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ABSTRACT 
 
 
This paper presents a brief study of the information from the published literature and author’s works regarding 
rotor-bearing systems analysis with respect to optimization. The main goal of this work is to motivate and give 
an idea to designers who are willing to deal with optimization of rotor-bearing sytems. The results obtained and 
presented in this study are to provide a comparison with numerical optimum design methods such as gradient-
based method, and to show the potential of genetic algorithms in optimization of rotor-bearing systems. Genetic 
algorithms have been used as optimization problem solving techniques. They are parameter search procedures 
based on the idea of natural selection and genetics. These robust methods have increasingly recognized and 
applied in many applications.  
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ROTOR-RULMAN SİSTEMLERİNİN TASARIM OPTİMİZASYONU 
 
 

ÖZET 
 
 

Bu makale rotor-rulman sistemlerinin analizi ve optimizasyonunu göz önüne alarak yazarın çalışmaları ile 
birlikte literatürden kısa bir bilgi sunumu mahiyetinde bir çalışmadır. Çalışmayla, rotor-rulman sistemlerinin 
optimizasyonu alanında çalışmak isteyen tasarımcıya bir motivasyon ve fikir verme amaç edinilmiştir.  
Çalışmada genetik algoritmalar methoduyla elde edilen sonuçlar numeric metodla elde edilen sonuçlarla kıyas 
edilerek genetik algoritmaların kabiliyeti gösterilmiştir. Genetik algoritmalar tabii seleksiyon (seçim) tekniğini 
kullanarak tanımlanan sınırlar içinde tarama yapan ve genetik fikrine dayalı uygun araştırma teknikleridirler. 
Günümüzde genetik algoritmalar bir çok alanda kullanılmaktadır. 
 
Anahtar Kelimeler : Rotor, Rulman, Optimizasyon, Genetik algoritmalar 
 
 

1. INTRODUCTION 
 

The vibration of rotors and rotor systems has been a 
concern of engineers and scientists for a more than a 
century. In 1869, Rankine (1869) published an 
article, " On the Centrifugal Force of Rotating 
Shafts", which is the earliest reference to vibrations 
of a rotating system. From this period of time, 
dynamical analysis of shaft was begun. Modern 
designs of rotor-bearing systems usually aim for 
increased power output and improvement in 
efficiency. The demanding requirements placed on 
modern rotating machines, such as turbines, electric 

motors, electrical generators, compressors, have 
introduced a need for higher speeds and lower 
vibration levels. In addition to demand for improved 
aerodynamic performance, the mechanical 
components must satisfy requirements for prediction 
and control of rotor response, balancing, and rotor-
bearing stability. The successful design of high-
speed rotor-bearing system needs to be analyzed to 
evaluate the problems and to identify optimum 
solutions to the problems. This paper provides an 
introduction and a review of the role of rotor 
dynamics in design of high speed rotating 
equipment. 
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The role of rotor dynamics in accurately predicting 
the dynamic characteristics of rotor-bearing systems 
has become increasingly important, as the emphasis 
in design of modern rotating machinery has been 
towards higher speeds and higher outputs. To remain 
competitive, it is necessary that rotor-bearing system 
be designed to operate as efficiently as possible at 
higher speeds and power levels. Figure 1 shows a 
rotor-bearing-foundation system model. The 
designers of the rotating machinery systems 
typically perform calculations to examine the lateral 
bending characteristics of rotor systems. These 
classified as synchronous response, stability, critical 
speed, and transient analysis. Each of these involves 
different assumptions on the form of the system 
stimuli and response, (Rouch et al., 1991). The 
mathematical modeling of a rotor-bearing system 
requires consideration of structural dynamics and 
fluid dynamics to describe the rotor and bearing 
behavior. Each of these aspects can be considered in 
varying level of detail in the model. 
 
 

 
Figure 1. Rotor-bearing-foundation model 

 
With this model, it is possible to optimize the design 
of the system. The optimization of designs by 
computer is an area in which research is rapidly 
growing. The conventional optimization techniques 
such as Non-linear Programming Method, Method 
of Feasible Directions, and Sequential Quadratic 
Programming Method have been used to conduct the 
optimum design of rotor-bearing system. These 
programming techniques provide a general approach 
for obtaining solution to both single and multi-
objective design problems. These methods require at 
least the first-order derivatives of both the objective 
and constraint functions with respect to design 
variables.  

Rajan et al. (1987) presented an automated design 
procedure for the optimal placement of undamped 
critical speeds of a rotor-bearing system. The desired 
design objective is treated as a non-linear 
programming problem that minimizes an objective 
function subject to constraints. The optimization 
program was designed to interact with the rotor 
dynamic analysis program to search for the feasible 
optimal design. An optimal design algorithm was 
developed by Shiau and Chang (1993) to minimize 
individually and simultaneously, the total weight of 
the shaft and the transmitted forces at the bearings, 
which play very important roles in a rotor-bearing 
system, under the constraints of critical speeds. The 
bearing stiffness, the cross-sectional area of the 
shaft, and the positions of bearings and disks were 
chosen as the design variables. The dynamic 
characteristics of rotor-bearing system also were 
determined by using the generalized polynomial 
expansion method. A notable work by Bhat et al. 
(1982) used an optimization technique to find the 
optimum dimensions of the plain cylindrical journal 
bearing and the viscosity of the oil to achieve 
minimum unbalance response. Barret et al. (1978) 
presented optimum support damping to minimize the 
unbalance response and maximize stability speed 
limit in the vicinity of the first critical speed of a 
rotating machinery. Chen (1987) and Chen et al. 
(1988) presented several optimal design procedures 
in the design of rotor-bearing systems using 
mathematical programming optimization techniques; 
Recursive Quadratic Programming and Feasible 
Direction Method. Roso (1997) applied the Method 
of Global Criterion to the optimization of rotor-
bearing system design and found the method 
workable and predictable in its performance. 
 
Recent advances in computer technology have 
allowed more complex systems to be optimized. Due 
to more efficient computers available today, a 
variety of new techniques and applications of 
optimization have been developed over the past 
years. Genetic algorithms are probably the best-
known algorithms among those. Genetic algorithms 
are search procedures based on the mechanics of 
natural genetics, (Goldberg, 1989). The rapidly 
growing use of genetic algorithms in engineering 
problems is extended to include rotor-bearing 
system design optimization. The genetic algorithm is 
a non-traditional global search and optimization 
technique that provides attractive features for multi-
objective engineering design optimization. Genetic 
algorithms have been shown to be capable of 
searching for optima in function spaces, which 
causes difficulties for gradient techniques (Saruhan 
et al., 2001; Saruhan et al., 2002). Roso (1997) 
developed and outlined the design criteria for 
analysis of the interaction between the rotor dynamic 
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behavior and the performance of fluid-film bearings. 
Roso (1997) in his study concluded that the 
numerical optimization techniques involving 
multiple design variables may not always produce an 
absolute optimum solution, but rather a local 
optimum solution depending upon the mathematical 
characteristics of objective function. In this point of 
view, the author of this paper has provided use of 
Genetic Algorithms Method to handle these 
problems, (Saruhan, 2001). It is not the intention of 
this paper to provide broad information about 
genetic algorithms; interested reader may refer to 
(Goldberg, 1989; Mitchell, 1997) for in depth 
introduction of genetic algorithms. 

 
 

2. ROTOR-BEARING SYSTEM 
 
 

A typical rotating system is composed of various 
components, such as rotors, disks, support bearings 
and foundations. These massive and flexible 
components absorb and dissipate energy when 
subjected to disturbances, and produce a unique 
pattern of a variety of response, (Arora, 1987). The 
dynamic response of a rotor-bearing system can be 
approximated by the set of linear differential 
equations obtained from the finite element 
representation. The system parameters including the 
geometry of the system, coefficients of bearing, 
inertia properties of rigid disk, and the distribution 
of the mass and stiffness of rotating assemblies all of 
which have significant influence on the dynamic 
characteristics of the rotor-bearing system.  
 
2. 1. Rotor 
 
The representation of the shaft element as a series of 
beam elements is common in the application of the 
finite element method to rotor-bearing systems. 
Under a small deflection assumption, the linearized 
equation of motion for the shaft element can be used 
to model the shaft. For more detailed methodology, 
reader can refer a study by Rouch (1977). The 
general finite rotor element system of differential 
equation: 
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Where r

tM , r
rM , r

gC , and rK  are the element 
translational mass matrix, the rotational inertia 
matrix, the gyroscopic matrix, and the element 
stiffness matrix respectively. rQ is the vector of 

generalized forces. The displacement vectors rq  are 
the time dependent endpoint translations and 

rotations displacement of the finite element, which is 
shown in Figure 2. 
 

 
Figure 2. Typical finite rotor element and coordinate 
system 
 
2. 2. Mass Elements 
 
In many applications it is acceptable to consider the 
width of the disk to be negligible in comparison with 
overall rotor-bearing system, (Enrich, 1992). The 
disks are assumed to be concentrated, rigid body. 
Rigid disks are generally considered to be symmetric 
about the axis of rotation. The effect of the forces 
and moments applied by the disks on the shaft is 
added to the global dynamic stiffness matrix 
equation. The rigid disks are modeled as a four-
degree of freedom rigid body with generalized 
coordinates defined as two translational ),( VU of 
the mass center in the ),( YX  directions and two 
rotations ),( ΦΘ  of the plane of the disk about the 

),( YX axes. The rigid disk is usually required to be 
located at a node of the rotor element.  
 

}{Q}q{[0]}q{][CÙ}q{]M[M dddd
g

dd
r

d
t =+++ &&&       (2) 

 
Where, Td Ö)È,V,(U,q =  is the displacement vector 
of the finite rotor element station at which the disk is 
located and dQ is the vector of generalized forces of 

the disk. d
tM and t

rM are translational mass matrix 
and rotational inertia matrices, respectively. The 
gyroscopic matrix, d

gC , is a skew-symmetric matrix. 
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Assembly of the matrices are: 
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2. 3. Linear Bearing 
 
In the rotor-bearing system, fluid-film bearings are 
frequently used because of their low wear and 
damping properties. Techniques for modeling 
bearings can be classified as linear or non-linear; 
linearized approaches usually require restrictions on 
the range of applicability, (Rouch, 1977). When load 
pushing down on the journal, it occupies an 
eccentric position. The displacement of loaded 
journal is not in the same direction of the acting 
load. Therefore, the journal reaction force exhibits 
both vertical and horizontal components. Thus, the 
fluid-film acts like a non-isotropic spring and 
dashpot with cross coupling between vertical and 
horizontal directions as shown in Figure 3. The most 
commonly used model for small perturbations of the 
journal from the static equilibrium position is that of 
eight anisotropic linear coefficients; each anisotropic 
bearing is described by four stiffness and four 
damping coefficients. The linear part of the spring 
and damping forces of such a bearing has the 
following form: 
 

 
 

Figure 3. Modeling of fluid-film bearing 
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Where ][ bC  is the damping matrix, ][ bK  is the 
bearing stiffness matrix, and }{ bQ is the vector of 
generalized forces of the bearings. Fluid inertia 
effects are assumed to be negligible and translational 
and rotational motions are also decoupled. 
 
2. 4. Foundation 
 
The structure beyond the bearings, which is called 
the foundation, can have a significant effect on the 
response of the rotor-bearing system. A foundation 
is generally represented by stiffness and damping 
coefficients. The influences of foundation stiffness 
and damping on rotor-bearing system vibration 
characteristics cannot be ignored in most cases. The 
addition of foundation flexibility to the rotor-bearing 
system computation tends to lower the frequency of 
the first critical speed and increase the amplification 
factor, (Rouch et al., 1991). The system of 
governing equation of motions of each foundation 
level connecting node i  to node j  can be written 
as: 
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The general dynamic equations of motion for the 
entire rotor-bearing-foundation system are obtained 
by assembling the appropriate components. Equation 
(10) gives the assembled equations of motion for the 
complete system. This equation describes the 
general motion of the entire physical system. 
 

{Q}q}[K]{}q]){C[Ù([C]}q{[M] g =+++ &&&            (10) 
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For fixed frame coordinates, where ][M is generally 
known as the mass/inertia matrix which is a positive 
definite real symmetric matrix. ][C is the damping 
matrix. It is a real non-symmetric and sparsely 
populated. ][Cg is called the gyroscopic matrix, 
which is real skew-symmetric matrix. ][K  is a real 
non-symmetric due to non-conservative bearing 
properties and foundations. }{q is the system 
displacement vector in a fixed reference frame. 

}{Q is the vector of generalized forces. 
 
 

3. ROTOR-BEARING SYSTEM 
ANALYSIS TYPES 

 
 

Modern high-speed rotor-bearing systems are 
complex. With increasing performance criteria, the 
design process of these systems usually requires the 
integration of the design and analysis. All rotor-
bearing system is supported by one or more 
bearings, which play a vital in determining the 
behavior of the rotating system under action of both 
static and dynamic loads. The analyses that are 
typically performed on rotor bearing systems are 
critical speed, synchronous response, stability, and 
transient analysis. In the following, these analyses 
will be introduced briefly. 
 
3. 1. Critical Speed 
 
A critical speed is defined as the frequency at which 
the rotational frequency of the shaft equals the 
vibration frequency. Critical speeds are dynamic 
properties of the rotor-bearing system. Each natural 
frequency of a rotor system has a particular mode 
shape. At a critical speed, the harmonic force from 
centrifugal unbalance excites the corresponding 
mode of the system, which causes the rotor to whirl 
in its supports in this mode shape, in synchronism 
with the rotor speed. A rotor system must be 
designed to operate without excessive vibration 
throughout its range of operating speed. Rotor 
unbalance, where the geometric center of rotation 
differs from the mass centroid, induces an unbalance 
force to cause synchronous vibration. Many 
machines operate above the first critical speed (first 
rotor system natural frequency). Therefore, they 
must be able to pass through one or more critical 
during start-up without excessive vibration, (Rouch 
et al., 1991). The primary source of system damping 
is usually the bearing. Sufficient bearing damping 
can allow passing through a critical speed or 
operation near a critical speed. It is also possible for 
rotors to be unstable due to poor bearing selection or 
due to aerodynamic effects, which can produce the 

equivalent of negative damping. Rotor systems must 
be designed so that instability does not occur in the 
operating range. The maximum operating speed is 
limited by the maximum speed at which the shaft, 
bearings, and components can be designed for safe 
operation. Damping is sometimes ignored in this 
analysis, providing an “ undamped ” critical speed 
for performing design purpose. 
 
3. 2. Synchronous Response 
 
Synchronous response involves solution for the 
motion of the rotor due to a specific unbalance force 
distribution at a given speed. A series of 
synchronous response solution across the operating 
speed range yields the location of damped critical 
speeds as peaks in the rotor response, (Rouch et al., 
1991). The most simple rotor model is called a 
Jeffcott,  (Jeffcott, 1919), rotor model, which is 
named after the dynamist who first used the rotor 
model to analyze the response of high-speed rotor 
system to rotor unbalance. The Jeffcotts's model of 
rotor is consists of the central mass carried on shaft 
supported by rigid bearings at each end as seen in 
Figure 4. Unbalance vibrations result from an 
unbalance force or unbalance moment. An 
unbalance force arises from eccentricity of the mass 
center as can be seen in Figure 4. Jeffcott introduced 
a damping force proportional to the velocity of the 
lateral motion. This made Jeffcott's model more 
realistic in the sense of rotor dynamic behavior. 
With this model, Jeffcott was able to explain the 
effect of unbalance when the rotating speed is near 
the natural frequency of the rotor. The differential 
equations of motion for Jeffcott's rotor model are: 
 

 
 

 
 

Figure 4. Jeffcott rotor on rigid bearing support and 
the mass eccentricity of rotor disk 
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xQkxxcxm =++ &&&   ; tCosmeQx ΩΩ= 2            (11) 
 

yQkyycym =++ &&&   ; tSinmeQy ΩΩ= 2             (12) 
 
Where m , c , and k  are the rotor system modal 
mass, damping, and stiffness, respectively and Ω  is 
rotating speed. 
 
3. 3. Stability 
 
Stability is related to the solution of the damped 
eigenvalue problem for the rotor system. The real 
part of eigenvalue is called the growth factor, and 
must be negative for the system to be stable. The 
imaginary part of eigenvalue is the damped critical 
speed. Stability analysis is necessary because of the 
effect of fluid forces in the rotor system. Incorrect 
bearing selection or presence of aerodynamic effects 
can produce the equivalent of negative damping, and 
give an unstable system. If a rotor is unstable at a 
given speed, any perturbation will cause the 
vibration amplitude to grow rather than decay. A 
typical stability analysis that includes fluid-film 
bearings and the destabilizing interaction with 
process fluid-flow forces is customarily summarized 
graphically by plotting the stability parameter 
(namely the growth factor or logarithmic decrement) 
versus an increasing value of the destabilizing 
parameter. Logarithmic decrement is defined as the 
natural logarithm of the ratio of any two successive 
amplitudes as shown in Figure 5.  
 

2

1

A
AlnDecrimentcLogarithmi == δ                    (13) 

 

 

Figure 5. Free vibration of damped system. 
 
3. 4. Transient Analysis 
 
In most rotor-bearing system analyses, the system 
response is obtained in the form of analysis 

mentioned above. Sometimes, information of the 
instantaneous behavior of rotors is essential, 
especially for these regions close to critical speed 
and instability threshold speed. This often require 
that the time varying whirl orbits of such a rotor 
system can be calculated, (Subbiah and Rieger, 
1988). Transient rotor dynamics solutions are more 
specialized analysis of time dependent or non-linear 
rotor-bearing system characteristics. Thus, this 
analysis calculates the forced response as a function 
of time. It also can represent the start-up and 
shutdown processes of rotating equipment, as well 
as the response to general time varying loading 
conditions (Buckles, 1995). 

 
 

4. ROTOR-BEARING SYSTEM 
OPTIMIZATION 

 
 

The use of genetic algorithms in the optimum design 
of a typical high-speed overhung centrifugal 
compressor, shown in Figure 6, is given as an 
example for design optimization of rotor-bearing 
system. The main focus of this example is to give a 
development of the bearing configurations that 
optimize stability along the other criteria such as 
frequency separation (placement of critical speeds). 
The system consists of a large disk (impeller) at the 
left-end side of the shaft, with the shaft supported in 
hydrodynamic fixed-lobe bearings at the station 
number I and II. The bearing optimized in this study 
is the one located at the station number I. 
 

 

Figure 6. Finite element model configuration of the 
rotor-bearing system 
 
Comparison of the best overall solution found by 
numerical optimization, (Roso, 1997), and that from 
the genetic algorithm technique, (Saruhan, 2001), is 
given in Table 1. As can be seen from these results, 
the genetic algorithm was able to obtain better 
results than those obtained by numerical 
optimization. Logarithmic decrement ended wıth 
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0.672 while numerical method with 0.666. This 
significant outcome satisfies the imposed 
specification and allows the rotor to maintain 
stability. Interested readers can refer to the study by 
Saruhan (2001) for more details. 
 
Table 1. Comparison of the Best Overall Solution 
Found for Stability Objective and Design Criteria By 
Numerical and Genetic Algorithm Optimization 
Objective Function Numerical 

Optimization 
Genetic  
Algorithm 

Logarithmic Decrement 0.666 0.672 
Frequency Separation 
(rpm) 

1st  Mode 20959 21696 

 2nd Mode 80179 80174 
 
 

5. CONCLUSIONS 
 
 

With the demanding requirements for higher speeds 
and power output in rotating machinery, rotor-
bearing systems optimization remains an active 
research area. Because of  the complexity of rotor-
bearing system analysis and time consuming nature 
of process an optimization procedure need to be 
employed that the design would be time-efficient 
and find the satisfactory design parameters to meet 
particular performans requirements. Many numerical 
optimization methods have been developed and used 
for design optimization of rotor-bearing systems. 
Most of these optimization methods make use of 
gradients to search feasible design parameters to 
achieve optimal objective functions. The 
development of faster computers has allowed 
implementation of more robust and efficient 
optimization methods. Genetic algorithms are one of 
these methods. They use objective function 
information instead of derivatives as in traditional 
methods. This work shows the efficacy of genetic 
algorithm optimization techniques and gives an idea 
to designers who are willing to deal with 
optimization of rotor-bearing sytems. 

 
 

6. NOTATIONS 
 
 

e  : Radial location of unbalance mass 
(eccentricity) 

k  : Stiffness 
m  : Mass 
Q  : Generalized force 

yx QQ ,  : Force components 

q  : Generalized displacement vector 
q&  : Generalized velocity 

q&&  : Generalized acceleration 

t  : Time 
VU ,  : Translational displacements in the X and 

Y -axis direction 
ΦΘ,  : Rotational displacement about X and Y -

axis 
Ω  : Rotating speed 
ω  : Angular velocity vector about the principal 

axes 
ω  :  Whirl speed 
 :  
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