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ABSTRACT 
This research studied the authentication of hazelnut oil by portable FT-NIR, FT-MIR, and Raman 
spectrometers. Hazelnut oils were adulterated with vegetable oils at various concentrations (0-25%) (w/w). 
Collected spectra were analyzed using Principal Component Analysis (PCA) and Soft Independent 
Modelling of Class Analogy (SIMCA) to generate classification models to authenticate pure hazelnut oil and 
Partial Least Squares Regression (PLSR) to predict the fatty acids and adulterant levels. For confirmation, 
oil’s fatty acid profile was determined by gas chromatography. In all three instruments, SIMCA provided 

distinct clusters for pure and adulterated samples with interclass distance (ICD)3. All instruments showed 
excellent performance in predicting fatty acids and adulteration levels with rval>0.93 and standard error 
prediction (SEP)<1.75%. Specifically, the FT-MIR unit provided the best performances. Still, all the units 
can be used as an alternative to traditional methods. These units showed great potential for in-situ 
surveillance to detect hazelnut oil adulterations. 
Keywords: Portable devices, FT-NIR, FT-MIR, Raman, adulteration, hazelnut oil 
 

FINDIK YAĞININ FT-NIR, FT-MIR VE RAMAN SPEKTROMETRELERİ İLE 
BİRLİKTE ÇOK BİLEŞENLİ VERİ ANALİZLERİ KULLANILARAK 

DOĞRULANMASI 
 

ÖZ 

Bu araştırma fındık yağının taşınabilir FT-NIR, FT-MIR ve Raman spektrometreleri ile tağşişlerinin 
belirlenmesi üzerinedir. Fındık yağları değişik konsantrasyonlardaki (0-25%) (w/w) bitkisel yağlar ile 
karıştırılmıştır. Toplanan spektralarin Temel Bileşen Analizi (PCA) ve Sınıf Analojisinin Yumuşak 
Bağımsız Modellenmesi (SIMCA) ile saf fındık yağı sınıflandırma modelleri oluşturulmuştur. Yağ 
asitleri ve tağşiş seviyesi Kısmi En Küçük Kareler Regresyonu (PLSR) kullanılarak  belirlenmiştir. 
Sonuçların doğrulanması için gaz kromatografisi kullanılarak yağların yağ asidi profilleri belirlenmiştir. 
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Her üç cihazda da SIMCA, saf ve tağşiş edilmiş örneklerin gruplarının sınıflar arası mesafesi (ICD) 
üçten büyük olarak bulunmuştur. Tüm cihazlar, yağ asidi ve tağşiş miktarlarının belirlenmesinde 
yüksek performans göstermiştir, rval>0.93 ve standart hata tahmini (SEP)<1.75%. Özellikle, FT-MIR 
cihazı en iyi performansı göstermiştir. Yine de, tüm cihazlar geleneksel yöntemlere alternatif  olarak 
kullanılabilir. Bu cihazlar, fındık yağı tağşişinin yerinde belirlenmesi icin yüksek bir potansiyel 
göstermiştir. 
Anahtar kelimeler: Taşınabilir cihazlar, FT-NIR, FT-MIR, Raman, tağşiş, fındık yağı 

  
INTRODUCTION 
Hazelnut is one of the most popular tree nuts in 
the world.  The largest hazelnut producer, Turkey, 
had an annual production of 776,000 tons (69%) 
in 2019, followed by Italy with 98,530 t (9%), 
Azerbaijan with 53,793 t (5%), and the U.S. with 
39,920 t (4%) (FAO, 2020). In recent years, the 
consumption of hazelnut has been increasing 
because it is a good source of vitamin E and oleic 
acid associated with lowering total and LDL 
cholesterol levels (Celenk et al., 2020). Hazelnut is 
widely used in the chocolate industry (%70), ice-
cream, pastry, snack, fresh consumption (%15), 
and oil industry (5%) (Guiné and Correia, 2020; 
MAF – Republic of Turkey Ministry of 
Agriculture And Forestry, 2020; Platteau et al., 
2011). The hazelnut oil industry is growing in 
Turkey because of the profit margin. Hazelnut oil 
consists of palmitic (3-7%), stearic (1.5-3%), oleic 
(70-85%) and linoleic acid (7-20%). However, 
either it does not consist of linolenic acid or has a 
very small amount (~ 0.1 - 0.3%) (Benitez-
Sánchez et al., 2003; Karabulut et al., 2005; Turan, 
2018). It is mostly used as frying, cooking, and 
salad oil (Şisik Ogras et al., 2018). Until a decade 
ago, hazelnut oil was used as an adulterant in olive 
oil due to fatty acid profile similarities and being a 
cheaper substance (Quintanilla-Casas et al., 2021). 
However, today, hazelnut oil is recognized as a 
high commodity valued product in Turkey and it 
is almost three times expensive than other fixed 
oils, and it has a similar price range with olive oil. 
Because hazelnut oil is now a premium oil, it is 
not feasible to adulterate olive oil with hazelnut 
oil. Moreover, the demand for hazelnut oil is 
rising because it consists of mono and 
polyunsaturated fatty acids; economically 
motivated adulteration of hazelnut oil is now 
becoming a concern. Sunflower oil can be used as 
an adulterant in hazelnut oil because it also has a 
very low amount of linolenic acid and a high 
amount of oleic and linoleic acid (Akkaya, 2018) 

and using only gas chromatography may not 
detect the adulteration. Similarly, canola oil has a 
high amount of oleic and linoleic acids, and 
around 5-7% of linolenic acid (Zambiazi et al., 
2007). Canola oil is also a lot cheaper than 
hazelnut oil. The use of it as an adulterant in 
hazelnut oil up to 10% may not be detected by 
traditional methods. Thus, a molecular approach 
is in need to determine the adulteration of 
hazelnut oil with sunflower and canola oils. 
 
Adulteration of food occurs when high-cost 
ingredients are replaced with cheaper alternatives 
that sometimes pose a health threat to humans. 
For instance, in 2008, the melamine scandal raised 
in China resulted in 6 infants died and an 
estimated 52,000 infants were hospitalized (Pei et 
al., 2011). Oil adulteration in Spain in 1981 caused 
almost 300 people to die and 20,000 people were 
affected by toxic oil syndrome (Gelpí et al., 2002). 
The oil industry is still faced with a high 
percentage of adulteration incidents. High 
commodity valued oils such as olive oil and 
hazelnut oil are generally adulterated with less 
valued vegetable oils such as cottonseed, 
sunflower, and canola oil (Ozen and Mauer, 
2002). Rapid, low-cost, and easy methods to 
detect hazelnut oil adulteration are in need since 
traditional methods such as gas chromatography, 
liquid chromatography, and nuclear magnetic 
resonance require high-cost instrumentation, 
well-trained personnel, and being time-
consuming, which makes these techniques less 
appealing (Aykas and Menevseoglu, 2021). As an 
alternative to these techniques in detecting 
adulterated hazelnut oil, vibrational spectroscopy 
methods combined with chemometrics can 
provide fast, sensitive, and reliable information on 
the oil matrix. These methods could help 
governing agencies and the food industry as 
monitoring food safety and quality control (Shotts 
et al., 2018). Moreover, to maintain companies’ 
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reputation and avoid any lawsuits, oil 
manufacturers and importers may need to take 
rapid actions in case of incidents. Miniaturized 
spectrometers are now available with the 
improvements in the micro-electromechanical 
systems (MEMS), new sensors, detectors, and 
optical components (Aykas et al., 2020a). 
Different portable, and handheld vibrational 
spectroscopy units have become available in the 
market with the help of these advancements in 
optical sensor technology (Ayvaz et al., 2016). 
These units can provide in-situ and real-time 
assessments to take faster actions for 
manufacturers and food control agencies with 
convenience and cost-efficiency (Rodriguez-
Saona et al., 2020). Many portable and handheld 
units have been evaluated in the literature on 
different foods, including nuts, oils, honey, 
yogurt, spices, and fruit juices (Menevseoglu, 
2021; Aykas et al., 2020b; Aykas and 
Menevseoglu, 2021; Aykas et al., 2020c; Ayvaz 
and Rodriguez-Saona, 2015; Basri et al., 2017; 
Mcgrath et al., 2020; Menevseoglu et al., 2020; 
Mossoba et al., 2014; Sun et al., 2020). 
 
On the hazelnut oil adulteration, limited 
information can be found in the literature. Studies 
are generally focused on the detection of olive oil 
adulteration with hazelnut oil because of the 
similar fatty acid profile (Cercaci et al., 2003; 
Christy et al., 2004; Mariani et al., 2006; Zabaras 
and Gordon, 2004), but not hazelnut oil 
adulteration with fixed oils (Ozen and Mauer, 
2002). It is most likely due to regional 
consumption of hazelnut oil, especially in the 
eastern Mediterranean, rather than worldwide. 
Also, as mentioned previously, hazelnut oil is now 
an expensive product and hazelnut oil 
adulteration in olive oil does not provide an 
economic profit. 
 
The aim of this study was to evaluate portable FT-
NIR, FT-MIR, and Raman spectrometers on the 
detection of hazelnut oil adulteration with 
vegetable oils. To the best of our knowledge, no 
one has evaluated all three types of portable 
vibrational spectroscopic instruments, namely 
FT-NIR, FT-MIR, and Raman, on the hazelnut 
oil adulteration previously. 

MATERIALS AND METHODS 
Materials 
Hazelnut oils (36 different commercial products), 
sunflower oils (6 different commercial products), 
canola oils (6 different commercial products) 
were purchased from various local markets in 
Istanbul, Turkey, and Columbus, OH, USA. 
Sunflower and canola oil were selected because of 
being cheaper substance to hazelnut oils. Samples 
were stored at 4 °C until further analysis to 
prevent any oxidative changes in the oil. One of 
the pure hazelnut oils was chosen randomly, and 
it was adulterated with 5, 10, 15, 20, and 25% 
(w/w) sunflower oil and canola oil, separately. 
These levels were selected to imitate realistic and 
practical applications that generally happened in 
the adulteration of oils. The levels lower than 10% 
are not actually feasible economically, and it limits 
the use in fraud practices, and too high levels 
could be easily detected by sensory (Miaw et al., 
2018). 
 
Methods 
Near-Infrared spectrometer: The near-infrared 
spectra of the oil samples were collected by 
micro-NeoSpectra (Si-Ware Systems, Cairo, 
Egypt) (Fig 1), a compact Fourier Transform 
Near-Infrared (FT-NIR) sensor equipped with a 
single-chip Michelson interferometer with 
monolithic Opto-electro-mechanical structure 
with a single uncooled indium-gallium-arsenide 
(InGaAs) photodetector. A total of 75 µl of oil 
sample were deposited on the sensor of the unit 
and the spectra were collected at the range of 
7400–3920 cm-1 in absorbance mode and with a 
16 cm-1 resolution. Samples were scanned for 15 
seconds to increase the signal-to-noise ratio. 
Spectral data collection was carried out in 
duplicate. 
 
Mid-Infrared spectrometer: A total of 50 μl of 
the oil sample was placed on the IR crystal. The 
FT-IR 5500 (Agilent Technologies Inc., Santa 
Clara, CA) (Fig. 1) spectrometer equipped with a 
temperature controlled 5-bounce ZnSe crystal set 
to 65 °C. The spectra were collected at 4 cm−1 
resolution over a range from 4000 to 650 cm−1, 
and an interferogram of 64 scans co-added to 
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increase the signal-to-noise ratio. Spectral data 
collection was carried out in duplicate. 
 
Raman spectrometer:  Three milliliters of oil 
sample was placed in a 10-mm light path quartz 
cuvette (Hellma Analytics, Mulheim, Germany) 
and the Raman spectra were collected using a WP 
1064 compact portable Raman spectrometer 
(Wasatch Photonics, Durham, NC, USA) (Fig. 1). 
The Raman unit was equipped with an Indium 
Gallium Arsenide (InGaAs) detector and a laser 
source operating at 1064 nm. The spectra were 

collected from 1855 to 200 cm−1 with a resolution 
of 4 cm−1 and 3 scans were co-added to improve 
the signal-to-noise ratio of the spectrum with an 
integration time of 3000 ms. A background 
spectrum was acquired in between every sample 
to eliminate the environmental variations. 
Spectral data were displayed in terms of scattered 
light by the sample and viewed using 
EnlightenTM software (Wasatch Photonics, 
Durham, NC, USA). Spectral data collection was 
carried out in duplicate. 
 

  

 
Figure 1. Commercial portable and handheld FT-MIR, FT-NIR and Raman spectrometers, and the 

spectra of oils obtained from them. Red line: hazelnut oil; green line: canola oil; blue line: sunflower oil 
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Reference method, Gas Chromatography: 
The fatty acid profile was determined using a fatty 
acid methyl ester (FAME) procedure (Ichihara et 
al., 1996) with slight modifications. A total of 100 
µL oil sample was dissolved in 1 mL of hexane in 
a microcentrifuge tube; after adding 20 µL 2N 
potassium hydroxide in methanol, the mixture 
was vortexed for a minute. The microcentrifuge 
tube was set aside for the phase separation and 
750 µL of an aliquot from the upper part was 
removed into another microcentrifuge tube, 
which already has a pinch of sodium sulfate 
anhydrous. The tube was centrifuged at 13.2 rpm 
for 5 min and the upper part (~500 µL) was 
transferred into a borosilicate glass vial. Samples 
were analyzed using an Agilent 6890 (Santa Clara, 
CA, USA) GC, with a flame ionization detector 
(FID) and an HP G1513A autosampler and a tray. 
Fatty acids were eluted through an HP-88 100 m 
× 0.25 mm × 0.2 µm column (Agilent, Santa 
Clara, CA, USA), and helium was used as a carrier 
gas. A total of 1 µL of the sample was injected 
with a split ratio of 20:1. The oven temperature 
was set at 110 °C for 1 min, then increased to 220 
°C (5◦C/min) and held for 15 min. The injector 
temperature was 220 °C, and the detector 
temperature was 250 °C. The identification of the 
fatty acids was achieved by comparing each peak’s 
retention time against the reference standards 
(Supelco® 37 Component FAME Mix, Sigma 
Aldrich, St. Louis, MO, USA). GC analyses for 
each sample were carried out in duplicate. 
 
Data analysis 
A multivariate data analysis software (Pirouette 
version 4.5, Infometrix Inc., Bothell, WA, USA) 
was used to analyze the spectral data. 
 
Principle Component Analysis (PCA): Firstly, 
all spectra were checked using Principal 
Component Analysis (PCA) if any abnormalities 
occurred during the spectral collection or from 
the samples themselves. PCA is used for reducing 
the number of variables. It also transforms the 
variables that were initially measured into 
uncorrelated variables related to classes’ 
similarities. In this chemometric method, the 
relationship among the variables and the patterns 
can be studied (Rodriguez-Saona et al., 2016).  

Soft Independent Modeling of Class Analogy 
(SIMCA): It is one of the supervised pattern 
recognition techniques that rely on a confidence 
region for each class after PCA is applied. 
Observations are projected in each PC that 
decides if the observation belongs to that class or 
not. Because the spectra are complex, SIMCA is 
required for obtaining a meaningful information 
of the data matrix (De Maesschalck et al., 1999). 
More information can be found in the literature 
(Ballabio and Todeschini, 2009; Lavine, 2000; 
Wold, 1976). SIMCA was used to determine the 
pure samples and adulterated hazelnut oils. 
Known classes (hazelnut, sunflower, and canola 
oils) were used to create a classification algorithm 
to identify the correct classes (80% of the total 
samples). Then, the validation data set (20% of 
the samples that were not used in the 
classification model) was informed to evaluate the 
model. SIMCA was evaluated based on three-
dimension class projection, misclassification (if 
the sample was predicted in the correct class) and 
interclass distance (ICD). 
 
Partial Least Square Regression (PLSR): 
Partial Least Square Regression (PLSR) was used 
to evaluate the fitness of the model using the 
standard error of cross-validation (SECV), 
standard error of prediction (SEP), coefficient of 
determination (r), and outlier diagnostics. PLSR is 
one of the most used multivariate data analyses 
that is used for correlated, noisy, and for multi-X 
variables. For example, data obtained from FT-
NIR, FT-MIR, and Raman can have thousands of 
data points (X variable, i.e. FT-MIR – from 3500 
cm-1 to 800 cm-1). PLSR includes the PCA features 
where thousands of variables can be compressed 
into a few latent variables called as factors, 
predictors, or components. Detailed information 
for PLSR can be found in the literature (Brereton, 
2000; Haaland and Thomas, 1988; Jong, 1993; 
Wold et al., 2001). Samples with large residuals 
indicating the samples with structure do not fit in 
the model, and high leverage indicates the sample 
or variable have very much impact on the 
calibration model were considered as outliers (not 
shown in the data).  
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RESULTS AND DISCUSSION 
Table 1 summarizes the fatty acid profile of 
hazelnut (HO), sunflower (SFO), and canola 
(CO) oils. Five of 36 commercial hazelnut 
samples were suspected of being adulterated with 
different oils because the fatty acid (FA) profile 
deviated from HO’s FA profile. Suspected 

samples generally consisted of a low amount of 
oleic, and a high amount of linoleic and linolenic 
acids. An example of pure hazelnut oil and 
suspected hazelnut oil GC chromatogram was 
shown in Fig 2.  
 

  
Table 1. Summary of fatty acid profiles of hazelnut, sunflower, and canola oils 

 n 16:0 18:0 18:1 18:2 18:3 

Hazelnut oil 31 5.77 ± 0.25 2.41 ± 0.18 76.72 ± 4.33 14.56 ± 4.17 0.27 ± 0.11 

Suspected 
hazelnut oil 

5 5.91 ± 0.22 2.61 ± 0.34 60.36 ± 5.10 30.07 ± 5.70 1.59 ± 0.73 

Sunflower 
oil 

6 4.79 ± 0.12 3.34 ± 0.02 62.15 ± 0.97 28.19 ± 0.96 0.42 ± 0.01 

Canola oil 6 4.29 ± 0.07 1.93 ± 0.11 63.97 ± 0.23 20.26 ± 0.81 7.04 ± 0.47 

16:0-palmitic acid; 18:0-stearic acid; 18:1-oleic acid; 18:2-linoleic acid: 18:3-linolenic acid: n-number of samples 

 

 
Figure 2. Chromatograms obtained from gas chromatography of suspected hazelnut oil and pure 

hazelnut oil 
 
PCA & SIMCA results – FT-NIR Spectra 
Because the NIR spectra were complex and 
overlapping peaks would be marked and large 
variations of baseline make the interpretation 
difficult, the spectra were 2nd derivative and 
smooth transformed (with second order poly-
nominal filter with a 35-point window) to 
improve spectral characteristics. PCA projection 
was shown in Fig 3A. PCA was used to determine 
if any sample was an outlier, including suspected 
samples, and any sample had impurities. Pure 

hazelnut oils, canola oils, sunflower oils, and 
suspected oils were clustered distinctly. Modeling 
power, which expresses how well the principal 
components discriminate different oils, for 
classification was shown in Fig 3B. The most 
important absorption peaks were found at 4434 
cm-1 (-CH3 combination), 5464 (-CH=CH- 1st 
overtone), 5980 cm-1 (-CH3 1st overtone), and 
6743 cm-1 (-CH2 1st overtone). Peak 
identifications were made based on the literature 
(Hourant et al., 2000). SIMCA was used to create 
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an algorithm for the classification of the oils. 
SIMCA 3D class projection was shown in Fig 3C. 
Hazelnut oils, sunflower oils, and canola oils were 
clustered distinctly. The most important 
absorption peaks were found at 4189 cm-1 (-CH2 
combination), 4545 cm-1 (-CH=CH- 
combination), 5612 cm-1 (-CH 2nd overtone), 6238 
cm-1 (-CH2 1st overtone), 6964 cm-1 (O-H 1st 
overtone). Interclass distances (ICD) describe the 
similarities and/or dissimilarities between the 
classes, and it is generally accepted that classes 
show differentiation when the ICD is > 3 
(Massart et al., 2003). ICD of the samples were 
over 26.3 which indicates FT-NIR discriminates 

the oils perfectly. Besides the ICD values, the 
SIMCA classification model had no 
misclassification, and the prediction performance 
of the model revealed 100% specificity and 
sensitivity. Handheld FT-NIR spectrometer 
combined with multivariate analysis showed that 
it could be used as an alternative method to detect 
hazelnut oil adulteration with fixed oils. Basri and 
others evaluated the detection of lard adulteration 
in palm oil using a portable microNIR unit (Basri 
et al., 2017). The researchers have classified the 
pure samples from the adulterated samples with a 
40% sensitivity and 100% specificity. 
 

  

 
Figure 3. Principal Component Analysis of FT-NIR spectra (A), modeling power obtained from PCA 
(B), soft independent modelling of class analogy (C), and discriminating power obtained from SIMCA 

(D). HO: hazelnut oil; CO: canola oil; SFO: sunflower oil 
 
PCA & SIMCA – FT-MIR Spectra 
Before the PCA and SIMCA analysis, spectra 
were 2nd derivative and smooth transformed 
(second-order poly-nominal filter with a 35-point 
window). The oils were discriminated based on 

PCA analysis (Fig 4A). Associated bands were 
found around 2950 – 2800 cm-1 (CH2 symmetric 
or asymmetric stretching), 1800 – 1700 cm-1 (C-O 
stretching esters of fatty acids), 1450 – 1350 (C-H 
bending), 1200 – 1000 cm-1 (C-O, C-C stretching) 
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(Fig 4B). The peaks assignment was made based 
on the literature (Rodriguez-Saona et al., 2016). 
After suspected samples were excluded from the 
data matrix, SIMCA analysis was performed (Fig 
4C). Based on the discriminating power, the peaks 
at 2875 cm-1 associated with -C-H (CH2) 
stretching, 1753 and 1707 cm-1 associated with -
C=O ester stretching of fatty acids (Fig 4D). 
These peaks were associated with saturated and 
unsaturated fatty acid distribution of the oils. For 
example, sunflower oil has more stearic acid 
among the samples, while canola oil has more 
linolenic acid. These differences in the fatty acid 
distribution of the oils were detected by the 
spectra. The difference between PCA modeling 

power and SIMCA discriminating power was due 
to the contribution of the suspected samples to 
the PCA model. The impurities of the suspected 
samples had some effects on the PCA model. In 
our SIMCA model, the ICD values were at least 
17.5 between the samples, which indicates that 
portable FT-MIR spectrometer discriminated the 
samples very distinctly. Similar to the FT-NIR 
SIMCA model, the FT-MIR SIMCA model had 
no misclassification and %100 specificity and 
sensitivity were observed. Overall, the portable 
FT-MIR spectrometer showed that it could be 
used for routine analysis for the quality control of 
the hazelnut oil.   
 

  

 
Figure 4. Principal Component Analysis of FT-MIR spectra (A), modeling power obtained from PCA 
(B), soft independent modelling of class analogy (C), and discriminating power obtained from SIMCA 

(D). HO: hazelnut oil; CO: canola oil; SFO: sunflower oil 
 
PCA & SIMCA results – Raman Spectra 
Before the PCA and SIMCA analysis, Raman 
spectra were 2nd derivative and smooth 
transformed (second-order poly-nominal filter 

with a 35-point window) to reduce the effects of 
noise on the models. Based on the PCA model 
(Fig 5A), all the samples were discriminated. 
Associated bands to the model (Fig 5B) were 
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found around 1288 cm-1 (twisting -CH2), 1447 cm-

1 (bending -CH2), and 1657 cm-1 (stretching cis-R-
HC=CH-R). After suspected samples were 
excluded from the data matrix, SIMCA analysis 
was performed (Fig 5C). SIMCA provided very 
distinct clusters for the groups. Discriminating 
power of the SIMCA model (Fig 5D) indicated 
that the peak at 1439 cm-1 was associated with -C-
H bending (-CH2), 1650 and 1667 cm-1 were 
related to C=C stretching (cis-R-HC=CH-R) from 
polyunsaturated fatty acids. The peak assignments 
were made based on the literature (Aykas et al., 

2020c). The SIMCA model showed great 
potential of its use in detecting the adulteration of 
hazelnut oil with fixed oils since the ICD values 
were over 5.0, indicating portable Raman 
spectrometer discriminated the samples distinctly. 
As mentioned before, those bands are related to 
monounsaturated and polyunsaturated fatty acids, 
and a positive correlation can be observed as an 
increase in the band intensity increases the 
percentage of unsaturated fatty acids in the oils.  
 

  

 
Figure 5. Principal Component Analysis of Raman spectra (A), modeling power obtained from PCA 

(B), soft independent modelling of class analogy (C), and discriminating power obtained from SIMCA 
(D). HO: hazelnut oil; CO: canola oil; SFO: sunflower oil 

 
Comparing the three units, the Raman 
spectrometer was weaker than FT-NIR, and FT-
MIR as ICD values of the classes were lower than 
the values obtained from FT-NIR and FT-MIR. 
Best results were obtained from the handheld FT-
NIR spectrometer. Still, the Raman spectrometer 
has the potential for analysis for quality control 
purposes.  
 

Partial Least Squares Regression 
Table 2 shows the performance of predicting 
models developed using portable FT-NIR, FT-
MIR, and Raman spectrometers for predicting 
fatty acids levels and adulterant levels. In most 
cases, using a high number of factors improves 
the prediction performances; however, it may 
include noise or irrelevant components that can 
cause overfitting the model. Similarly, using fewer 
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factors than the optimal number can cause 
underfitting that results from incorporating less 
variance than needed (Abdi, 2010). The optimum 
factors for our predictive models were between 
two to five. All generated predictive models had 
very good performances in terms of high rval and 
low SECV values. To evaluate the portable units’ 
performances, spectra were collected under the 
same conditions for the samples purchased from 
the markets. Validation models showed that a 
similar or slightly lower performance than 
calibration models. Overall, among the three 
units, the best performance was obtained from 
the portable FT-MIR spectrometer. Handheld 
FT-NIR spectrometer showed the least 

performance for the predicting models. For all 
prediction models, FT-MIR and Raman 
spectrometer performances were excellent 
because the rval, when it is over 0.90, indicated the 
prediction level was excellent (Shenk and 
Westerhaus, 1996; Urbano Cuadrado et al., 2005). 
FT-NIR also showed excellent performance for 
the prediction models except for stearic acid as it 
was 0.86; however, it still shows a very good 
performance. Similarly, Aykas and others 
reported that the portable FT-MIR unit has 
superior performances over the portable Raman 
unit on the prediction of fatty acid composition in 
olive oil samples (Aykas et al., 2020b). 
 

  
Table 2. Statistical performance of the prediction models developed using FT-NIR, FT-MIR, and 

Raman spectrometers for predicting fatty acid and adulteration levels of hazelnut oil 

Unit Parameter 
Calibration model Validation model 

Rangea Nb Fc SECVd rcal
e Range N SEPf rval

g 

FT-NIR 

16:0 4.1-6.3 54 4 0.09 0.95 4.3-6.1 12 0.14 0.92 

18:0 1.8-3.3 51 5 0.11 0.90 1.9-3.2 12 0.13 0.86 

18:1 55-78 54 5 1.42 0.97 58-76 12 1.64 0.95 

18:2 13-35 54 5 1.31 0.97 16-32 12 1.49 0.96 

18:3 0.1-7.4 52 4 0.13 0.93 0.4-6.5 12 0.21 0.93 

SFO 0-25 12 2 1.61 0.94 5.0-20.0 4 1.73 0.93 

CAO 0-25 12 3 1.42 0.95 5.0-20.0 4 1.62 0.93 

FT-MIR 

16:0 4.1-6.3 54 4 0.05 0.98 4.3-6.1 12 0.07 0.97 

18:0 1.8-3.3 50 4 0.03 0.99 1.9-3.2 12 0.07 0.96 

18:1 55-78 53 3 0.28 1 58-76 12 0.72 0.99 

18:2 13-35 53 4 0.85 0.99 16-32 12 0.94 0.98 

18:3 0.1-7.4 52 5 0.11 0.98 0.4-6.5 12 0.19 0.96 

SFO 0-25 12 5 1.12 0.96 5.0-20.0 4 1.33 0.95 

CAO 0-25 12 5 1.24 0.96 5.0-20.0 4 1.32 0.95 

Raman 

16:0 4.1-6.3 54 4 0.18 0.98 4.3-6.1 12 0.25 0.96 

18:0 1.8-3.3 51 3 0.06 0.97 1.9-3.2 12 0.08 0.95 

18:1 55-78 53 2 1.23 0.97 58-76 12 1.25 0.97 

18:2 13-35 53 2 1.22 0.97 16-32 12 1.25 0.97 

18:3 0.1-7.4 52 5 0.11 0.96 0.4-6.5 12 0.18 0.95 

SFO 0-25 12 2 1.22 0.94 5.0-20.0 4 1.42 0.93 

CAO 0-25 12 3 1.31 0.96 5.0-20.0 4 1.63 0.94 
aThe unit of the range is %. bNumber of samples used in calibration models. cThe number of factors. dStandard 
error of cross-validation. eCorrelation coefficient of cross-validation. fStandard error of prediction. gCorrelation 
coefficient of prediction for external validation. 
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CONCLUSIONS 
In this study, sunflower and canola oil 
adulteration in hazelnut oil were aimed to be 
determined by portable FT-NIR, FT-MIR, and 
Raman spectrometers. SIMCA and PLSR models 
were developed to authenticate pure hazelnut oils 
and predict fatty acid and adulterant levels. 
Portable vibrational spectroscopic units, 
combined with chemometrics, provided rapid 
(~10 s), non-invasive, and reliable determination 
of adulterated hazelnut oils with sunflower and 
canola oils. We observed that five out of 36 
commercial hazelnut oils on the market were 
suspected as adulterated based on our portable 
units and GC results. FT-MIR spectrometer 
showed slightly better performance than FT-NIR 
and Raman spectrometers. Vibrational 
spectroscopy techniques may detect sunflower 
and canola oil adulterations on hazelnut oils as 
low as 5%. These units can be used as an 
alternative method to traditional methods and 
provide the oil industry and government agencies 
an easy, non-invasive method to detect 
adulterations in hazelnut oils.   
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