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Abstract 

Acomys cilicicus is a narrow range, endemic spiny mouse species of Turkey. Some issues have been uncertain about its distribution 

and status. Therefore, in the study, we aimed to identify species' spatial distribution and understand the impact of environmental 

factors on species. We used maximum entropy modeling to fulfill these purposes. The results showed that the distribution of the 

species is restricted in the coastal part of the study area, the human population is one of the severe threats for the species distribution, 

and the fluctuations of climatic conditions may adversely affect the species distribution. We hope that these outputs can be valuable 

for the species' conservation efforts and guide the conservation of Acomys cilicicus and other narrowly distributed species. 
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Introduction 

The target species of the study, Acomys cilicicus, is one 

of Turkey's endemic spiny mouse species. Acomys 

cilicicus was previously known as the narrow range 

endemic species and hence, was listed as critically 

endangered (CR) in the IUCN red list of threatened 

species (Amori et al., 2008). However, it was described 

as data deficient (DD) in 2008 because of the lack of 

knowledge about its distribution. It has also been 

reported to be most likely conspecific with the 

widespread species Acomys cahirinus (Amori et al., 

2008). On the other hand, insufficient knowledge about 

its distribution and uncertain assessment of its status has 

led to the conservation targets of this endemic species 

not being determined adequately until now. It is known 

that the identification of species spatial distribution is 

one of the main issues in biodiversity conservation. It is 

especially essential for endemic, threatened, and rare 

species since species distribution determines how 

conservation action plans are formed. However, a simple 

description of species distribution is insufficient for 

effective biodiversity conservation and management. 

Instead, using more sophisticated approaches to identify 

species distribution and figure out complicated 

ecological relationships should be a priority and adopted 

as an integral part of conservation studies. Conservation 

efforts considering these points can meet requirements 

that ensure species' long-term survival. Therefore, in the 

study, we aimed to model the spatial distribution of 

Acomys cilicicus and investigate the effects of 

environmental factors on species distribution. Maximum 

entropy (Maxent) modeling was used for this purpose 

(Phillips and Dudík, 2008; Phillips et al., 2006). It is 

based on the maximum entropy prediction and predicts 

the potential distribution of species from a set of 

environmental predictors and presence-only data (Young 

et al., 2009; Phillips et al., 2004). The software is highly 

effective in solving complex relations between predictors 

and response variables (Elith et al., 2011; Elith et al., 

2006) and thus, produces good predictions of species 

distribution. This and its sensitivity to small sample sizes 

and clumped data have made the software the most 

widely used distribution modeling algorithm (Wisz et al., 

2008). The model outputs indicate priority distribution 

areas of the species and reveal the effects of 

environmental factors on species distribution. Therefore, 

this study may provide the required information for the 

future conservation of this narrow range species and 

serve as outputs to plan future species research.  

Materials and Methods 

Study area 

The study area is in the middle south of Turkey (Figure 

1A) and lies between latitude 36.31 to 36.75 and 

longitude 33.88 to 34.31. It occupies approximately a 

1500 km² area (Figure 1B). The area is about 38 km 

away from Mersin province and covers the Erdemli 

district. It extends between the Mediterranean coastal 

plain and the western part of the high Taurus Mountains 

and has an altitude range of roughly 0 to 1600 m (Figure 

1B). The coastline mainly contains broad agricultural 

areas, while meadows and forests dominate the high 

sections. The region is quite rural and maintains its green 
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image throughout the year. It hosts many animal species 

and demonstrates high plant diversity. 

Modeled species and occurrence data 

Acomys cilicicus is known as the Asia Minor, or Turkish 

spiny mouse since the back of both males and females 

are covered with coarse, inflexible spine-like hairs. The 

species is only known from Turkey's south coast, the 

type locality (Çetintaş et al., 2017; Amori et al., 2008). 

The taxon is a species of rodent in the family of Muridae 

(Musser and Carleton, 2005). It is a small, terrestrial, and 

social rodent. Acomys cilicicus is a nocturnal species 

like most species of the spiny mice, but it may be active 

in the morning and late afternoon. Species is 

omnivorous, thus fed to grass, seeds, and insects 

(Aulagnier et al., 2010). In the study, the sample survey 

area had to be limited to the region on the southern coast 

of the study area based on the knowledge that it is a local 

narrowly distributed endemic species (Figure 1B, C). 

Moreover, inadequate information about its habitat 

preferences did not allow our field experts to expand the 

sample survey area. Therefore, occurrence records of the 

species were collected from its type locality and 

immediate environment. Records were obtained using 

100 traps for each locality, placing them on a line with 

10 m intervals. The same trapping and record procedure 

were followed for all localities. As a result, 27 

occurrence records of Acomys cilicicus were gathered 

for analysis (Figure 1B, C). Distance between these 

records ranges from 0.250 km to 15.8 km (Figure 1C). 

Fig. 1. (A)location of the study area, (B) altitude and 5 km buffer zone (C) distribution of the presence record 

Environmental predictors 

Environmental predictors considering their biological 

relevance for species distribution were gathered in 

modeling analysis (Fourcade et al., 2014; Nazeri et al., 

2012). Accordingly, 17 climate predictors were obtained 

from the WorldClim database (URL 1). Altitude, aspect, 

and slope were determined as topographic predictors of 

the species and used in modeling. The global land cover 

map provided by European Spatial Agency was also 

added in modeling analysis. Before including the model, 

the map was reclassified according to the species' habitat 

requirements, and the resulting 9 class land cover map 

was included in the analysis. On the other hand, target 

species are subject to human disturbances due to the 

rural human population and their activities in the area. 

The influence of these disturbances should be reflected 

in the model. Our field experts determined roads 

(especially secondary roads), rural settlement (total rural 

population of the area ≥ 45,000), and agricultural areas 

as the human disturbances for species and digital layers 

of the disturbances were produced as distance to roads, 

distance to settlements, and distance to agricultural areas 

applying fuzzy membership functions. In addition, an 

accessibility layer was generated and added in the 

modeling analysis to avoid bias from sampling. The 

layer was produced as a linear combination of fuzzy road 

and ruggedness and showed the measure of accessibility 

for each pixel. All environmental predictors were 

afterward resampled to 1 km spatial resolution 

interpolating cell values based on the values of nearest 

neighbor cells and tested for multicollinearity, applying a 

preliminary correlation analysis (-0.70<×<0.70, 

correlation threshold). The accessibility and land cover 

maps were excluded from this analysis since the 

accessibility layer was used for bias correction and the 

land cover map is a categorical map. Consequently, 20 

environmental predictors were included in the modeling 

analysis (Table 1). 
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Table 1. Environmental predictors included in Maxent modelling analysis 

Maximum entropy modeling 

In the study, the MaxEnt model was performed with 

tuned model parameters to obtain a species-specific, 

optimum model prediction. Accordingly, the starting 

point should be to determine an appropriate background 

sample. Background sample directly affects the relative 

probability of presence (Elith et al., 2011; Vanderwal et 

al., 2009). Therefore, it should meet the environmental 

conditions of the ecological problem we are working on. 

As previously stated, the target species, Acomys 

cilicicus, is a narrowly distributed local endemic species. 

It means that habitat requirements are too specific and 

are restricting factors to the distribution of the species. 

At that point, the correct application is to build a model 

with the known spatial extent of the species (e.g., 

Rhoden et al., 2017; Peterman et al., 2013). Accordingly, 

the distribution model was fitted, generating 2500 

random background points within a 5 km buffer that 

surrounds the presence records of the species and then 

projected to the defined study area (Figure 1). Model 

complexity was afterward adjusted by feature classes 

and regularization coefficient (β). Feature classes are 

mathematical functions to transform predictor variables, 

and they define species' responses to environmental 

conditions (Morales et al., 2017; Syfert et al., 2013). The 

study used linear, quadratic, and hinge feature classes. 

Thus, a simpler model suitable for few occurrence 

records was built instead of modeling complex 

environmental responses, balancing the model 

complexity. 

On the other hand, the Regularization coefficient was 

applied to prevent model prediction from overfitting or 

underfitting (Merow et al., 2013; Elith et al., 2010). It is 

a type of penalty and adjusts model by identifying the 

number and type of functional forms of predictors 

(Merow et al., 2013; Syfert et al., 2013); thus, it enables 

the model to vary from simple to complex. We tested 

three different levels of complexity in the study by 

setting the regularization coefficient at 1, 1.3, and 1.5. 

Cross-validation with 5-fold was used to evaluate the 

prediction accuracy of the model. The advantage of this, 

it uses all data for both training and testing and provides 

efficient use of a small sample size. Finally, the model 

was performed with 5000 iterations, and a logistic 

distribution map ranging from 0 to 1 was produced. 

Model performance was assessed with the AUC (Area 

Under the Curve) metric of ROC (Receiver Operator 

Characteristic) curve (Almalki et al., 2015; Morovati et 

al., 2015). It is plotted sensitivity (true positive) against 

1- specificity (false positive) and measure separability of 

the model. Values closer to 1.0 indicate better model 

performance (Villordon et al., 2006). We also evaluated 

the spatial pattern of predicted probability with 

threshold-dependent binomial test and applied a 10% 

Environmental Predictor Type Source 

Climate Predictors 

Continuous WorldClim database 

Temperature annual range 

Min Temperature of Coldest Month 

Max Temperature of Warmest Month 

Precipitation of Coldest Quarter 

Precipitation of Driest Quarter 

Precipitation of Warmest Quarter 

Precipitation of Wettest Quarter 

Precipitation Seasonality 

Temperature Seasonality 

Annual Precipitation 

Mean Diurnal Range 

Isothermality 

Annual Mean Temperature 

Mean Temperature of Coldest Quarter 

Mean Temperature of Driest Quarter 

Mean Temperature of Warmest Quarter 

Mean Temperature of Wettest Quarter 

Topographic Predictors 

Altitude 

Continuous 

USGS 

Slope 
Derived from DEM 

Northern and Eastern Aspect 

Human Disturbance Predictors 

Distance to roads 

Continuous 
Derived with fuzzy function 

Distance to settlement 

Distance to agricultural areas Extracted from Land Cover 

Land Cover Predictor Categorical European Spatial Agency 

Accessibility layer Continuous Derived from road and ruggedness 

* Environmental predictors written in bold excluded from the modelling analysis due to the high correlation coefficient

values. 
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training presence logistic threshold (0.443) to distinguish 

predicted presences (suitable habitats) and absences 

(unsuitable habitats) for the species. This test enables us 

to figure out the model's prediction performance as well. 

Additionally, the importance of predictor variables was 

measured with the leave one out jackknife approach, and 

environmental predictors making the greatest 

contribution to the model were determined. Lastly, 

response curves of the environmental predictors 

indicating the highest permutation importance on the 

model prediction were examined, and the impact of 

environmental predictors on the species distribution was 

evaluated. The response curves were by the spatial 

resolution of environmental predictors with 1*1 km². 

Results 

The spatial distribution of Acomys cilicicus was 

modeled associating climatic, topographic, biologic, and 

disturbance predictors with the presence only data of the 

species. The model was built at three different levels of 

complexity, applying β coefficients as 1, 1.3, and 1.5. 

Results indicated that the model built at β, equal to 1.3, 

predicted the distribution of the target species with a 

high success rate. The performance of the related model 

was evaluated using both ROC analysis and threshold-

dependent binomial test. According to the ROC analysis, 

the mean AUC value was 0.92 and 0.89 for training and 

testing with a standard deviation of 0.035. This result 

indicated that the model generated much better 

predictions than random. The threshold-dependent 

binomial test was applied with a 10% training presence 

logistic threshold. It is a one-tailed binomial test, and its 

null hypothesis states that test points are predicted no 

better than a random prediction with the same fractional 

predicted area. This test investigates model performance 

based on the extrinsic omission rate. According to the 

result, the model performed well with a low omission 

rate at 10% training presence logistic threshold (p= 

0.00093, p< 0.001, one-tailed). That is, the null 

hypothesis was rejected. Thus, it has been confirmed that 

the model performed better distribution prediction than 

the random one. Consequently, both the ROC analysis 

and the binomial test showed high discrimination 

capacity and robust predictive accuracy of the model. 

The spatial pattern of species distribution was evaluated 

by the logistic predicted map of the model, and it was 

seen that suitable habitats for Acomys cilicicus are 

primarily concentrated in the coastline where the species 

are recorded (Figure 2A). In addition, fragmented small 

habitat patches are observed in different parts of the 

study area (Figure 2A). However, a remarkable result 

observed on the logistic map is another region in the 

northeast of the study area, indicating high habitat 

suitability for distribution of the target species (Figure 

2A). Although our field expert has not yet examined the 

region, satellite images also confirm the habitat 

suitability of the region for the distribution of the target 

species. Lastly, the logistic predicted map was classified 

applying 10 % training presence logistic thresholds. The 

classified map of the species distribution has a good 

discrimination capacity between unsuitable and suitable 

habitats (Figure 2B). According to the map, the suitable 

habitat of the target species occupied 28.4 % of the study 

area (Figure 2B). This result signifies that overall 

predicted suitable habitats cover a tiny portion of the 

study area.   

Fig.2. (A) model’s predicted probability map (B) classified probability map showing suitable and unsuitable habitats 
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Table 2. The relative contribution of environmental predictors to the Maxent model 

Environmental Predictor Permutation 

Importance 

Distance to settlement 26.3 

Northern aspect 26 

Distance to agricultural area 10.3 

Mean temperature of driest quarter 8.3 

Annual precipitation 7.3 

Temperature seasonality 6.7 

Land cover 3.1 

Distance to roads 2.8 

Diurnal range 2.3 

Precipitation of driest quarter 1.9 

Eastern aspect 1.4 

Isothermality, min temperature of coldest month, annual mean temperature, accessibility, max 

temperature of warmest month, slope, precipitation of warmest quarter, precipitation seasonality, 

temperature annual range 

0-0.9 

Fig. 3. Response curves of the predictors indicating the highest contribution on the predicted distribution model. 

Maxent estimates the relative contribution of 

environmental predictors for the predicted model, and 

the higher permutation importance indicates the more 

impact the environmental predictors have on predicting 

the potential distribution of the species. In the present 

study, distance to settlement, north aspect, and distance 

to agricultural area predictors significantly contributed to 

the model with 26.3, 26, and 10.3 %, respectively (Table 

2). On the other hand, precipitation of warmest quarter, 

precipitation seasonality, temperature annual range did 

not contribute to the model prediction (permutation 

importance 0, Table 2). In this case, the Maxent model 

can be re-run without these environmental predictors. It 

may also be considered to drop some of the other 

relatively unimportant environmental predictors from the 

model, such as isothermality, min temperature of the 
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coldest month, annual mean temperature, accessibility, 

the max temperature of the warmest month, and slope 

(permutation importance are 0.9, 0.9, 0.6, 0.6, 0.4 and 

0.2 respectively, Table 2). 

Response curves demonstrated how each environmental 

predictor responded to the predicted distribution model. 

In the study, we only evaluated the response of 6 

environmental predictors that have permutation 

importance greater than 5% on the predicted model 

(Table 2). Accordingly, it is understood that the species 

do not like being close to the people; thus, habitat 

suitability increases with increasing distance from 

settlements (Figure 3A). Another response curve 

revealed the relationship between species distribution 

and aspect preference (Figure 3B). Accordingly, 

Although Acomys cilicicus lives on the southern coast of 

Turkey, it mostly prefers areas of the northern aspect, 

and its probability of presence decrease as the aspect 

returns northeast direction (Figure 3B). Unlike distance 

to settlement predictor, habitat suitability decreases with 

increasing distance from agricultural areas. It indicates 

that the species need agricultural areas to feed (Figure 

3C). 

On the other hand, the probability of presence increases 

from 0.05 to 0.80 as the mean temperature of the driest 

quarter increases to around 26.3 º (Figure 3D). However, 

the probability of presence decreases when the mean 

temperature of the driest quarter rises above 26.5º 

(Figure 3D). The results indicated that Acomys cilicicus 

does not prefer cold and hot temperatures. It means that 

the mean temperature of the driest quarter, around 26.3 º- 

26.4 º is appropriate for species distribution. It is also 

seen that presence of Acomys cilicicus decrease where 

annual precipitation is above 615 mm. (Figure 3E). 

Nevertheless, the probability of presence is about 0.80 

when the annual precipitation is less than 615 mm 

(Figure 3E). This result shows that target species avoid 

areas with high annual precipitation. Lastly, the response 

curve of temperature seasonality was evaluated, and 

probability distribution decreased from approximately 

0.7 to 0.1 at a temperature seasonality of 720 (it is the 

temperature coefficient of variation, Figure 3F). 

Temperature seasonality is the amount of temperature 

variation over a given period (O’Donnell and Ignizio, 

2012). Our result showed that Acomys cilicicus is 

sensitive to high-temperature variation and does not 

prefer high-temperature seasonality areas. 

The Maxent internal Jackknife test indicated the 

importance of predictors for the model. Accordingly, 

annual precipitation, mean temperature of driest quarter, 

annual mean temperature, minimum temperature of the 

coldest month are the four most critical environmental 

predictors for habitat distribution of Acomys cilicicus 

(Figure 4). The results mean that these predictors have 

high gain when used in isolation and thus, contain the 

most useful information for the model (Almalki et al., 

2015; Phillips et al., 2006). The environmental predictor 

that decreases the gain the most when excluded from the 

model is the distance to settlements (Figure 4). This 

result showed that it has the most useful information that 

is not present in other environmental predictors. 

Fig. 4. Jackknife test indicating the importance of predictors in the regularized training gain for the distribution model  
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Discussion and Conclusion 

The model presented in the study was built on a few 

species occurrence records applying species-specific 

model parameters. Results indicated the high 

discrimination capacity of the model and thus supported 

that the model is an appropriate method for estimating 

species distribution. One of the main outputs of the 

model was the species distribution map and displayed 

that Acomys cilicicus is distributed in small remnant 

habitats (28.4 % of the total study area) (Fig. 2B). The 

distribution map of the species indicated potential 

current suitable habitat and pointed high priority survey 

areas for the species. Therefore, the output may be a 

valuable guide to serve conservation efforts and plan 

future studies of the target species. One of the crucial 

findings of the study is that Acomys cilicicus avoids 

settlements. Ecologically speaking, this signifies that 

human existence is a threat to the distribution of target 

species. This finding points out the importance of 

conservation efforts for this narrow range of endemic 

species' remaining population. At this point, the species 

distribution map is a crucial resource showing where 

conservation efforts should be concentrated. Some study 

results are also a warning against the adverse effects of 

climate change on the species. Accordingly, mean 

temperature of the driest quarter, annual precipitation, 

and temperature seasonality had the highest contribution 

in model prediction (Table 2), and their response curves 

indicated that temperature and precipitation fluctuations 

negatively affect the probability of presence (Fig. 4). It is 

clear that these predictors are an essential determinant of 

species distribution, and therefore, species distribution is 

sensitive to their changes. Shortly, the results support the 

adverse effects of climate change on the species 

distribution and show that this vulnerable species needs 

conservation measures for its long-term survival. 

However, it should be noted that if environmental 

predictors were on a finer scale, then the species' 

response to environmental conditions could be evaluated 

in more detail with smoother curves. In addition, the 

most challenging part of this study was the few 

occurrence records and limited spatial extent of the study 

due to the narrow distribution of the target species. 

Therefore, providing new species records and expanding 

the study area can make model inputs more compatible 

and improve model outputs. This approach will 

contribute to improving the conservation strategies of the 

species in the long term. 
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