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Abstract 
 

In a context of deforestation and climate change, the land cover or use induced by human or natural 

transformation influences the climate from global to local scale. The aim of this study was to assess the 

vegetation dynamic between 1985 and 2020 within the Lamto Scientific Reserve (Côte d’Ivoire). After 

mapping the land cover by the neural network algorithm for the years 1988, 2002 and 2020, the climatic 

parameters including the Land Surface Temperature (LST) and the standardized precipitation index 

(SPI) were estimated since 1985. Then, the land cover response was estimated in the presence of the 

LST, with the average LST from 1985 to 2020 as a threshold. The forest dynamic showed an increase 

in area of 291.87 ha in 32 years. The area of forest has increased from 610.42 ha (21.42%) in 1988 to 

902.29 ha (31.59%) in 2020. The practice of fire remains predominant in the reserve management. SPI 

shows three alternating seasons over the time. One wet season (1995 to 2010) framed by two dry seasons 

(1985 to 1994 and 2011 to 2020). The relation LST -NDVI shows covariation. LST indicates a variation 

from 30.46°C to 34.68°C, with an increase of 4.22°C between 1985 and 2020. The land cover response 

indicates that, with the exception of the LST of shrub savannahs and burnt areas, the land cover LST of 

1988 and 2002 have remained below the LST threshold (32.70°C). The land cover LST of 2020 has 

risen above the threshold. Land-use changes have led to afforestation despite warming due to bushfires. 

In addition, forests could continue to act as a thermal moderator of Lamto reserve. 
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1. Introduction 

Phenological change and variation have become 

increasingly relevant topics in the science of global 

change. This change is due to the identification of their 

importance for the functioning of savannahs ecosystems 

(1/8 of the global land surface) and biogeophysical 

processes (Gessner et al., 2015). According to Gessner et 

al. (2015), phenological characteristics in West African 

savannahs are influenced by land use and bushfires, in 

addition to climate variability. The availability of time 

series of remote sensing data offers the possibility to 

assess the dynamics of its savannah ecosystems. Thermal 

infrared remote sensing technology has become one of 

the important means to study the thermal characteristic 

of the surface (Buyadi et al., 2013; Morshed et al., 2020). 

Land Surface Temperature (LST) refers to the contact 

temperature of the earth and is determined using satellite 

sensors. It is an important parameter relating to 

interactions with the atmosphere (USGS, 2014). The 

increased application of thermal remote sensing data in 

recent years  has  been a key  factor in the  launch of the  

Landsat 8 TIRS (Thermal InfraRed Sensor), ensuring the 

continuity of the Landsat observing mission. Many 

researchers have studied the possibility of assessing and 

monitoring catastrophic phenomena of the earth, 

atmosphere and oceans, using Landsat thermal 

reflection. Land Surface Temperature (LST) plays a key 

role in various scientific studies. These include 

management of the ecological environment of plants 

(Setturu et al., 2013; Douffi et al., 2018), quantification 

of vegetation index (Sekertekin et al., 2015; Anbazhagan 

and Paramasivam, 2016). Agriculture and bushfires 

(Vlassova and Pérez-Cabello, 2016), urban vegetation 

management (Mobio et al., 2017; Odindi et al., 2020) and 

meteorological and climate studies (Tomlinson et al., 

2011) use LST as a methodological support. The 

characterisation of climatic factors has been possible 

through the detection of plant moisture related to thermal 

radiation (Buyadi et al., 2013). Extreme Earth system 

processes have continued to manifest themselves, 

particularly in terms of natural hazards whose impacts 

are felt across the globe with particularly adverse 
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consequences for humanity. Drought is one of the major 

environmental phenomena that has caused millions of 

deaths and hundreds of billions of dollars in damage. 

Satellite data has played an increasingly important role 

in monitoring drought conditions in relation to 

vegetation. Because of the close relationship between 

vegetation vigor and available soil moisture, particularly 

in arid and semi-arid areas, the Normalized Difference 

Vegetation Index (NDVI) and LST have been used to 

assess drought conditions.  

The increase in LST has negative effects on 

vegetation, block glaciers and causes climatic changes 

such as the modification of climatic conditions in 

monsoon countries by unpredictable rainfall (GIEC, 

2014). The regional balance of variability of burnt areas, 

in relation to rainfall and large-scale climate indices, has 

been reported over the West African savannahs 

(N'Datchoh et al., 2015). Côte d'Ivoire in general and the 

center in particular, is not immune to this climatic 

variability (Kouamé et al., 2019). The effect of climate 

combined with anthropogenic factors contributes to 

environmental change including land use in West Africa 

(Barnieh et al., 2020). Due to urbanization 

(anthropogenic activity) of land use, land surface 

temperature (LST) is increasingly changing (Aik et al., 

2020). The LST has also been used to estimate the effect 

of post-fire wood management strategies on vegetation 

recovery (Vlassova and Pérez-Cabello, 2016). 

Urbanization has been identified as a major threat to the 

environment as it increases demand for urban spaces and 

transforms natural landscapes on impervious surfaces. 

This leads to urban warming (Mobio et al., 2017; Odindi 

et al., 2020). Natural landscapes such as vegetation and 

water act as thermal sinks that absorb heat. However, 

thermal emission results in temperature inversion 

compromised human health, pollution, species loss, high 

energy consumption and climate change at local, 

regional and global scales (Odindi et al., 2020). The 

change in land use at the expense of forests is the reason 

leading а the increase in the earth's surface temperature 

(Haylemariyam, 2018; Morshed et al., 2020). This 

change alters the energy balance of the natural and urban 

environment. 

However, the years 1983 to 2012 have been cited as 

the hottest period in the Northern Hemisphere in the last 

1400 years and projections indicate an increase in land 

surface temperature during the 21st century (GIEC, 

2014). In West Africa, temperature increases over the 

past 50 years have been recorded, from 0.16°C to 0.28°C 

per decade (Barry et al., 2018), with decreasing 

precipitation (GIEC, 2014). 

The aim of this study is to evaluate, in a context of 

climatic variability coupled with deforestation, the 

dynamics of vegetation index between 1985 and 2020 in 

the  Lamto  Scientific  Reserve,  located  in  central  Côte  

 

d'Ivoire. The first step was to map the land cover in 1988, 

2002 and 2020, and the second was to analyse the 

dynamics of land cover in response to the land surface 

temperature of the Lamto Scientific Reserve between 

1985 and 2020. 

 

2. Material and Methods 

2.1. Materials 

2.1.1. Study Area  

The Lamto Scientific Reserve is located in central 

Côte d'Ivoire (Figure 1), in the pre-forest sector of the 

forest-savannah transition zone. This area was chosen for 

its role in the study of biodiversity and the functioning of 

the savannah. It is located between the northern latitudes 

6°10'53" and 6°15'20" and between the western 

longitudes 4°58'42" and 5°2'53", about 180 km 

northwest of Abidjan. It covers an area of 2617 ha 

(OIPR, 2021). The average temperature is 27.96 ± 

0.43°C and average monthly rainfall is 100.24±15.34 

mm (Lamto Station: 1985 to 2019). Lamto is drained by 

the Bandama River in the North West. The practice of 

fire helps to maintain the savannahs or delay the 

progression of the forest (N’Dri et al., 2012). Fire is lit in 

the region every year during the dry season. Three fire 

regimes are practiced by researchers, including early 

(December), mid-season (January) and late (April) fires. 

 

2.1.2. Satellite and Meteorological Data 

Landsat data were used because of their long 

coverage of the earth and the continuity of the data. 

Landsat is equipped with thermal infrared probes that 

detect electromagnetic radiation. These Landsat data are 

available at http://earthexplorer.usgs.gov. Table 1 shows 

the 15 scenes used and acquired in the dry season. These 

are TM (Thematic Mapper), ETM+ (Enhanced Thematic 

Mapper plus) and OLI+/TIRS (Operational Land Imager 

Plus / Thermal Infrared Sensor) sensors that were used 

for mapping and biogeophysical characterization of 

Lamto respectively. In addition to the Landsat images, 

meteorological data (1985 to 2019) from the Lamto 

Geophysical Station were acquired. These data were 

used as ground truth for the study of land surface 

temperature and precipitation data. The choice of this 

period of study fits in after drought crisis of 1982 - 1983, 

marked by one season dries particularly prolonged and 

which influenced the crop year. 

 

2.1.3. Software and Documentation Sources 

Software used are: QGIS 2.14-Essen for downloading 

the pyQGIS extension of Land Surface Temperature 

(LST); ENVI 5.1, for digital image processing and bands 

ratio calculation using Band math. ArcGIS 10 is used for 

map editing and raster statistics integrated in 

Geographical Information System; Microsoft Excel 2013 

and Statistica 7.1, for alphanumeric processing. 

 

 

 

http://earthexplorer.usgs.gov/
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Figure 1. Localization of the scientific reserve of Lamto (Douffi, 2020). 

 
Table 1. Remote sensing data used for the study 

Sensors Dates Hours (UTC) Wavelength Path / Row 

TM 5 April 22, 1985 10:04:33   B6 :   0.1 – 12.5 

196 - 056 

TM 4 December 22, 1987 09:56:48 B6 : 10.1 – 12.5 

TM 4 December 24, 1988 10:06:12 B6 : 10.1 – 12.5 

TM 4 December 30, 1990 09:59:00 B6 : 10.1 – 12.5 

TM 5 March 15, 1998 10:10:50 B6 : 10.1 – 12.5 

TM5 February 14, 1999 10:13:28 B6 : 10.1 – 12.5 

ETM+7 April 13, 2000 10:26:33 B6 : 10.1 – 12.5 

ETM+7 December 12, 2001 10:22:53 B6 : 10.1 – 12.5 

ETM+7 December 31, 2002 10:22:34 B6 : 10.1 – 12.5 

OLI + 8 12 avril 2014 10:34:16 B10 : 10.1 – 12.5 

OLI + 8 December 27, 2015 10:34:22 B10 : 10.1 – 12.5 

OLI + 8 December 29, 2016 10:34:28 B10 : 10.1 – 12.5 

OLI + 8 January 14, 2017 10:34:24 B10 : 10.1 – 12.5 

OLI + 8 May 12, 2019 10:33:46. B10 : 10.1 – 12.5 

OLI + 8 January 07, 2020 10:34:26 B10 : 10.1 – 12.5 

 

2.2. Satellite and Meteorological Data 

Landsat data were used because of their long 

coverage of the earth and the continuity of the data. 

Landsat is equipped with thermal infrared probes that 

detect electromagnetic radiation. These Landsat data are 

available at http://earthexplorer.usgs.gov. Table 1 shows 

the 15 scenes used and acquired in the dry season. These 

are TM (Thematic Mapper), ETM+ (Enhanced Thematic 

Mapper plus) and OLI+/TIRS (Operational Land Imager 

Plus / Thermal Infrared Sensor) sensors that were used 

for mapping and biogeophysical characterization of 

Lamto respectively. In addition to the Landsat images, 

meteorological data (1985 to 2019) from the Lamto 

Geophysical Station were acquired.  

These data were used as ground truth for the study of 

land surface temperature and precipitation data. The 

choice of this period of study fits in after drought crisis 

of 1982 - 1983, marked by one season dries particularly 

prolonged and which influenced the crop year. 

 

2.3. Software and Documentation Sources 

Software used are: QGIS 2.14-Essen for downloading 

the pyQGIS extension of Land Surface Temperature 

(LST); ENVI 5.1, for digital image processing and bands 

ratio calculation using Band math. ArcGIS 10 is used for 

map editing and raster statistics integrated in 

Geographical Information System; Microsoft Excel 2013 

and Statistical 7.1, for alphanumeric processing. 

http://earthexplorer.usgs.gov/
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2.2. Methods 

2.2.1. Land Use Mapping Using Neural Network 

Algorithm 

Supervised classification consists of grouping pixels 

according to their spectral signature. The non-parametric 

neural network algorithm has been used among many 

others, for its accommodation to auxiliary data, its 

flexibility, but also, for its low dependence on training 

(Hepner, 1990; Jofack Sokeng et al., 2016; Douffi et al., 

2019). Several parameters related to the accuracy of 

backpropagation classification have been defined. 

Indeed, the six input band classification of 1988, 2002 

and 2020 was considered, respectively of the TM and 

ETM (3R, 7B, 4V) and OLI+ (4R, 7B, 5V) color 

composition by choosing seven output layers: (1) closed 

forest and gallery forest, (2) Chromolaena odorata bush, 

(3) wooded savannah; (4) shrub savannah, (5) grassy 

savannah, barren land and habitats, (6) burnt area and, 

(7) water. Assessment of the mapping result was possible 

using the confusion matrix from 33 survey sites (Ground 

control point, not used for the 66 training data), 

generating overall accuracies and Kappa at the 0.5 

threshold (Pontius, 2000). 

 

Seasonality analysis 

As the notion of drought is relative, any analysis of a 

precipitation deficit must refer to the activity under 

study, which is linked to precipitation (GIEC, 2014). In 

order to obtain seasonality breakdown (dry or wet) on a 

long time scale, 1985 - 2020 (35 years), one of the most 

widely used drought indicators was chosen: 

Standardized Precipitation Index (SPI). The SPI was 

developed by McKee et al (1993), to determine rainfall 

deficits. It is based on actual rainfall statistics and 

consists of calculating the water available in each year, 

taking into account the rainfall of previous years. The 

SPI is formulated as follows (Mckee et al., 1993): 

  

 𝑆𝑃𝐼 =
1

𝑁𝑖
∑

𝑃𝑗
𝑖−�̅�𝑗

𝜎𝑗
     

𝑁𝑖
𝑗=1 (1) 

𝑃𝑗
𝑖= the rainfall of year i ; �̅�𝑗= the average rainfall of the 

series over the period considered; 𝜎𝑗 = the standard 

deviation over the time scale considered; 𝑁𝑖= the number 

of stations in year i. The interpretation of the SPI is 

recorded in Table 2 below. 

 
Table 2. Probability of occurrence of the climatic categories 

according to Mckee et al. (1993) 

Value of the SPI Index Precipitation regime 

SPI > 2 Extremely wet 

from 1.5 to 1.99 Very wet 

from 1 to 1.49 Wet 

from -0.99 to 0.99 Normal 

from -1.00 to -1.49 Moderately dry 

from -1.5 to -1.99 Very dry 

SPI < -2 Extremely dry 

 

 

2.2.2. Determination and Analysis of Land Surface 

Temperature 

 Several computer programs for the Land Surface 

Temperature Calculator (LST Calculator) have been 

developed (Oguz, 2013; Ndossi and Avdan, 2016). The 

determination of the land surface temperature (LST) was 

done in three steps on image data from 1985 to 2020. The 

first step is the brightness temperature (TB), the second 

step is the surface emissivity (LSE) and the third step is 

the LST. The calculation was performed in the pyGis 

extension containing the Land Surface Temperature 

algorithm (Ndossi and Avdan, 2016). 

Estimation of the brightness temperature (TB) 

The thermal bands are composed of digital pixel 

values (Digital Number, DN). These digital values are 

converted to atmospheric spectral radiance during 

radiometric calibration. The Offset Calibration Factor for 

Landsat 8 images has been set to -0.29 (USGS, 2014). 

Although Landsat 8 TIRS has two thermal infrared 

bands, only band 10 data are suitable for use in LST 

retrieval at present due to the uncertainty in band 11 

values (Barsi et al., 2014). Furthermore, the ETM+ probe 

is used in Low Gain. After the calibration, the conversion 

of the raster image of the atmospheric spectral radiance 

into brightness temperature (TB) was performed. This 

conversion comes from the following reformulated 

Planck equation (USGS, 2014): 

 

𝑇𝐵 = [𝐾2/𝑙𝑛(𝐾1/𝐿𝜆  + 1) ] − 273.15      (2) 

  

TB is the temperature expressed in degrees Kelvin 

(K), K1 and K2 vary with wavelength and sensor, L𝜆 is 

atmospheric spectral radiance (W m-2 μm-1 sr-1). 

 

Land Surface Emissivity (LSE) 

The determination of surface emissivity (Zhang et al., 

2006) requires the thresholding of the Normalized 

Difference Vegetation Index (NDVI). NDVI is sensitive 

to biomass and chlorophyll activity and varies between -

1 and +1. If the vegetation cover is more developed and 

healthy, higher will be the NDVI, with high Near 

Infrared (PIR) and weak Red (R) value. If the vegetation 

is dead or the data was recorded on bare ground, the R 

will be lower and the PIR will be higher, which will 

decrease the Near Infrared-Red difference and the 

corresponding NDVI. It is expressed as follows: 

 

 𝑁𝐷𝑉𝐼 = (𝑅 − 𝑃𝐼𝑅)/(𝑅 − 𝑃𝐼𝑅)        (3) 

 

The algorithm of Zhang et al. (2006) was applied in 

the determination of the LSE. The NDVI thresholding is 

summarized in Table 3.  
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Table 3. Thresholding of the NDVI according to Zhang et al. 

(2006) algorithm 

NDVI LSE 

NDVI < 0.185 0.995 

0.185 < NDVI < 0.157 0.985 

0.157 < NDVI < 0.727 1.009 + 0.047 ln (NDVI) 

NDVI > 0.727 0.990 

  

2.2.3. Land Surface Temperature (LST) 

Obtaining the Land surface temperature requires two 

parameters, namely, the brightness temperature (TB), the 

surface emissivity (LSE) and constants including the 

atmospheric transmittance (T0) and  the  mean  effective  

atmospheric temperature (Ta). For this purpose, the 

mono window algorithm (MWA) was used. For the 

LANDSAT TM, ETM+ and OLI 8 /TIRS sensors, the 

mono-window algorithm was used and is as follows (Qin 

et al., 2001; Ndossi and Avdan, 2016): 

 

LST = [ai (1-Ci-Di)+ (bi (1-Ci-Di)+ 

Ci+Di) × TB-Di×Ta ]/Ci                                                     (4) 
 

TB is the brightness temperature (Equation 1), Ta is 

the mean effective atmospheric temperature. The 

constants Ci and Di are given in Table 4. 

 

 

 
Table 4. Parameters of LST calculation in the thermal channel of Landsat 

Relationship Definition Authors cited 

ai = -67.355351 ai et bi = constants of the algorithm Buyadi et al. (2013) 

Şekertekin et al. (2015) bi = 0.458606 

Ta = 17.9769+0.91715 T0. avec 

T0= 302.55 K. in tropical area 

Ta = mean effective atmospheric 

temperature 

Şekertekin et al. (2015) 

Qin et al. (2001) 

Ci = εi × τi τi = atmospheric transmittance 

εi = emissivity of the earth's surface 

W (atmospheric water vapour) = 3.25 

g/Cm2) 

Qin et al. (2001) 

 

FLAASH Correction 

Report (Douffi, 2020) 

Di = (1 − τi) [1 + (1 − εi) × τi] 

Avec. 

τi = 0.974290 - 0.08007×W 

εi = 0.004 Pv + 0.986 

TB TB= brightness temperature (°K) Qin et al. (2001) 

 

3. Results 

3.1. Characterization and Dynamics of Lamto Land 

Use 

The land cover characterization was successfully 

achieved with Kappa coefficients and overall accuracies 

above 80%. Comparative analysis of land cover in Lamto 

shows that the area of forest formations increased from 

610.42 ha (21.42%) in 1988 to 662.17 ha (23.24%) and 

902.29 ha (31.59%) in 2002 and 2020 respectively 

(Table 5). The current trend is an increase of 291.87 ha 

in 32 years (1988 to 2020). Fire activation (Fx) remains 

a predominant practice within the Lamto reserve (Figure 

2). 

 

3.2. Characterization and Dynamics of Lamto 

Temperature and Precipitation 

Temporal evolution of Land Surface Temperature from 

1985 and 2020 

The land surface temperature (LST) of the Lamto 

reserve shows a trend (Figure 3). It increases 

significantly over time (beta = 0.536, p= 0.039). Over the 

period 1985 to 2020, the land surface temperature 

reached minimum values of 26.56°C and maximum 

values of 37.77°C, with a non-significant decrease in 

thermal amplitude over time (beta = 0.163, p= 0.562). 

The average LST is 32.70±3.29°C over the period 1985-

2020.  

 
Table 5. State of the land cover from 1988 to 2020 

OCT 
1988  2002  2020 

(ha) (%)  (ha) (%)  (ha) (%) 

Fd/Fg 610.42 21.42  662.17 23.24  902.29 31.59 

B_Chr 138.62 4.86  11.76 0.41  25.32 0.89 

SA/SB 639.86 22.45  948.71 33.29  556.68 19.49 

Cr_Eau 176.58 6.20  107.89 3.79  204.68 7.17 

Sv_Arb 1094.21 38.40  966.41 33.91  457.70 16.03 

Fx 30.78 1.08  76.46 2.68  311.61 10.91 

Sv_H/SN/Hbt 159.27 5.59  76.36 2.68  397.60 13.92 

Total 2849.74 100  2849.74 100  2849.74 100 
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TM of December 24, 1988 

[Kappa = 81 %; Overall  

accuracy = 83.88 %] 

ETM of December 31, 2002 

[Kappa = 91.63 %; Overall  

accuracy = 93.07 %] 

OLI of December 07, 2020 

[Kappa = 93.25 %; Overall  

accuracy = 94.88 %] 

 

Figure 2. Land cover mapping of Lamto in 1988, 2002 and 2020 

 

 

 
Figure 3. Land Surface Temperature evolution from 1985 to 2020 [LST, Land Surfaces Temperature; Amp, Thermal 

amplitude] 

 

Temporal evolution of precipitation from 1985 and 2020  

The standardized precipitation index (SPI) shows 

alternating seasonal periods over time (Figure 4). Dry 

periods are observed from 1985 to 1994 and from 2011 

to 2020. These dry periods have SPI values above -1.5, 

resulting in years of near-normal to moderate droughts. 

In contrast, SPI values are above -1 between 1995 and 

2010, characterizing a wet period. In each seasonal 

period there are very wet years with SPI values above 1.5 

(in 1989, for period 1; in 2003 and 2007, for period 2 

and, 2015 and 2019, for period 3).  

 

 

3.3. Temporal Evolution of Land Surface 

Temperature and Vegetation Index 

The temporal evolution of Land surface temperature 

(LST) and vegetation index (NDVI) in Lamto shows a 

synchronous increase (Figure 5A and 5B). The evolution 

is very strong with a strong determination (R2 = 0.98) at 

the LST level (Figure 5A). It increased from 30.46°C 

(1985 - 1994) to 32.10°C (1995 - 2010) and then to 

34.68°C (2011 - 2020). Vegetation index (Figure 5B) 

initially declined from the first to the second period and 

gradually increased from the second to the third period. 

Vegetation index is increasing. It increased from 0.19 

(1985 - 1994) to 0.06 (1995 - 2010) and then to 0.24 

(2011 - 2020).  
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Figure 4: Climatic season division according to the Standard Precipitation Index (SPI) 

 
Figure 5. Temporal evolution of the surface temperature (A) and the vegetation index (B) 

 

3.4. Correlation of Vegetation Index and Land 

Surface Temperature 

The dynamic relationship between vegetation index 

(NDVI) and land surface temperature (LST) shows a 

positive relationship between 1985 and 2020 (Figure 6). 

This relationship is positive and not significant (NDVI 

beta = 0.19, and p = 0.494). It appears that vegetation 

index increases with increasing LST.  

Only two land surface temperature (LST) classes are 

above the average threshold of 32.7°C during the period 

1985-1994, compared to three and four classes 

respectively from 1995-2010 and 2011-2020 (Figure 7).  

 

The class increase above the average LST threshold 

shows the spatial dominance of Lamto land cover 

warming. Moreover, this warming reaches the closed 

forests/galleries between 2011 and 2020. At the same 

time, the maximum vegetation index (NDVI) is reached 

in the closed forests or Gallery Forests. These maximum 

index values are 0.32, 0.30 and 0.35 out of an average of 

0.16, for the periods 1985 to 1994, 1995 to 2010 and 

2011 to 2020 respectively. Only the period from 1995 to 

2010 shows negative minimum index values, reflecting 

very low vegetation index.   
 

NDVI = -0,071+0,0073*LST
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Figure 6. Relation between the Land cover vegetation index and the surface temperature from 1985 to 2020. 
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Figure 7.Vegetation index and the land temperature of surface dynamics mapping 

 

3.5. Response of Land Use to Surface Temperature 

The land cover response of Lamto is shown in Figure 

8. It shows that apart from the Land Surface Temperature 

of shrubby savannahs (Sv_Arb) and burnt areas (Fx), that 

of the land cover in 1988 and 2002 remained below the 

average threshold from 1985 to 2020 (32.70°C). These  

are closed or gallery forests (Fd/Fdg), Chromolaena 

odorata bushes (B_Chr), wooded savannahs or woody 

savannahs (SA/SB), grassy areas, bare soils and habitats 

(Sv_H/SN/Hbt) and even watercourses (Cr_Eau). The 

temperature of the land cover in 2020 shows an increase, 

above the average (32.70°C). 
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Figure 8. Response of the land cover (LC) to the land surface temperature 

 

4. Discussion 

Forest dynamics mapping of the Lamto reserve shows 

an increase in area of 291.87 ha in 32 years (1988 to 

2020). This increase is mainly due to the extension of 

existing forests on pioneer fronts (Koulibaly et al., 2016), 

rather than to the appearance of new forests in the 

savannah. The afforestation in Lamto, despite burning, 

shows the role of bushfires in the natural regeneration 

cycle of both savannah and forest vegetation. A forest re-

conquest follows protection against fire and supports the 

pyroclimax theory according to which fire maintains the 

savannah (N’Dri et al., 2012) and thus prevents 

afforestation in the savannah. This forests regeneration 

would prove that the forest-savannah transition 

ecosystem would lean towards a forest climax, as 

opposed to savanization. A trend towards savanization at 

the expense of afforestation has recently been reported in 

the Sudanian savannahs of Côte d'Ivoire (Coulibaly et 

al., 2016) and in the Guinean forest-savannah mosaic of 

West Africa (Liu et al., 2017). 

Lamto vegetation index increases with Land Surface 

Temperature (LST) between 1985 and 2020. This trend 

would seem to contradict that obtained by Douffi (2020) 

over the period 1988 to 2015, with three image data from 

Landsat TM 1988, ETM 2002 and OLI/TIRS 2015. This 

difference could be explained by the use of a temporal 

scale, rather than a spatial (point) scale. At spatial scale, 

vegetation index increases with decreasing LST 

(Anbazhagan and Paramasivam, 2016; Haylemariyam, 

2018; Douffi, 2020; NourEldeen et al., 2020). The 

temperature increase in Lamto is in a global context of 

warming or climate variability. Projections indicate an 

increase in LST during the 21st century (GIEC, 2014). 

Climate variability at Lamto has been attributed to the 

West African monsoon circulation (Diawara et al., 

2014). The rate of decrease and increase in rainfall over 

time describes the seasonal periodicity of rainfall.  

 

Analysis of the Standardised Precipitation Index 

(SPI) showed a triachronic division of the seasons over 

time. This could be explained by climatic variability. An 

interannual variation attributable to climate variability 

and change as reported in global reports in general and 

on West Africa in particular (Cassou and Guilyardi, 

2007; GIEC, 2014). A decrease in West African regional 

precipitation is attributed to the strong presence of 

aerosol in the local monsoon system (Huang et al., 2009). 

Furthermore, a past dry period decreases vegetation 

index in the following period, and conversely, a 

previously wet period increases vegetation index in the 

following years. However, the distribution of West 

African biotopes is strongly dependent on soil water 

resources (rainfall offsets), with successions of dry and 

wet phases leading to interannual stability of the 

vegetation index (Do, 2014). 

The response of the vegetation dynamics to the 

increase in Land Surface Temperature (LST) shows that 

the temperature of the land cover is below the average 

LST (32.70°C) in 1988 and in 2002. This indicates the 

maintenance of the pre-2002 microclimate by forest and 

woodland formations. In 2020, the response of the 

vegetation dynamics to the LST shows that the land 

cover temperature is above the mean LST (32.70°C). 

This temperature increase on a temporal scale can be 

explained by the strong presence of savannah ecosystems 

rather than forests in this ecological transition 

environment. In general, afforestation cools the surface 

in tropical areas, but warms boreal lands (Arora and 

Montenegro, 2011), such as wooded to grassy 

savannahs. The maximum LST is obtained in burnt 

areas. This value could reveal the disturbance of the 

microclimate of the whole land cover including the forest 

formations by the burning of the savannah of internal or 

external origin. 
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5. Conclusions 

The temporal analysis of the forest dynamics of 

Lamto Reserve shows an increase of 291.87 ha in 32 

years, with an estimated forest area of 610.42 ha 

(21.42%) in 1988 to 662.17 ha (23.24%) in 2002 and 

902.29 ha (31.59%) in 2020. Land use changes lead to 

afforestation. The Land surface temperature 

characterization indicates an increase from 30.46°C to 

34.68°C in the time trends from 1985 to 2020. If this 

thermal increase is not remedied, a future drought with 

warmer conditions could occur. In addition, the 

determination of the thermal signatures of land cover can 

help to provide their roles in contributing to the heat 

phenomenon. However, the voluntary practice of reserve 

fires leads to the change of microclimate through the 

warming of this ecological environment. The land use 

response to the changing Land Surface Temperature 

results in a thermal equilibrium. The climate analysis 

illustrates that forests continue to act as a moderator of 

the Land Surface Temperature of the reserve. Ultimately, 

appropriate fire management planning is suggested to 

mitigate the rise in Land Surface Temperature through 

policies of anthropogenic actions external or internal to 

the Lamto reserve on the climate system. 
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