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Abstract 

The performance measure of total completion time (TCT) plays a key role in manufacturing to improve performance, e.g., reducing 

inventory levels. Moreover, since uncertainty is an inevitable part of certain manufacturing environments, it is especially important 

to address cases with uncertain processing times. This paper addresses the four-machine flowshop scheduling problem to minimize 

TCT with uncertain processing times. Due to the NP-hardness of the problem, different algorithms were presented as solutions in 

scheduling literature. In this paper, a new substantially improved algorithm is proposed and parameters of the algorithm are fine 

tuned. The proposed algorithm is compared to the best existing algorithm (RAIRO Operations Research 54, 529–553, 2020) in 

scheduling literature using extensive computational experiments and statistical analysis. Computational methods using the 

programming language python, along with statistical inference, is used to confirm the effectiveness of the proposed algorithm over 

the existing ones. Computational methods reveal that the proposed algorithm is, on average, 86.8% more effective than the best 

existing one in literature with similar computational times. A test of hypothesis further confirms the effectiveness of the proposed 

algorithm with a p-value of less than 0.00001, which is practically zero. 
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1. Introduction 

A manufacturing process where jobs flow from one machine to the next is known as a flowshop. Total completion time (TCT) is the 

sum of the completion times of all jobs in the last machine. Minimizing the total completion time is pivotal in increasing performance 

during manufacturing and ensuring competition among companies, Chen (2015). Furthermore, the total completion time is directly 

related to inventory levels, lead times, and work in process (Framinan and Perez-Gonzalez 2017a, Framinan and Perez-Gonzalez 

2017b), which makes it an essential performance measure to consider for better production. 

 

The processing time of job j on a certain machine is the amount of time required to process job j on that machine. In some cases, 

processing times are deterministic. Nonetheless, it is not always possible to correctly predict processing times due to a number of 

uncertainties in a manufacturing environment, including machine operator fatigue, new technology, tool conditions, and poor 

experience, Tayanithi et al. (1992). Further uncertainties include the breakdown of equipment, incorrect predictions, the absence of 

workers, and new jobs with no past data. Moreover, Mahjoub et al. (2011) stated that data might be subject to some uncertainties, and 

thus, it is impossible in practice to accurately estimate the parameters of some scheduling problems. Seif et al. (2020) stated another 

case (maintenance) where job processing times can be modelled as uncertain.    

 

Attempting to reduce TCT while ignoring these uncertainties may severely affect performance. This is especially true with 

manufacturing environments that are known to have a wide range of uncertainties. In such environments, not only is it inefficient to 

consider deterministic processing times, it is also disadvantageous to consider a certain probability distribution. Firstly, past data is 

necessary to predict a probability distribution which may not always be available. Secondly, a probability distribution is useful only 

with a large number of realizations. When the number is small, the probability distribution will not be of much use. See Kouvelis and 

Yu (1997) for further discussion. 

 

Taking the above into account, we address the problem of minimizing the total completion time of a four-machine flowshop problem 

with uncertain processing times. No assumptions are made about this job descriptor and no particular probability distribution is 

considered. The only conditions assumed are possible lower and upper bounds for processing times. 

 

Similar problems have been solved for cases related to two and three machines, including Allahverdi and Sotskov (2003) which 

establishes dominance relations to minimize Cmax for a two-machine flowshop problem, Allahverdi and Aydilek (2010a) which 

proposes some polynomial time algorithms for the same problem, Allahverdi and Aydilek (2010b) which solves the two-machine 

problem with the objective of minimizing maximum lateness when processing times are uncertain, Sotskov et al. (2004) which 

establishes dominance relations for the two-machine problem with uncertain processing times to minimize total completion time, and 

Allahverdi and Aydilek (2010c) proposes an improved heuristics for the same problem and indicates the improvement through 

computational experiments. 

 

Furthermore, Sotskov et al. (2004) investigates the case of three machines with uncertain setup times with the objective of minimizing 

TCT. Some other papers, including Aydilek et al. (2013, 2015, 2017), Lai et al. (1997) and Lai and Sotskov (1999) also look into 

various scheduling environments with uncertain processing or setup times. 

 

Finally, Allahverdi and Allahverdi (2020) addresses the four machine flowshop scheduling problem to minimize TCT with uncertain 

processing times. Ten algorithms are proposed to minimize TCT with uncertain processing times, and one of them is established as the 

best performing algorithm with the lowest TCT. In this paper, we develop a new algorithm using the python programming language 

which is substantially better than the best algorithm given in Allahverdi and Allahverdi (2020). We confirm the effectiveness of the 

new algorithm through computational methods and statistical inference. The percentage improvement of the one established in this 

paper is on average 86.8% better than the best existing one in literature. 

 

2. A New Algorithm 

The problem of a four machine flowshop with the objective of minimizing TCT with uncertain processing times was addressed by 

Allahverdi and Allahverdi (2020). They proposed different algorithms to solve the problem and showed that one of the algorithms 

performs the best. In this section, we propose a new algorithm and show that the new algorithm significantly outperforms the best 

algorithm of Allahverdi and Allahverdi (2020). 

 

Let n be the number of jobs. Let tj,k be the processing time of job j on machine k and let t[j,k] be the processing time of the job in position 

j on machine k. Let Ltj,k and Utj,k be the lower and upper bounds of tj,k. 

 

The shortest processing time (SPT) sequence is known to give an optimal solution for a single machine problem with the TCT 

performance measure. Since the case of two-machines is known to be NP-hard, our problem is NP-hard as well. Hence, we attempt to 

use a variation of the SPT for a four-machine case. Essentially, we propose formulas to combine the processing times (or the upper and 

lower bounds of the processing times when the processing times are uncertain) of a particular job into a single processing time by 
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giving the processing time on each machine a different weight. In other words, a single machine problem is obtained after using the 

formula and the SPT is used on the single machine problem to predict a solution. 

 

The formula used to combine the four upper and lower bounds of the processing times for job i on the four machines into a single 

processing time is as follows, 

(Ltr,1+ Utr,1)/2+(Ltr,2+ Utr,2)/2+γ(Ltr,3+ Utr,3)/2+ δ(Ltr,4+ Utr,4)/2     (1) 

 

Given a value of n and generated values for the upper Uti,k and lower bounds Lti,k, our aim is to find appropriate values for the variables 

α, β, γ, δ to minimize the TCT of a sequence which is computed using the new algorithm proposed in this paper. 

 

Steps of the New Algorithm 

1. Generate the upper bounds Uti,k for processing times from U(1,100)  

2. Generate the lower bounds of processing times Lti,k from U(max(1,Uti,k − ∆),Uti,k) where ∆ is set to the values 10,20, and 30. 

3. Let r=1 

4. Compute wi as 

(Lti,1+ Uti,1)/2+(Lti,2+ Uti,2)/2+γ(Lti,3+ Uti,3)/2+ δ(Lti,4+ Uti,4)/2 for i=1, ..., n. 

5. Let r = r + 1 

6. If r < n, go to Step 4. Otherwise, continue. 

7. Sequence the jobs according to SPT based on the ’processing times’ wi. 

 

To summarize, upper bounds of processing times Uti,k are generated from U(1,100) and lower bounds Lti,k are generated from 

U(max1,Uti,k − ∆,Uti,k) where ∆ is set to 10, 20, and 30. Hence, ∆ determines how to generate the lower bound based on the upper 

bound. Finally, Formula (1) is used to transform a four machine problem into a single machine problem so that the SPT can be used 

to determine a sequence. 

 

3. Fine Tuning Parameters of the Algorithm 

We aim to find the best values for α, β, γ, δ by checking all possibilities from 0.05 to 1 with an increment of 0.05 such that α+β+γ+δ 

= 1. The following is a summary for the code which is written in the python programming language. 

1. A list is created containing all combinations of α, β, γ, δ ∈ [0.05,0.1,0.15,0.20,0.25,··· ,1] such that α + β + γ + δ = 1. It is allowed 

for a certain variable to take the same value more than once as long as the combination (α, β, γ, δ) is different. 

2. Let r = 1 

a For a given n, do the following: 

i For each ∆ in [10, 20, 30], where ∆ is defined as above, do the following: 

1 Upper and lower bounds of processing times are generated based on n and ∆ 

2 For every possibility of α,β,γ,δ such that α + β + γ + δ = 1, we do the following: we use the following 

formula to combine the four machine problem into a single machine problem, where the “processing 

time” for the ith job is (Lti,1+ Uti,1)/2+(Lti,2+ Uti,2)/2+γ(Lti,3+ Uti,3)/2+ δ(Lti,4+ Uti,4)/2 and the SPT 

is used to determine the order of the sequence based on this formula. 

b After completing Step a, we take the sequence with the shortest total completion time and add the parameters α,β,γ,δ 

used for that sequence to Table 1. 

3. If r ≤ 30, let r=r+1 and go to Step 3 

 

Table 1 displays the best parameters for each replication. As evident from the table, the numbers are more or less alike. 
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Table 1. Best parameters for each of the 30 replications 

 

Replication  α β γ δ 

1  0.35 0.35 0.25 0.05 

2  0.25 0.35 0.2 0.2 

3  0.25 0.3 0.3 0.15 

4  0.25 0.25 0.25 0.25 

5  0.4 0.2 0.2 0.2 

6  0.4 0.35 0.15 0.1 

7  0.25 0.3 0.25 0.2 

8  0.3 0.25 0.2 0.25 

9  0.4 0.35 0.2 0.05 

10  0.25 0.3 0.25 0.2 

11  0.3 0.25 0.2 0.25 

12  0.3 0.3 0.25 0.15 

13  0.3 0.2 0.25 0.25 

14  0.4 0.25 0.2 0.15 

15  0.3 0.25 0.2 0.25 

16  0.25 0.25 0.25 0.25 

17  0.35 0.3 0.15 0.2 

18  0.35 0.25 0.2 0.2 

19  0.3 0.3 0.2 0.2 

20  0.3 0.25 0.25 0.2 

21  0.35 0.35 0.15 0.15 

22  0.35 0.15 0.25 0.25 

23  0.35 0.3 0.15 0.2 

24  0.3 0.25 0.2 0.25 

25  0.35 0.25 0.25 0.15 

26  0.35 0.3 0.15 0.2 

27  0.3 0.25 0.3 0.15 

        28  0.25 0.25 0.25 0.25 

29  0.25 0.25 0.25 0.25 

30  0.3 0.25 0.3 0.15 

 

 

The average and median of each parameter are given in Table 2. 

 

Table 2. Mean and median for each parameter 

 

Replication α β γ δ 

Mean 0.313 0.273 0.222 0.192 

Median 0.3 0.25 0.225 0.2 

 

As seen in the Table 2, the mean and median are very similar, which implies the accuracy of the parameter predictions. The averages 

were rounded to 3 decimal places since they must add up to 1. 

 

4. Comparing the proposed algorithm (new-alg) and the existing best algorithm (old-alg) 

Substituting the parameters α,β,γ,δ with the averages of the above predictions, the following formula is obtained 

 0.313(Ltr,1+ Utr,1)/2+0.273(Ltr,2+ Utr,2)/2+0.222(Ltr,3+ Utr,3)/2+ 0.192(Ltr,4+ Utr,4)/2   (2) 
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We follow the algorithm outlined in Section 2, New Algorithm, with Formula 2 above and conduct computational experiments to 

compare the new algorithm to the best algorithm given in Allahverdi and Allahverdi (2020). 

 

For every combination of n and ∆, where n = 20,40,60,80,100,120,140,160,180,200 and ∆ = 10,20,30, we generate 1000 replications 

and compute the error of each algorithm using the formula 

 Error(alg)=100(TCT(alg)-min(TCT(old-alg), TCT(new-alg)))/ min(TCT(old-alg), TCT(new-alg))  (3) 

for alg = old-alg and new-alg. 

 

In total we look at (10)(3)(1000) = 30000 instances. The results are given in Table 3. The first two columns list the n and ∆ values. 

The table has 30 rows since there are 30 different combinations of n and ∆. The third and four columns list the average errors 

computed using Formula 3. The fifth and sixth columns list the standard deviations of the old and new algorithms and the percentage 

improvement shows the improvement of the new algorithm’s error compared to that of the old algorithm.  

 

Table 3. Comparing old-alg and new-alg 

 

n ∆ old-alg error new-alg error old-alg st dev new-alg st dev percentage imp. 

20 10 2.78 0.58 3.3 1.24 79.14 

20 20 2.76 0.6 3.19 1.36 78.26 

20 30 3.06 0.52 3.24 1.23 83.01 

40 10 2.73 0.36 2.63 0.94 86.81 

40 20 2.7 0.38 2.65 0.98 85.93 

40 30 2.91 0.38 2.87 0.97 86.94 

60 10 2.67 0.27 2.43 0.73 89.89 

60 20 2.83 0.34 2.63 0.93 87.99 

60 30 2.61 0.31 2.38 0.85 88.12 

80 10 2.41 0.31 2.18 0.85 87.14 

80 20 2.66 0.28 2.37 0.77 89.47 

80 30 2.65 0.3 2.35 0.84 88.68 

100 10 2.42 0.31 2.17 0.79 87.19 

100 20 2.49 0.31 2.23 0.8 87.55 

100 30 2.49 0.3 2.29 0.82 87.95 

120 10 2.22 0.26 1.99 0.72 88.29 

120 20 2.36 0.26 2.15 0.7 88.98 

120 30 2.25 0.3 2.13 0.78 86.67 

140 10 2.21 0.26 1.98 0.68 88.24 

140 20 2.33 0.27 2.14 0.7 88.41 

140 30 2.31 0.29 2.06 0.76 87.45 

160 10 2.26 0.24 1.95 0.64 89.38 

160 20 2.23 0.32 2.03 0.78 85.65 

160 30 2.31 0.27 2.07 0.71 88.31 

180 10 2.08 0.24 1.93 0.64 88.46 

180 20 2.06 0.29 1.93 0.73 85.92 

180 30 2.18 0.32 1.95 0.77 85.32 

200 10 2.04 0.27 1.83 0.71 86.76 

200 20 2.09 0.26 1.93 0.69 87.56 

200 30 2.1 0.32 1.97 0.79 84.76 

 

As seen in Table 3, there is a considerable difference between the two algorithms. The average percentage improvement is 86.8% 

with a median of 87.5%, which is a very significant improvement with similar computational times. 

 

The considerable gap between the errors of old-alg and new-alg are evident from Figure 1. The average error of old-alg is 2.44 while 

that of new-alg is 0.324. While the gap decreases slightly as n grows larger, it is more or less stable. 
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Figure 1. Error vs n and ∆ 

 

Figures 2 and 3 illustrate the percentage errors with different values of ∆ and n. The percentage errors are almost the same for the 

three different values of ∆ with the largest difference being around 0.5%. As n grows larger, there is a noticeable difference in the 

percentage error between n = 20 and n = 60, after which it seems to stabilize. 

 

 
 

Figure 2. Percentage Error vs ∆ 

 

 
 

Figure 3. Percentage Error vs n 
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Finally, the last two figures illustrate the gap between the errors of old-alg and new-alg with different values of n and ∆. In both 

Figures 4 and 5, the gap seems more or less stable. However, while the gap is relatively stable, we do see a slight increase in the 

errors of both old-alg and new-alg in Figure 5, which is expected since as ∆ increases so does the uncertainty. 

 

 

 
 

Figure 4. Error vs n 

 

 
 

Figure 5. Error vs ∆ 

 

 

5. Hypothesis Testing 

We conduct a hypothesis test to confirm the effectiveness of new-alg over old-alg as follows. 

H0 : µ0 − µ1 = 0 

H1 : µ0 − µ1 > 0 

 

where µ0 denotes the population mean of the TCT corresponding to old-alg and µ1 to that of new-alg. The computed z-scores are 

listed in Table 4. 
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Table 4. Z-scores 

n delta z-score 

20 10 177.03 

20 20 179.62 

20 30 211.48 

40 10 303.83 

40 20 290.62 

40 30 275.67 

60 10 372.8 

60 20 319.98 

60 30 360.11 

80 10 383.57 

80 20 383.27 

80 30 377.32 

100 10 395.65 

100 20 388.39 

100 30 370.15 

120 10 437.65 

120 20 410.76 

120 30 378.99 

140 10 444.92 

140 20 406.34 

140 30 418.98 

160 10 479.57 

160 20 403.87 

160 30 425.98 

180 10 445.04 

180 20 415.71 

180 30 423.17 

200 10 459.38 

200 20 435.61 

200 30 395.12 

 

 

The average z-score is 372.35 and the median is 391.76. If we take α = 0.01, we must check whether the calculated z-scores are 

greater than 2.33. This is obviously the case for every computed z-score. Hence, we reject the null-hypothesis that the means of old-

alg and new-alg are the same and accept the alternative hypothesis that the mean of old-alg is greater than the mean of new-alg. 

The minimum z-score in the table is 177.03 and the p-value is 1−Φ(177.03) < 0.00001, which is almost zero. 

6. Conclusion 

Reducing the total completion time (TCT) is an essential performance measure in scheduling since the TCT is directly related to 

performance, inventory levels, work-in-process, and so on. For scheduling environments with uncertain processing times, ignoring 

uncertainty can result in very poor performance. As a result, research has recently been conducted to address this issue and an algorithm 

was proposed by Allahverdi and Allahverdi (2020). 

 

In this paper, we propose a new algorithm through computational methods and test the new algorithm by comparing it with the best 

existing algorithm in literature. Both algorithms have similar computational times and the percentage improvement of the proposed 

algorithm over the existing one is 86.8% on average, which is a substantial improvement. 

 

Furthermore, a test of hypothesis is conducted and the null hypothesis that the proposed algorithm is equal to the existing one is refuted 

with a p-value of less than 0.00001. This strongly confirms the effectiveness of the new algorithm established in this paper. 
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We assume that setup times are included in processing times. Even though this might be true for some cases, it is not true for all. When 

setup times take considerable time and are not negligible compared to processing times, it is crucial to consider them separately in 

order to meet deadlines, eliminate waste, and increase productivity, Allahverdi (2015), Ha (2020), Lee and Kim (2021). Hence, an 

extension to the problem is to consider the processing times and setup times separately. Yet another extension is to consider the problem 

with a due date related performance measure, e.g., Costa et al. (2020).  
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