups are non-

equivalent and no anchor items are available, Bränberg and Wiberg (2011), Andersson et al. 

(2013a), and Wiberg and Bränberg (2015) recommend that background information about the 

test-takers be used to adjust for the ability difference, a design referred to as the non-equivalent 

groups with covariates (Wallin, 2019). 

The idea of test linking using variables is not new, as demonstrated by Kolen (1990) and Liv-

ingston et al. (1990), who suggested that linking can be used in cases of groups matching on 

variables other than ability (as cited in Wiberg & Bränberg, 2015). The NEC design is an im-

portant alternative to the NEAT design when there is no anchor test available for equating (Wi-

berg & Bränberg, 2015). In the NEC design, background information on the individuals taking 

the tests is used instead of using an anchor test to facilitate the equating of two tests when the 

groups taking the test are not equivalent (Andersson et al., 2013a). As is the case in the NEAT 

design, two groups are independently sampled from different populations, P and Q, and each is 

administered either of the test forms, X and Y. In the absence of an anchor test form, the NEC 

design uses relevant covariates, denoted by C, that can account for differences in the groups of 

test-takers (González & Wiberg, 2017). 

According to Wallin and Wiberg (2019), equating non-equivalent test groups requires adjusting 

for two sources of bias: differences in the difficulty of the forms and differences in the abilities 

of the test groups. A proper equating conversion should address both of these, but when the 
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second is observed, some substitutes are required in place of ability. The most common substi-

tute is an anchor test. However, since not all test programs can include an anchor, the back-

ground information of test-takers can be used. This is the scenario for the NEC design, where 

the fundamental assumption is that if the test groups are conditionally equivalent concerning 

the background information, they will differ only randomly from one another in terms of ability. 

The NEC design was applied in this study due to the non-equivalent test groups of AYOS and 

the absence of anchor items. According to Bränberg and Wiberg (2011), one important consid-

eration when using background information is the choice of variables, which should be corre-

lated with the test scores. On the other hand, the variables should “explain” the differences 

between the groups in the non-equivalent groups design. Accordingly, the covariates used in 

this study were age and gender, denoted as A and G, respectively based on the availability of 

the AYOS data. 

2.4. Data Analysis 

The scores on the AYOS BLST 2017 and 2018 tests were equated using the kernel equating 

method under the NEC design in this study (Wiberg & Bränberg, 2015). The R package 

“kequate” was used for kernel equating analyses (Andersson et al., 2013a, 2013b; R Core Team, 

2018). 

The analysis of the data was carried out in two stages. In the first stage, pre-smoothing, con-

tinuization, equating, and evaluation of the equating function (computing the SEE) processes 

were carried out. In the second stage, a linear equating function was used to determine the 

degree of difference in the results of the 2017 and 2018 tests, and the SEED was calculated. 

2.4.1. The Kernel Equating Framework 

The kernel method of test equating includes the following five steps (von Davier et al., 2004; 

Andersson et al., 2013a, 2013b; Wiberg & Bränberg, 2015; González & Wiberg, 2017; Gonzá-

lez & von Davier, 2017; Wallin & Wiberg, 2017, 2019): Pre-smoothing, Estimation of the Score 

Probabilities, Continuization, Equating, and Evaluation of the Equating Function (Calculating 

the SEE and SEED). 

The goal of test equating – if we let 𝑋 and 𝑌 denote the test score from test form X and the test 

score from test form Y respectively – is to equate 𝑋 to 𝑌 (or vice versa). The test group that was 

administered the test form X is a sample from population P, while the group that was 

administered the test form Y is a sample from population Q. To define the kernel equating 

estimator used in this study, let 𝑟𝑗 = 𝑃(𝑋 = 𝑥𝑗) and 𝑠𝑘 = 𝑃(𝑌 = 𝑦𝑘) denote the score 

probabilities for scores 𝑥𝑗 , 𝑗 = 1,… , 𝐽 and 𝑦𝑘, 𝑘 = 1,… , 𝐾. Furthermore, let 𝜇𝑋 and 𝜎𝑋
2 denote 

the mean and variance of the 𝑋 scores, respectively, let 𝑉 denote a continuous random variable 

with mean 0 and variance 𝜎𝑉
2, and let 𝑎𝑋

2 = 𝜎𝑋
2/(𝜎𝑋

2 + 𝜎𝑉
2ℎ𝑋

2), where ℎ𝑋 is a smoothing 

parameter called the bandwidth. Using these defined quantities, a continuous version of the 

random variable 𝑋 was introduced: 

𝑋(ℎ𝑋) = 𝑎𝑋(𝑋 + ℎ𝑋𝑉) + (1 − 𝑎𝑋)𝜇𝑋. 

The random variable 𝑋(ℎ𝑋) is defined as such that its mean and variance are the same as for 𝑋, 

and its cumulative distribution function (CDF) is given by 

𝐹ℎ𝑋(𝑥) = 𝑃(𝑋(ℎ𝑋) ≤ 𝑥) =∑𝑟𝑗𝐾 (𝑅𝑗𝑋(𝑥)) ,

𝑗

 

where 𝐾(∙) is the kernel function following from the distribution of 𝑉 (which is commonly set 

to the Gaussian distribution) and 𝑅𝑗𝑋 = (𝑥 − 𝑎𝑋𝑥𝑗 − (1 − 𝑎𝑋)𝜇𝑋)/𝑎𝑋ℎ𝑋. Corresponding 
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quantities can be defined to introduce the continuized CDF 𝐺ℎ𝑌. Replacing the terms in 𝐹ℎ𝑋  and 

𝐺ℎ𝑌  with estimated quantities, the kernel equating estimator used in this study was defined as 

�̂�𝑌(𝑥) = �̂�ℎ𝑌
−1(�̂�ℎ𝑋(𝑥)). 

The SEE, which was used as part of the evaluation of �̂�𝑌(𝑥) in this study, equals 

SEE𝑌(𝑥) = ‖�̂�φ𝑌
�̂�DF𝐂‖, 

where �̂�φ𝑌
 equals the Jacobian of the equating function, �̂�DF equals the Jacobian of the design 

function that is set according to the data collection design, and 𝐂 is defined such that 

Cov (�̂�
�̂�
) = 𝐂𝐂⊤, 

with �̂� and �̂� denoting vectors of pre-smoothed score distributions. Lastly, we defined the 

SEED as 

SEED𝑌(𝑥) = ‖�̂�φ𝑌
�̂�DF𝐂 − �̂�φ𝐿

�̂�DF𝐂‖, 

where 𝜑𝐿 equals the linear equating function 

𝜑𝐿 = 𝜇𝑌 + (
𝜎𝑌

𝜎𝑋
) (𝑥 − 𝜇𝑋). 

3. RESULTS 

In the first stage of the equating process, pre-smoothing of the observed score distributions 

using the log-linear pre-smoothing was performed. A statistical model was fitted to the 

empirical distribution obtained from the sampled data in the pre-smoothing step. It is assumed 

that many of the irregularities observed in the empirical distributions are due to sampling error; 

thus, the pre-smoothing aims to reduce this error (Wiberg & Bränberg, 2015). Several log-linear 

models should be fitted and compared in the pre-smoothing step to decide which model fits the 

data the best (González & Wiberg, 2017). 

3.1. Log-linear Pre-smoothing 

González and Wiberg (2017) emphasize that several log-linear models should be fitted and 

compared in the pre-smoothing step regardless of the chosen data collection design. Here, the 

R function glm( ) was used to obtain a log-linear model in the pre-smoothing step to be used in 

the conjunction. The models were evaluated using the Bayesian Information Criterion (BIC; 

Schwarz, 1978), as it was shown to be an appropriate choice for bivariate smoothing (Moses & 

Holland, 2010). This led to log-linear models that preserved the first four moments of the X/Y 

score, the first two moments of the covariates, and the first cross-moment of the score variable 

and each covariate. 

3.2. Estimation of the Score Probabilities 

In the second step, the estimated score probabilities were generated by mapping the pre-

smoothed score distributions into the score probability vectors for X and Y using a design 

function. This function, known as the design function, depends on the data collection design 

(see Wallin and Wiberg (2019) for the explicit expression of the design function for the NEC 

design). 

3.3. Continuization 

The Gaussian kernel was used in kernel equating to continuize the two estimated discrete 

cumulative distribution functions. The Gaussian kernel function is used to smooth the discrete 
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score distributions, and the full penalty function is applied to select the smoothing parameter 

(von Davier et al., 2004). The estimated distributions �̂�j and �̂�k, the bandwidths ℎX and ℎY, and 

estimates of the means and variances of X and Y in population T were used in the application of 

the Gaussian kernel smoothing. 

According to von Davier et al. (2004, pp.61-64), there is a variety of ways to select the 

bandwidth (hX), which refers to controlling the degree of smoothness in the continuization, but 

the most common way was used in this study to minimize the penalty function. 

The bandwidth for each continuized score distribution was selected by minimizing the sum of 

the squared distances between the observed score probabilities and the estimated density. To 

ensure smoothness in the estimated, continuized score distributions, the minimization operation 

included a term that penalized a density that had more than a few modes along with an added 

penalty term that penalized large fluctuations in the estimated density. Specifically, the 

bandwidth that minimized the following function was selected: 

∑(�̂�𝑗 − 𝐹ℎ𝑋
′ (𝑥𝑗))

2

+∑𝐴𝑗
𝑗𝑗

, 

where 𝐹ℎ𝑋
′ (𝑥𝑗) denotes the derivative of 𝐹ℎ𝑋(𝑥𝑗), 𝐴𝑗 = 1 if 𝑓ℎ𝑋

′ (𝑥𝑗 − 𝑣) > 0 and 𝑓ℎ𝑋
′ (𝑥𝑗 + 𝑣) <

0, or 𝑓ℎ𝑋
′ (𝑥𝑗 − 𝑣) < 0 and 𝑓ℎ𝑋

′ (𝑥𝑗 + 𝑣) > 0, and 𝐴𝑗 = 0 otherwise. 

3.4. Equating 

In the last step, the results were graphically examined by plotting the equated scores (Figure 2) 

and SEE (Figure 3). The table presenting the equated scores can also be found in the appendix 

(Annex 1). 

Figure 2. Equating results. 

 

Figure 2 shows that there was a linear relationship between the raw scores and equated scores. 

Although the equating function was linear, there were non-linearities in the tails of the score 

distribution. It is also clear that the Y test form (AYOS 2018 test) was easier than the X test 

form (AYOS 2017 test), a difficulty difference that the equating function helped to adjust for. 

3.5. Standard Error of Equating 

Figure 3 shows the values of the SEE obtained for raw scores from the equating function. 
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Figure 3. Standard error of equating. 

 

As illustrated in Figure 3, the SEE was larger at the lower end of the score scale. This is quite 

natural though, as there were very few test-takers with a total score below 10 (See Figure 1). 

Moreover, the SEE was relatively lower in the range of 25 - 100 scores. 

Furthermore, an examination was performed to determine how the results obtained from a linear 

equating function would differ from the results already obtained. Therefore, the test forms were 

equated using a linear equation function, and then the difference between the previous equation 

function and the linear equating function was calculated. The results of this calculation 

indicated that the relationship between AYOS 2017 and 2018 tests was non-linear. In addition, 

the SEED was also calculated and added to Figure 4. 

Figure 4. Standard error of equating difference between current and linear equating function. 

 

Figure 4 shows that the linear equating function deviated from the non-linear equating function. 

The line indicated by black dots shows the difference, while the red lines (±2SEED) represent 

twice the standard error of the difference between equating functions. The black line, however, 

only breaks through the SEED barrier once. This indicates that a non-linear equating method 

should be used instead of linear equating. Moreover, the SEED is relatively higher at the lower 
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and higher ends of the score scale, which means that the linear equation methods give higher 

standard errors in extreme scores than in middle scores. 

4. DISCUSSION and CONCLUSION 

The aim of this research was to investigate the equality of test forms that had no anchors, were 

assumed to measure the same construct and were applied to different groups in different years. 

To fulfill this aim, variables correlated with AYOS BLST scores were used as a substitute for 

common items in non-equivalent groups with covariates design. This method introduced in 

studies by Bränberg and Wiberg (2011), Andersson et al. (2013a), and Wiberg and Bränberg 

(2015). 

The NEC design was specifically used because the test groups of the admission test were non-

equivalent and there were no anchor items. Results from the analyses showed that the test forms 

had different score distributions and that the relationship was non-linear. The equating 

procedure was thus adjusted to eliminate these differences and thereby allow the tests to be used 

interchangeably. Real data from a non-verbal aptitude college admissions test were used. 

In a similar study, Akın-Arıkan (2020) used real data from the Monitoring and Evaluation of 

Academic Skills Project in Turkey to examine the NEAT and NEC designs comparatively. In 

this context, she equated the scores obtained from Mathematics subtests according to the kernel 

chained equipercentile, kernel post-stratification equipercentile, kernel chained linear, and 

kernel post-stratification linear methods. Furthermore, she sought to determine the affection 

status of the covariates (gender variable and socioeconomic index) used in the NEC design. 

From her research, it was determined that test forms can be equated using covariates when there 

are no anchor items. This is a noteworthy finding in terms of contributing valuable information 

for future studies to be carried out using the NEC design. When the findings obtained using the 

methods under the NEC design were specifically examined, the lowest error value was found 

in the design involving the socioeconomic index as a covariate, while the highest error value 

was found in the design involving the gender variable as a covariate. Akın-Arıkan reported that 

the reason for this was the relationship between the covariates and the test. 

In this research, the point-biserial correlations were very low, and for the values between the 

covariates, none of the correlations were statistically significant (p>0.05). However weak 

correlation values between the covariates and the test scores do not mean that they are not good 

proxies of the latent ability. As we controlled for covariates that were confounders of the 

relationship between the test form assignment and the test score, we argue that as a rule the 

subject-matter knowledge of such covariates could be included to achieve a strong correlation. 

Similarly, Bränberg et al. (1990), in their research, found that there was a correlation between 

gender, education, and age in the test scores obtained from the Swedish Scholastic Aptitude 

Test (SweSAT). 

In her research on real data, Yurtçu (2018) used gender, mathematics self-efficacy scores, and 

common item scores as covariates to obtain equated scores with the Bayesian nonparametric 

model. She concluded that covariates can be used in place of common items, and in some cases, 

perform even better, and that equated scores obtained with the said model can generate results 

closer to the target test. 

The use of real-life data is important insofar as it reveals the psychometric properties of the 

tests used in real life. However, Wiberg and Bränberg (2015) warned that using real data is 

limiting because the true equating is not known. Therefore, simulation studies are 

recommended as they allow defining the true value of the equating (parameter) function, and 

they should be conducted using an NEC design within the kernel equating framework. 
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The evidence from the simulation study performed by Bränberg and Wiberg (2011) indicates 

that using covariates in the equating process can increase the accuracy of equating. In the 

present study, gender and age variables were used as covariates in the equating model. A review 

of the literature showed that background variables, such as gender, age, educational status, 

socioeconomic index, mathematics self-efficacy scores, etc., are being used as covariates 

(Bränberg & Wiberg, 2011; González et al., 2015; Wiberg & Bränberg, 2015; Wiberg & von 

Davier, 2017; Yurtçu, 2018; Akın-Arıkan, 2020). There are additional factors that may affect 

the student’s success. These include student background variables, as used in PISA, such as the 

number of books at home, time allocated to studying, etc., or high school grades and 

performance test scores of the students. These variables can be taken as covariates in test 

equation studies using the NEC design. González et al. (2015) stated that an additional 

advantage of including covariates in the modeling of the equating function is the possibility of 

a customized transformation between any pair of subpopulations as long as they are 

characterized by covariates. 

Since the test groups were non-equivalent and the AYOS tests do not contain any common 

items, this analysis used background information about the test-takers to equate the test forms. 

Although common items are the gold standard for adjusting for ability imbalance between test 

groups, previous studies have shown that equating under the NEC design produces smaller 

standard errors (Sansivieri & Wiberg, 2017) and lower MSE (Bränberg & Wiberg, 2011). While 

the model specification and the kernel equating framework are somewhat more complicated 

(Andersson et al., 2013a), they have advantages in terms of modeling flexibility. 

In this research, since there were no anchor items, the two covariates, gender and age, were 

used to equate the different test forms of AYOS. Using covariates to obtain equated scores in 

the Bayesian nonparametric model, Yurtçu (2018) emphasized that the use of two covariates 

was more effective than the use of anchor items. Similarly, in another study, it was stated that 

a large number of covariates would cause a decrease in the number of individuals who fall into 

common categories and thereby result in errors in score estimation (Wallin & Wiberg, 2017). 
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6. APPENDIX 

Annex 1. Equating results. 

Scores 
Equated 

Scores 

 
Scores 

Equated 

Scores 

0 -6.04  51 47.55 

1 -4.72  52 48.59 

2 -3.46  53 49.63 

3 -2.25  54 50.67 

4 -1.08  55 51.72 

5 0.07  56 52.77 

6 1.19  57 53.82 

7 2.29  58 54.87 

8 3.39  59 55.91 

9 4.47  60 56.96 

10 5.55  61 58.01 

11 6.62  62 59.06 

12 7.69  63 60.11 

13 8.75  64 61.15 

14 9.81  65 62.19 

15 10.86  66 63.23 

16 11.91  67 64.27 

17 12.95  68 65.30 

18 13.99  69 66.33 

19 15.03  70 67.36 

20 16.07  71 68.39 

21 17.10  72 69.41 

22 18.12  73 70.44 

23 19.15  74 71.46 

24 20.17  75 72.47 

25 21.18  76 73.49 

26 22.20  77 74.50 

27 23.21  78 75.52 

28 24.22  79 76.53 

29 25.23  80 77.55 

30 26.24  81 78.57 

31 27.24  82 79.58 

32 28.25  83 80.60 

33 29.25  84 81.63 

34 30.26  85 82.66 

35 31.26  86 83.69 

36 32.27  87 84.73 

37 33.27  88 85.79 

38 34.28  89 86.85 

39 35.28  90 87.93 

40 36.29  91 89.02 

41 37.30  92 90.14 

42 38.32  93 91.29 

43 39.33  94 92.47 

44 40.35  95 93.70 

45 41.37  96 95.00 

46 42.39  97 96.37 

47 43.42  98 97.82 

48 44.44  99 99.36 

49 45.48  100 100.99 

50 46.51    

 


