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Abstract: Electron field emission experiments of carbon nanotubes (CNT) show that due to heat CNTs breakdown 

faster under applied voltage than expected. Therefore, different systems with varying temperature distributions are 

considered analytically and numerically by use of the heat conduction equation. This methodology yields a 

phenomenological understanding and description of the thermoelectric behavior of CNTs under applied voltages. 
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KARBON NANOTÜPLERİN ISI İLETİMİNİN UYGULANAN VOLTAJLAR ALTINDA 

ANALİTİK VE SAYISAL ANALİZİ 
 

Özet: Karbon nanotüplerin (KNT) elektron alanı emisyonu deneyleri, ısı nedeniyle KNT'lerin uygulanan voltaj altında 

beklenenden daha hızlı bozulduğunu göstermektedir. Bu nedenle, değişen sıcaklık dağılımlarına sahip farklı sistemler, 

ısı akışı denklemini kullanarak analitik ve sayısal olarak değerlendirilmektedir. Bu metodoloji, KNT'lerin 

termoelektrik davranışının uygulanan voltaj altında fenomenolojik davranışını ve tanımını sağlamaktadır. 

Anahtar Kelimler: Karbon Nanotüp, Elektron Alan Emisyonu, Isı İletimi. 

 
 

NOMENCLATURE 

U   Applied Voltage [V] 

Bk   Boltzmann Constant [J/K] 

A   Contact Area [m2] 

I   Current [A] 

j   Current Density [A/m2] 

el  Electrical Conductivity [S/m] 

E   Electric Field [V/m] 

el  Electrical Resistivity [Ω m] 

eq   Elementary Charge [C] 

   Mass Density [kg/m3] 

x


  Position Vector [m] 

cR   Quality of Thermal Contact [K/W] 

r   Radius of a CNT [m] 

c   Specific Heat [J/(kg K)] 

   Stefan-Boltzmann Constant [W/(m2 K4)] 

0T   Surrounding Temperature [K] 

T   Temperature [K] 

k   Thermal Conductivity [W/(m K)] 

t   Time [s] 

g   Volumetric Heat Source [W/m3] 

 

INTRODUCTION 

 

Electron beams are involved in various applications and 

basic research tools like cathode ray tubes, x-ray tubes, 

scanning electron microscopes and transmission electron 

microscopes. Typically a high density of narrow 

electron beams is desired in such applications. 

Therefore, in contrast to electron guns that use 

thermionic emission of electrons from hot cathodes, 

which cause thermal broadening, cold cathodes are 

gaining interest. However, these cathodes need large 

electric fields, which yield migration of atoms at the tip 

surface. Hence, stable operation over long periods of 

time is quite difficult. However, CNTs offer a solution 

to this problem and are accordingly focused on (Bonard 

et.al, 2001; Cheng and Zhou, 2003; Ha et.al, 2013). 

Compared to metal or diamond tips, nanotube tips are 

inert and stable to long periods of operation. Moreover, 

other advantages like low threshold voltages for cold 

field emission, low temperature of operation, fast 

response times, low power and small sizes are available 

(de Jonge et.al, 2005; Charlier et.al, 2007). Many 

examples of these kinds of applications are known in the 

literature (de Heer et.al, 1995; Choi et.al, 1999; Sugie 

et.al, 2001; Croci et.al, 2004; Zhang et.al, 2005).  

 

Due to the high electric fields, materials for field 

emission tips must be resistant to high temperatures 

caused by Joule heating and high stress. This framework 

may lead to the breakdown of the device. The 

breakdown occurs most likely at the point of the CNT 

where the temperature is at its maximum.  
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The breakdown is usually completed in three 

consecutive phases. First, the device performance 

decreases. Afterwards, a structural failure arises in the 

form of a crack. Finally, the CNT is burned off (Wei 

et.al, 2007). Different models (Vincent et.al, 2002; 

Bocharov and Eletskii, 2013; Giubileo et.al, 2018) and 

experiments (Wang et.al, 2002; Bonard et.al, 2003; 

Fairchild et.al, 2019) were analyzed to understand the 

breakdown behavior of CNTs. The proposed theoretical 

models are based on Joule heating. The existence of two 

sources for the generation and dissipation of heat are 

assumed; electrical resistance (Joule heating) and heat 

radiation. The full solution of the heat conduction 

equation for this case is still an open question, because 

besides the advanced mathematical structure involved in 

the related equation, the temperature dependance of the 

resistivity and boundary conditions are needed (Collins 

et.al, 2001). 

 

The goal of this article is the solution and investigation 

of the heat conduction equation with focus on 

applications of CNTs for electron field emission. The 

motivation for this research is two-fold. First, the 

systematic procedure for the analytic solution of the heat 

conduction equation with arbitrary boundary conditions 

and temperature dependance of the resistivity is 

introduced. The procedure is carried out using CNTs 

with constant boundary conditions as an example. 

Second, an efficient numerical algorithm (controlled by 

the analytical calculations) is used for the modeling of 

thermal dissipation in CNTs. In fact, possible solutions 

for the breakdown due to a self-heating process are 

analyzed.  

 

 
(a)                                      (b) 

Figure 1. Schematic depiction of (a) single-walled CNT and 

(b) its associated field emission tip of length L  connected to a 

tungsten (W) tip. The configuration shows that the heat 

conduction is essentially one-dimensional. 

 

HEAT TRANSFER THROUGH CNT WITH 

BOUNDARY CONDITIONS 

 

The heat conduction equation in a non-uniform 

anisotropic medium is given by Eq. (1) 

 

            ,,,,,, txgtxTtxktxTtxcx t


         (1) 

 

where  x


  is the mass density,  txc ,


 the specific 

heat,  txT ,


 the temperature distribution measured in K, 

 txk ,


 the thermal conductivity,  txg ,


 the volumetric 

rate of internal energy generation, t  the time and x


 the 

position vector. Note that specific heat, thermal 

conductivity and volumetric heat source generally 

depend on the temperature and thus implicitly on 

position vector and time.  

The configuration of the heat transfer problem 

considered is shown in Fig. 1. 

 

As a result of the geometry of CNTs they are modeled 

as one-dimensional rods and Eq. (1) simplifies to its 

one-dimensional form. x


 and   are replaced with x  

and x , respectively.  However, the mathematical 

analysis in this article can in principle be used for 

arbitrary dimension d  if the need arises due to a use of 

another emitter in contrast to Fig. 1. 

 

For the purpose of determining the volumetric heat 

source Ohm’s law is used due to Joule heating which 

leads to  
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where  txj ,  is the current density,  txE ,  the 

electrical field,  tx,el  the electrical conductivity and 

 tx,el  the electrical resistivity while the contact area 

is denoted with A . The Stefan-Boltzmann law which 

describes heat radiation as well as consideration of 

CNTs with lengths L  along the x -axis attached to a 

tungsten tip in combination with Eq. (2) yields Eq. (3) 
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as expression for the volumetric heat source, where U  

is the applied voltage and   the Stefan–Boltzmann 

constant. Furthermore,   00,0 TLxT   is assumed. 

For the purpose of defining the boundary conditions, the 

tips of the CNTs are considered. At the interface with 

the tungsten microtip a temperature drop due to the 

thermal contact resistance occurs. The microtip and 

surroundings temperatures are expressed as 0T  while 

cR  represents the contact quality, i.e. the thermal 

contact resistance. These assumptions yield the 

boundary condition in Eq. (4) 

 

      .,,,0
00 


xxc txTtxkARTtT                       (4) 

 

Nevertheless, the interesting boundary is the free end of 

the nanotube. Electron emission on this end cools the tip 

since each electron carries energy  tLTk ,
2

3
B  due to 

classical statistical mechanics and the equipartition 

theorem (Tolman, 1918), where Bk  is the Boltzmann 

constant. Hence, the heat flux can be written down by 
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 
Aq

tLITk

e2

,3 B  with the elementary charge eq . Note that in 

metals this effect is much smaller than radiative cooling. 

Contrarily, in CNTs it is a dominant factor due to high 

field emission current density and low surface area for 

radiative cooling (Chernozatonskii et.al, 1995; Rinzler 

et.al, 1995). Hence, the Stefan-Boltzmann law for 

radiation and Fourier’s heat conduction relation yield 

Eq. (5) 
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where I  is the current.  

 

Analytical Solution 

 

In the following mass density, specific heat and thermal 

conductivity are taken as constants for the analytic 

treatment of Eq. (1). 

 

Separation of variables 

 

Separation of variables is widely applied for the 

analytical solution of heat conduction problems.  This 

section introduces the most general solution of the 

presented physical problem achievable by use of this 

method. Correspondingly, the Stefan-Boltzmann term in 

Eq. (3) and (5) is set to zero and Eq. (3) is assumed to 

be time-independent, since separation of variables is not 

applicable otherwise because the homogeneous 

boundary conditions for the Sturm–Liouville problem 

are not fulfilled. This corresponds to the assumptions 

that heat radiation is negligible and that Joule heating 

occurs instantaneously. In fact, Fig. 7 shows that the 

influence of time-dependent Joule heating is negligible 

in accordance with the literature (Wei et.al, 2007). 

Moreover, regarding the neglect of heat radiation it 

should be noted that this analytical approach is mainly 

used to control the numerical analysis. The numerical 

experiments are compared with the analytical results in 

Figs. 2-5. In Fig. 9, however, the heat radiation is also 

included numerically. 

 

First, Eq. (1) is split into two simpler problems in Eq. 

(6) for the purpose of separation of variables; one steady 

state that is descibed by a nonhomogeneous ordinary 

differential equation with nonhomogeneous boundary 

conditions and one transient described by a 

homogeneous partial differential equation with 

homogeneous boundary conditions as well as a modified 

initial condition, i.e. 

   

     .,, SSH xTtxTtxT       (6) 

 

Accordingly, one finds two separate problems 

formulated in Eqs. (7) and (8), i.e. 
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and 
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for Lx 0  and 0t . 

 

Second, the steady state part in Eq. (8) can be solved 

trivially using traditional ordinary differential equation 

solution techniques, i.e. sum of the homogeneous and 

particular  solutions. For this purpose 

     xTxTxT BASS   is used as an approach which 

leads to Eqs. (9) and (10)  
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and 
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Obviously, Eq. (9) yields Eq. (11)  

 

 

Ik

Akq
AkRL

x
Ik

Akq
L

TxT
e

c

e

B

B
0A

3

2

3

2





                (11)  

 

while Eq. (10) leads to an apparent particular solution in 

Eq. (12) 
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where a  and b  follow from the homogeneous boundary 

conditions in Eq. (10) and are chosen such that Eqs. (13) 

hold 
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where  xG  is the antiderivative of  xg . In total, one 

finds Eq. (14) 
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Note that this approach holds for any integrable 

volumetric heat source  xg  and its antiderivative 

 xG .  

 

Third, the transient problem in Eq. (7) is handled by a 

separation into space-dependent and time-dependent 

functions of a single variable each, i.e. 

     txtxT ,H . This produces two different 

ordinary differential equations given in Eqs. (15) and 

(16); 
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and  
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Solving both equations separately, using the boundary 

conditions and recombining both solutions yields Eq. 

(17) 
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with the roots n  given by the transcendental Eq. (18) 

 

  ,

2

3

2

3

tan
B2

B

Akq

Ik
AkR

q

Ik

L

e
nc

e

n
n

n












                                 (18) 

 

and the constants nC  determined in Eq. (19)  by the 

nonhomogeneous initial condition of Eq. (7) 
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In total Eqs. (6), (14), (17)-(19) solve the formulated 

problem. The explicitness of the analytic solution should 

be noted. Obviously Eq. (19) can be simplified even 

further by inserting Eq. (14) and calculating the integral. 

Even though the expressions are lengthy, the 

calculations are straightforward and lead to Eq. (20) 
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Solution by Green’s function 

 

Use of Green’s function provides an efficient and 

straightforward method for constructing exact analytic 

solutions of various heat conduction problems. 

However, appropriate Green’s functions must be 

available. The approach is used in mathematical physics 

for the solution of partial differential equations (Aizen 

et.al, 1974). Contrarily to the separation of variables, it 

is the most general method to solve nonhomogeneous, 

time-dependent conduction problems. Thus, a plane 

surface heat source of unit strength located at x  and an 

instantaneous heat source releasing its energy 

spontaneously at time t   into a zero temperature 

medium, both represented by Dirac delta functions, are 

considered for the auxiliary problem in Eq. (21) for 

Lx 0  
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with boundary conditions in Eqs. (22) 
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and initial condition   0,,  txtxG  for tt  . The 

formulated auxiliary problem is quite useful since the 
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solution of the original problem can be expressed just in 

terms of Green’s function in Eq. (23) 
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Note the time-dependency in  txg ,  in contrast to the 

method of separation of variables. 

Typically Laplace transformations or the method of 

images are used for the determination of Green’s 

function (Bilodeau, 1962). Instead, a general approach 

that uses seperation of variables is applied here. 

Therefore, the homogeneous version of the original 

problem with nonhomogeneous initial condition is 

considered. A separation in space- and time-dependent 

functions of a single variable each is assumed. The 

solution of this problem can be constructed in a simple 

manner in Eqs. (24) and (25) with the previously shown 

methodology. It is given by 
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and 
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Considering Eqs. (24) and (25) carefully, defining the 

norm in Eq. (26) 
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that already appeared explicitly in Eq. (19) as well as 

(25), and using the property    0,,,, xttxGtxtxG   

as well as the Heaviside step function  xH  yields 

Green’s function 
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              (27) 

 

Putting Eqs. (23) and (27) together produces the full 

analytic solution 
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Note that the analytically derived Eq. (27) is applicable 

for all cases of volumetric heat source. Comparison with 

the originally formulated problem shows that just the 

Stefan-Boltzmann term in Eq. (5) is neglected. Hence, 

just the heat radiation at the free end is neglected in the 

analytical approach. Furthermore, the thermal 

conductivity is taken as constant. Investigations for a 

linear temperature dependence were performed in the 

literature (Zhang et.al, 2018).  

 

Numerical Analysis 

 

The numerical treatment of Eq. (1) is done by utilizing 

the temperature dependence of the electrical resistivity. 

Hence, for the volumetric heat source in Eq. (3) 

      TgtxTgtxg  ,,  is used, which corresponds to 

the expected physics, since the heat generation at 

location x  and time t  depends on the temperature at 

this location and time. The explicit dependance varies in 

different publications due to varying conduction 

mechanisms. Purcell (Purcell et.al, 2002) uses 

   TT   10el . This assumption takes hopping 

along thermally activated defect sites into account. This 

effect is well-known for large defect densities (Jang 

et.al, 2004; Dehghani et.al, 2012). The wave functions 

of electrons are highly localized in disordered systems 

which leads to a vanishing electrical cunductance at 

temperature zero. Nonetheless, electrons are hopping 

between localized states at finite temperatures resulting 

in electrical conduction. Hence, increasing temperature 

leads to a decreasing electrical resistivity. However, 

electron-phonon scatterings (scattering of electrons by 

the thermal motion of the lattice) should also be 

considered since the electrical resistivity  Tel  

decreases indefinitely otherwise. Therefore, 

    23
210el 1 TTT    is used in this 

manuscript (Suzuura and Ando, 2002) while 1  and 2  
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are chosen such that they are fitting the experimental 

data.  

 

The partial differential Eq. (1) is solved numerically by 

approximating it with difference equations while the 

derivatives are replaced with finite differences. 

Accordingly, this method leads to the recursive relation 

in Eq. (29)  
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where the temperature dependency of mass density, 

specific heat and thermal conductivity is used. 

Moreover, the evaluation is performed by utilization of 

the disretization Nxx ,,1   and Mtt ,,1   with 

  xjx j  1 and   tktk  1 , where  x  and t  are 

step sizes. Due to the recursive relation the temperature 

at location jx  and time 1kt  depends on the 

temperatures at the locations 11 ,,  jjj xxx  and time kt . 

The boundary conditions given in Eqs. (4) and (5) are 

valid for 1xx   and Nxx  . C++ was used as 

programming language for the recursive solution of Eq. 

(29). This approach yields an efficient algorithm that is 

easy to implement (Fraser, 1909; Fornberg, 1988; 

Flajolet and Sedgewick, 1995; Zachos, 2008; Curtright 

and Zachos, 2013). However, instabilities for large time 

steps that disturb the data quality have to be treated 

carefully (Jaluria and Atluri, 1994). A von Neumann 

stability analysis for   0Tg  yields 
  2

1
2






xc

tk


 as a 

criterion for the stability (Charney et.al, 1950; Crank 

and Nicolson, 1996). In the numerical analysis 

 
1

2






x

t
 is used unless stated otherwise. 

 

RESULTS AND DISCUSSIONS 

 

For the sake of checking the obtained results and 

proving the usefulness of Eq. (28) numerical and 

analytic solutions are being compared. To test the 

numerical results with regard to their stability, rather 

obscure initial temperatures  0,0 LxT   such as 

rectangular 







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






 x

L
H

L
xHT

4

3

4

~
, linear 

L

x
T
~

 or 

quadratic 

2

 
~










L

x
T  expressions for m 1040 6L  and 

K 10 
~
T  are used. For simplicity the volumetric heat 

source  Tg  and the boundary condition  tT ,0  are set 

to zero in this numerical experiments. Furthermore, the 

method of images, i.e.    txTtxT NN ,, 11    is used for 

the boundary condition at Lx   in the numerical 

analysis. Hence, for these experiments the physically 

motivated Eqs. (3)-(5) are not considered.  

 

All other constants are summarized in Table 1, in which 

physical parameters describing the behavior of 

multiwalled CNTs and field emission devices are taken 

from (Dai et.al, 1996; Ebbesen et.al, 1996; Hone et.al, 

1999; Bachtold et.al, 1999; Yi et.al, 1999; Yang et.al, 

2002; Milne et.al, 2003; Sveningsson et.al, 2004; Fujii 

et.al, 2005; Karim et.al, 2006; Karim et.al, 2007; Park 

et.al, 2010). 

 
Table 1. Physical parameters of multiwalled nanotubes 

0T  300 K 

  1.774∙107 K/W 

U  500-2000 V 

r  10-8 m 

L  0.5-40∙10-6 m 
  1300 kg/m3 

k  100 W/(m K) 

c  740 J/(kg K) 

0  3.26∙10-5 Ω m 

1  8.5∙10-4 K-1 

2  9.8∙10-6 K-1 

 

The results of the numerical experiments are shown in 

Figs. 2-5. Fig. 2 depicts the rectangular initial 

temperature 
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L
xHT
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~
 as well as the 

analytical and numerical result after 10 sn . The dots 

show the analytical solutions obtained by separation of 

variables in Eq. (6) as well as Green's function in Eq. 

(28). Moreover, Eq. (17) is considered two-fold. The 

sum is evaluated for the first ten and 100 summands, 

respectively. The dots therefore consist of a total of 

three different analytical solutions. Hence, every dot is 

actually a superposition of three different dots. It can be 

seen that both solution methods are equivalent as 

expected. In addition, the sums in Eqs. (17) and (28) 

converge fast due to the factor 
t

c

k n

e 

2



. For large times 

zero temperature is found everywhere along the CNT 

due to the factor 
t

c

k n

e 

2



 in Eq. (28). By virtue of the 

fixed boundary conditions, the curves obtained by the 

means of numerics agree with the analytical results at 

both ends. These curves were obtained for two different 

ratios, i.e. 
 

1.0
2






x

t
 and 

 
10

2






x

t
 and almost lie 

on top of each other. However, a discrepance between 

exact and numerical solutions can be observed in the 

middle of the CNT due to the discontinuous initial 

distribution. Accordingly, the numerical and analytical 

results agree in the other polynomial initial temperature 

cases for all times in Figs. 3-5. In analogy to Fig. 1, Fig. 
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3 and Fig. 5 illustrate the linear initial conditions 
L

x
T
~

 

and 

2

 
~










L

x
T , respectively. The analytical result depicted 

with plus signs in Fig. 3 is obtained by separation of 

variables with 100 summands for 10 sn . It is compared  

to two different numerical solutions due to varying 

ratios 
 

1.0
2






x

t
 and 

 
10

2






x

t
. The exact and 

numerical curves agree with each other. Fig. 5 

emphasizes this result. The analytical solution obtained 

by Green’s function with 100 summands completely fits 

the numerical result evaluated for 
 

1.0
2






x

t
. 

Additionally, Fig. 4 shows the influence of time on the 

temperature distribution. The temperature distribution 

for the linear initial condition is obtained by Green’s 

function and by numerics with 
 

1.0
2






x

t
 for varying 

times, i.e., 50,,10,5   sn , and are in good agreement. 

As expected, the temperature along the CNT is 

decreasing for increasing times. 

 

Fig. 6 shows the numerical result for the initial condition 

  K 3000,0 0  TLxT  and 
 

1.0
2






x

t
, but the 

inhomogeneities in the boundary conditions and in the 

heat conduction equation are neglected, i.e. the Stefan–

Boltzmann term in Eq. (5) that describes heat radiation 

at the free end, the electron emission term of Eq. (5) and 

the volumetric heat source  Tg  are set to zero. As 

expected, the maximum temperature is reached at the 

free end since tip cooling effects are neglected. The time 

dependence of the temperature distribution is examined 

in the inset of Fig. 6. It can be seen that the steady-state 

is reached very fast, which was used as an assumption in 

previous publications (Huang et.al, 2004). However, the 

scale varies between ns and μs with varying lengths 

which can be seen in Fig. 7. 

 

 
Figure 2. Temperature distribution at 10 sn  along the x -axis 

for a rectangular initial condition denoted with the blue 

dashed line. Three different exact results obtained by 

separation of variables with ten and 100 summands and 

Green’s function with 100 summands are depicted as dots and 

lie on top of each. Furthermore, numerical results for 

 
1.0

2






x

t
 and 

 
10

2






x

t
 are illustrated with red and 

green lines and show good agreement with each other.  

 

 
Figure 3. Temperature distribution at 10 sn  along the x -axis 

for a linear initial condition illustrated with a blue line. As 

expected, numerical and analytic result are in good agreement 

even for large step sizes t . The error is of order 0.01 %. 

 

 
Figure 4. Temperature distribution along the x -axis for a 

linear initial condition and the corresponding time evolution. 

Exact and numerical solutions are observable. The 

temperature is decreasing for increasing time. Numerically, the 

steady-state temperature zero of this numerical experiment is 

found everywhere for 100 sn . Hence, the time scale shows 

that the steady-state is reached rather fast.  

 

 
Figure 5. Temperature distribution at 10 sn  along the x -axis 

for a quadratic initial condition illustated with a blue line. As 

expected, numerical and analytic result, i.e. red line and green 

plus signs, are in good agreement. 
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Figure 6. Temperature distribution after 10 ns along the x -

axis for initial condition K 3000 T . The numerical solution 

was obtained for 
 

1.0
2






x

t
. The inset shows the maximum 

temperature reached at the free end of the CNT in this 

configuration after several time intervals. The temperature at 

at the free end increases up to K 3213 . This steady-state 

behavior is observable after approximately  s 100 n . 

 

 
Figure 7. Time until the steady-state is reached for different 

CNT lengths. Growing lengths yield higher times. 

 

Steady-state results of analytical evaluations with 100 

summands and numerical calculations with 
 

1.0
2






x

t
 

are shown in Fig. 8 and 9, respectively. In addition  to 

the temperature distribution, the influence of varying 

CNT lengths is also studied in these Figures. 

 

The analytical solution takes all terms in Eqs. (3)-(5) 

with the exception of the Stefan-Boltzmann term in Eq. 

(5) into account and uses the CNT length m 105 7L  

as well as V 2000U  as voltage. Note that the Stefan-

Boltzmann term occuring in the volumetric heat source 

in Eq. (3) is considered. However, for the evaluation of 

Eq. (28) in combination with Eq. (3) and temperature-

dependent electrical resistivity  Tel  discretization as 

well as iteration is used. For fixed parameters given in 

Table 1 the maximum temperature is not reached at the 

free end of the CNT due to the electrons carrying 

energy. Hence, a tip cooling effect is observed in Fig. 8. 

 

 
Figure 8. Illustration of the steady-state analytical result of the 

original problem for a CNT of m 105 7  while just the 

Stefan-Boltzmann term in Eq. (5) is neglected.  

 

In contrast to the analytical treatment, the numerical 

analysis takes all terms in Eqs. (3)-(5) into account. 

Moreover, the CNT length m 104 5L  and V 500 for 

the voltage is used.  

 

A similar but increased tip cooling effect is observed in 

the numerical calculations since in this case the in the 

analytic calculations neglected term of the boundary 

condition in Eq. (5) is taken into account. This 

additional heat radiation at the free end of the CNT 

leads to a greater decrease in temperature at this end if 

Fig. 8 and 9 are compared.  

 

 
Figure 9. Numerically calculated temperature distribution for 

the original problem along the CNT with length m 104 5 , 

where 
 

1.0
2






x

t
 was used. 

 

Notwithstanding this subtle difference, both analytical 

and numerical calculations predict breakdown of the 

CNT during electron field emission some space away of 

the free tip since it occurs most likely at the point of the 

CNT where the temperature is at its maximum. In fact, 

this is in good agreement with experiments (Liu et.al, 

2019; Lin et.al, 2019).  

 

Note that comparison of both results shows different 

maximum temperatures for different CNT lengths. 

Shortening the length decreases the maximum 

temperature, which is an important mechanism for the 
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stability of the CNT field emission tip. This observation 

is strengthened by different numerical experiments. 

However, in comparison with Fig. 9 a higher voltage 

according to Table 1 was applied in Fig. 8 for the 

purpose of demonstrating the breakdown behavior with 

just analytical results and proving the existence of the 

experimentally observed threshold voltage at which 

breakdown occurs (Bonard et.al, 2002; Doytcheva et.al, 

2006).  

 

Another strategy for preventing the breakdown behavior 

are alternating voltages that are set to zero in certain 

time intervals. For this purpose Eq. (30) 

 

     ttntHnttHUtU

n

 


2110

0

      (30) 

 

is used as voltage, where V 20000 U , s 1001 nt   and 

s 202 nt  . Note that for this analysis time steps t  

have to be smaller by at least an order than the period 

t  of the alternating voltage due to the Nyquist–

Shannon sampling theorem (Shannon, 1949). 

Furthermore, the period 1t  should be large enough since 

the physical system needs time to adjust. Hence,  

10

1tt   is used besides 
 

1.0
2






x

t
 and Table 1 for this 

purpose. Moreover, for simplicity, heat radiation is 

neglected in Eq. (3) and (5) for this numerical 

evaluation. These assumptions lead to a periodic cooling 

and heating of the CNT in Fig. 10. This method might 

be a possible solution for the avoidance of breakdown. 

In fact, this strategy is in the focus of experiments 

(Zhang et.al, 2020).  

 

 
Figure 10. Maximum temperature of CNTs under applied 

alternating voltages 

 

CONCLUSIONS 

 

In summary, the thermal behavior of CNTs during 

electron field emission was analyzed by construction of 

analytical solutions of the heat conduction equation as 

well as numerical experiments. The influence of 

different inhomogeneities encoded in the volumetric 

heat source  txg ,  in Eq. (1) as well as initial and 

boundary conditions in Eqs. (4)-(5) was analyzed. In 

contrast to prior publications the time-dependence and 

the Stefan-Boltzmann term in the boundary condition of 

the free end as well as the contact quality were taken 

into account. Nevertheless, temperature dependent 

thermal conductivity, quantum size effects 

(Sandomirskiĭ, 1967) and stresses in axial as well as 

radial direction that occur due to the electrostatic force 

were neglected. However, this simplification still yields 

good agreement with experiments. The breakdown 

mechanism of CNTs under applied voltages is explained 

completely by use of Joule heating, heat radiation and 

electron emission at the tip. In particular, this study was 

able to confirm the experimental knowledge that the 

breakdown does not occur at the end of the CNT but 

rather a short distance beforehand due to tip cooling 

caused by electron emission. 

 

ACKNOWLEDGEMENTS 

 
The author acknowledges financial support by the 
Scientific and Technological Research Council of 
Turkey within the support program 1515 and 1004 for 
research and laboratory developments within the 
projects 5189901 and 20AG001, respectively. 
Moreover, the author is grateful to the Institute of 
Materials Science and Nanotechnology at Bilkent 
University and Department of Engineering Sciences at 
Middle East Technical University for providing the 
needed infrastructure. 

 

REFERENCES 

 

Aizen A. M., Redchits I. S. and Fedotkin I. M., 1974, 

On improving the convergence of series used in solving 

the heat-conduction equation, Journal of Engineering 

Physics, 26, 453-458. 

 

Bachtold A., Strunk C., Salvetat J., Forró L., 

Nussbaumer T. and Schönenberger, 1999, Aharonov–

Bohm oscillations in carbon nanotubes, Nature, 397, 

673-675. 

 

Bilodeau G. G., 1962, The Weierstrass transform and 

Hermite polynomials, Duke Mathematical Journal, 29, 

293-308. 

 

Bocharov G. S. and Eletskii A. V., 2013, Theory of 

Carbon Nanotube (CNT)-Based Electron Field Emitters, 

Nanomaterials, 3, 393-442. 

 

Bonard J., Dean K. A., Coll B. F. and Klinke C., 2002, 

Field Emission of Individual Carbon Nanotubes in the 

Scanning Electron Microscope, Physical Review Letters, 

89, 197602. 

 

Bonard J., Kind H., Stöckli T. and Nisson L., 2001, 

Field emission from carbon nanotubes: the first five 

years, Solid-State Electronics, 45, 893-914. 

 



  

  60 

Bonard J., Klinke C., Dean K. A. and Coll B. F., 2003, 

Degradation and failure of carbon nanotube field 

emitters, Physical Review B, 67, 115406. 

Charlier J., Blasé X. and Roche S., 2007, Electronic and 

transport properties of nanotubes, Reviews of Modern 

Physics, 79, 677-732. 

 

Charney J. G., Fjörtoft R. and J. Von Neumann, 1950, 

Numerical Integration of the Barotropic Vorticity 

Equation, Tellus, 2, 237-254. 

 

Cheng Y. and Zhou O., 2003, Electron field emission 

from carbon nanotubes, Comptes Rendus Physique, 4, 

1021-1033. 

 

Chernozatonskii L. A., Gulyaev Y. V., Kosakovskaja Z. 

J., Sinitsyn N. I., Torgashov G. V., Zakharchenko Y. F., 

Fedorov E. A. and Val’chuk V. P., 1995, Electron field 

emission from nanofilament carbon films, Chemical 

Physics Letters, 233, 63-68. 

 

Choi W. B., Chung D. S., Kang J. H., Kim H. Y., Jin Y. 

W., Han I. T., Lee Y. H., Jung J. E., Lee N. S., Park G. 

S. and Kim J. M., 1999, Fully sealed, high-brightness 

carbon-nanotube field-emission display, Applied Physics 

Letters, 75, 3129-3131. 

 

Collins P. G., Hersam M., Arnold M., Martel R. and 

Avouris P., 2001, Current Saturation and Electrical 

Breakdown in Multiwalled Carbon Nanotubes, Physical 

Review Letters, 86, 3128-3131. 

 

Crank J. and Nicolson P., 1996, A practical method for 

numerical evaluation of solutions of partial differential 

equations of the heat-conduction type, Advances in 

Computational Mathematics, 6, 207-226. 

 

Croci M., Arfaoui I., Stöckli T., Chatelain A. and 

Bonard J., 2004, A fully sealed luminescent tube based 

on carbon nanotube field emission, Microelectronics 

Journal, 35, 329-336. 

 

Curtright T. L. and Zachos C. K., 2013, Umbral Vade 

Mecum, Frontiers in Physics, 1, 15. 

 

Dai H., Wong E. W. and Lieber C. M., 1996, Probing 

Electrical Transport in Nanomaterials: Conductivity of 

Individual Carbon Nanotubes, Science, 272, 523-526. 

 

de Heer W. A., Châtelain A. and Ugarte D., 1995, A 

Carbon Nanotube Field-Emission Electron Source, 

Science, 270, 1179-1180. 

 

de Jonge N., Allioux M., Oostveen J. T., Teo K. B. K. 

and Milne W. I., 2005, Optical Performance of Carbon-

Nanotube Electron Sources, Physical Review Letters, 

94, 186807. 

 

Dehghani S., Moravvej-Farshi M. K. and Sheikhi M. H., 

2012, Temperature dependence of electrical resistance 

of individual carbon nanotubes and carbon nanotubes 

network, Modern Physics Letters B, 26, 1250136. 

 

Doytcheva M., Kaiser M. and de Jonge N., 2006, In situ 

transmission electron microscopy investigation of the 

structural changes in carbon nanotubes during electron 

emission at high currents, Nanotechnology, 17, 3226-

3233. 

 

Ebbesen T. W., Lezec H. J., Hiura H., Bennett J. W., 

Ghaemi H. F. and Thio T., 1996, Electrical conductivity 

of individual carbon nanotubes, Nature, 382, 54-56. 

 

Fairchild S. B., Zhang P., Park J., Back T. C., Marincel 

D., Huang Z. and Pasquali M., 2019, Carbon Nanotube 

Fiber Field Emission Array Cathodes, IEEE 

Transactions on Plasma Science, 47, 2032-2038. 

 

Flajolet P. and Sedgewick R., 1995, Mellin transforms 

and asymptotics: Finite differences and Rice's integrals, 

Theoretical Computer Science, 144, 101-124. 

 

Fornberg B., 1988, Generation of finite difference 

formulas on arbitrarily spaced grids, Mathematics of 

Computation, 51, 699-706. 

 

Fraser, D. C., 1909, On the Graphic Delineation of 

Interpolation Formulæ, Journal of the Institute of 

Actuaries, 43, 235-241. 

 

Fujii M., Zhang X., Xie H., Ago H., Takahashi K., Ikuta 

T., Abe H. and Shimizu T., 2005, Measuring the 

Thermal Conductivity of a Single Carbon Nanotube, 

Physical Review Letters, 95, 065502. 

 

Giubileo F., Di Bartolomeo A., Iemmo L., Luongo G. 

and Urban F., 2018, Field Emission from Carbon 

Nanostructures, Applied Sciences, 8, 526. 

 

Ha J. M., Kim H. J., Raza H. S. and Cho S. O., 2013, 

Highly stable carbon nanotube field emitters on small 

metal tips against electrical arcing, Nanoscale Research 

Letters, 8, 355. 

 

Hone J., Whitney M., Piskoti C. and Zettl A., 1999, 

Thermal conductivity of single-walled carbon 

nanotubes, Physical Review B, 59, R2514-R2516. 

 

Huang N. Y., She J. C., Deng S. Z., Xu N. S., Bishop 

H., Huq S. E., Wang L., Zhong D. Y., Wang E. G. and 

Chen D. M., 2004, Mechanism Responsible for 

Initiating Carbon Nanotube Vacuum Breakdown, 

Physical Review Letters, 93,075501. 

 

Jaluria Y. and Atluri S. N., 1994, Computational heat 

transfer, Computational Mechanics, 14, 385-386. 

 

Jang W. Y., Kulkarni N. N., Shih C. K. and Yao Z., 

2004, Electrical characterization of individual carbon 



  

  61 

nanotubes grown in nanoporous anodic alumina 

templates, Applied Physics Letters, 84, 1177-1179. 

 

Karim S., Toimil-Molares M. E., Balogh A. G., 

Ensinger W., Cornelius T. W., Khan E. U. and 

Neumann R., 2006, Morphological evolution of Au 

nanowires controlled by Rayleigh instability, 

Nanotechnology, 17, 5954-5959.   

 

Karim S., Toimil-Molares M. E., Ensinger W., Balogh 

A. G., Cornelius T. W., Khan E. U. and Neumann R., 

2007, Influence of crystallinity on the Rayleigh 

instability of gold nanowires, Journal of Physics D: 

Applied Physics, 40, 3767-3770. 

 

Lin C., Xiang Y. and Zhang J., 2019, Post-breakdown 

field emission behavior of a planar-structured single 

SWNT bundle in air, Journal of Micromechanics and 

Microengineering, 29, 065005. 

 

Liu Z., Zhang Y., Zhao P., Ye Y., Chen J., Xu N. and 

Deng S., 2019, In situ study of field emission vacuum 

breakdown of individual multi-wall carbon nanotube, 

Micro & Nano Letters, 14, 206-210. 

 

Milne W. I., Teo K. B. K., Chhowalla M., Amaratunga 

G. A. J., Lee S. B., Hasko D. G., Ahmed H., Groening 

O., Legagneux P., Gangloff L., Schnell J. P., Pirio G., 

Pribat D., Castignolles M., Loiseau, Semet V., Binh V. 

T., 2003, Electrical and field emission investigation of 

individual carbon nanotubes from plasma enhanced 

chemical vapour deposition, Diamond and Related 

Materials, 12, 422-428. 

 

Park S., Chae S., Rhee J. and Kang S., 2010, A Study on 

Electrical and Thermal Properties of Polyimide/MWNT 

Nanocomposites, Bulletin of the Korean Chemical 

Society, 31, 2279-2282. 

 

Purcell S. T., Vincent P., Journet C. and Binh V. T., 

2002, Hot Nanotubes: Stable Heating of Individual 

Multiwall Carbon Nanotubes to 2000 K Induced by the 

Field-Emission Current, Physical Review Letters, 88, 

105502. 

 

Rinzler A. G., Hafner J. H., Nikolaev P., Nordlander P., 

Colbert D. T., Smalley, R. E., Lou L., Kim S. G. and 

Tománek D., 1995, Unraveling Nanotubes: Field 

Emission from an Atomic Wire, Science, 269, 1550-

1553. 

 

Sandomirskiĭ V. B., 1967, Quantum Size Effect in a 

Semimetal Film, Soviet Physics Journal of Experimental 

and Theoretical Physics, 25, 101-106. 

 

Shannon C. E., 1949, Communication in the Presence of 

Noise, Proceedings of the IRE, 37, 10-21. 

 

Sugie H., Tanemura M., Filip V., Iwata K., Takahashi 

K. and Okuyama, F., 2001, Carbon nanotubes as 

electron source in an x-ray tube, Applied Physics 

Letters, 78, 2578-2580. 

 

Suzuura H. and Ando T., 2002, Phonons and electron-

phonon scattering in carbon nanotubes, Physical Review 

B, 65, 235412. 

 

Sveningsson M., Morjan R. E., Nerushev O. and 

Campbell E. E. B., 2004, Electron field emission from 

multi-walled carbon nanotubes, Carbon, 42, 1165-1168. 

 

Tolman R. C., 1918, A General Theory of Energy 

Partition with Applications to Quantum Theory, 

Physical Review, 11, 261-275. 

 

Vincent P., Purcell S. T., Journet C. and Binh V. T., 

2002, Modelization of resistive heating of carbon 

nanotubes during field emission, Physical Review B, 66, 

075406. 

 

Wang Z. L., Gao R. P., de Heer W. A. and Poncharal P., 

2002, In situ imaging of field emission from individual 

carbon nanotubes and their structural damage, Applied 

Physics Letters, 80, 856-858. 

 

Wei W., Liu Y., Wei Y., Jiang K., Peng. L. and Fan S., 

2007, Tip Cooling Effect and Failure Mechanism of 

Field-Emitting Carbon Nanotubes, Nano Letters, 7, 64-

68. 

 

Yang D. J., Zhang Q., Chen G., Yoon S. F., Ahn J., 

Wang S. G., Zhou Q., Wang Q. and Li J. Q., 2002, 

Thermal conductivity of multiwalled carbon nanotubes, 

Physical Review B, 66, 165440. 

 

Yi W., Lu L., Dian-lin Z., Pan Z. W. and Xie S. S., 

1999, Linear specific heat of carbon nanotubes, Physical 

Review B, 59, R9015-R9018. 

 

Zachos C. K., 2008, Umbral deformations on discrete 

space-time, International Journal of Modern Physics A, 

23, 2005-2014. 

 

Zhang P., Park J., Fairchild S. B., Lockwood N. P., Lau 

Y. Y., Ferguson J. and Back T., 2018, Temperature 

Comparison of Looped and Vertical Carbon Nanotube 

Fibers during Field Emission, Applied Sciences, 8, 

1175. 

 

Zhang Y., Tan Y., Wang L., Li B., Ke Y., Liao M., Xu 

N., Chen J. and Deng S., 2020, Electron emission and 

structure stability of carbon nanotube cold cathode 

driven by millisecond pulsed voltage, Vacuum, 172, 

109071. 

 

Zhang J., Yang G., Cheng Y., Gao B., Qiu Q., Lee Y. 

Z., Lu J. P. and Zhou O., 2005, Stationary scanning x-

ray source based on carbon nanotube field emitters, 

Applied Physics Letters, 86,  184104.  



  

  62 

 

 

 

 

 

Yahya Öz is the Chief Engineer of the Advanced Composite Materials Technology 

Center of the R&D Directorate at Turkish Aerospace, a researcher in the Institute of 

Materials Science and Nanotechnology at Bilkent University and a Visiting Assistant 

Professor in the Department of Engineering Sciences at the Middle East Technical 

University, Ankara, Turkey. He received his B.Sc. (2011) in Applied Physics and 

Chemistry, his M.Sc. (2013) and his Ph.D. (2017) in Physics  in the Faculty of 

Mathematics and Natural Sciences at the University of Wuppertal, Germany, where he  

constructed and solved the Hubbard model with impurity at arbitrary temperature as well 

as manipulated the host’s density of states by keeping integrability.  Following his PhD, 

he became a postdoctoral researcher and worked on transport properties of integrable 

systems as well as the hydrodynamic approach for integrable systems out of equilibrium. 

In 2019, he joined Turkish Aerospace. His current research interests include integrable 

models, modeling of nanomaterials as well as nanocomposites properties and modeling, 

fabrication and experimentation of composite materials for aerospace applications.  Dr. 

Yahya Öz  is the recipient of the full scholarship  (2010-2017) by Germany's largest, 

oldest and most prestigious scholarship foundation, the German Academic Scholarship 

Foundation, and the 2014 Outstanding Young Scientist Award  by the German 

Association for the Promotion of Mathematics and Natural sciences.  

 


