e-ISSN: 2687-4539

RESEARCH ARTICLE

Vol.3/No.2 /2021 / pp.77-86
https://doi.org/10.51537/chaos.979842

CHAOS

Theory and Applications

in Applied Sciences and Engineering

Vibrational Analysis of a Metallic Column Submitted to
Mechanical Axial Load and Fire Exposure

A.N. Ndoukouo “*, J. Metsebo %! and J.M Njankouo ’$
*Department of Architecture and Engineering Arts, Fine Arts Institute, P.O Box 31 Foumban, University of Dschang, Cameroon, “Department of Hydraulics
and Water Management, National Advanced School of Engineering, University of Maroua, P.O Box 46 Maroua, Cameroon, SDepartment of Civil Engineering

and Urban Planning of National Advanced School of Engineering, University of Yaounde I, P.O Box 8390 Yaounde, Cameroon.

ABSTRACT Vibrational behavior and structural failure of a metallic beam submitted to simultaneous action
of axial load and fire exposure are investigated. Analyses are made at ambient conditions and for two types
of fire, ISO 834 fire and parametric fire. Vibrational equation based on heat conduction equation and field
equations are constructed and numerically solved to obtain the responses in terms of time histories, bending
moment in fire and time to failure against axial load ratio. The heat flux is high enough to affect material
properties of the structure and their variation with temperature is taking into account in the mathematical
formulation. Results show that heat flux resulting from fire action transforms the buckling problem occurring at
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room temperature into a bending one. Non-reversible responses and sooner arising of failure are observed for  steel
ISO 834 fire even for axial load ratio not able to cause buckling at room temperature. Unlike the case of ISO
fire, parametric fire improves reversible deflections within the exposure time and later occurring of failure.

INTRODUCTION

Structural behavior under temperature change has been of num-
ber of analytical, computational and experimental studies per-
formed by several researchers (Aditya 2021; Al-Hamd 2020; Yaob-
ing 2018; Kingsley 2018; Abbas 2016; Harshad 2016; Feng 2012; Nu-
bissie 2011; Mouréao 2007; Liu 2006; Ribeiro 2005; Buchanan 2001;
Rotter 2000). Mechanical machines often operate under diverse
temperature conditions (Nubissie 2011). In internal combustion
engines, rocket systems, movement of satellites etc. the condi-
tions are particularly temperature-sensitive. Thermal effects are
frequently ignored in research and this may yield totally incorrect
results. Literature shows that even moderate change in temper-
ature leads to huge alteration of structural vibration properties
(Yaobing 2018).

In civil and structural engineering but also in marine engineer-
ing, elevated temperatures are often caused by fire leading to
material properties alteration. As a result the performance of these
structures is affected due to unwanted dynamic responses and
their integrity is sacrificed due to buckling. (Mourdo 2007) an-
alyzed the behavior of steel beams under uniform temperature
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rising. The study covered beams under several load levels and
presented the variation of deflection, critical temperature, bending
moment, normal force and stresses with temperature. No type of
fire is mentioned in this study and the method is straight computa-
tional with the aid of computer software ANSYS. (Seputro 2001)
did similar study with computer software SAFIR but considered
some types of fire.

(Ndoukouo 2011; Nubissie 2011; Avsec 2007) developed mathe-
matical models where fundamental thermomechanical properties
of state are functions of temperature. (Avsec 2007) validated the
mathematical model by comparison with experimental data and
obtained satisfactory agreement. (Yaobing 2018) used the extended
Hamilton principle to model the vibration characteristics of Euler-
Bernoulli beams under moderate thermal loads and mechanical
excitations. (Feng 2012) applied the principle of minimum acceler-
ation in dynamics of elastic plastic continua coupled with dynamic
finite difference to numerically compute the responses of steel
beams at elevated temperatures. In the same line with (Seputro
2001; Ndoukouo 2011; Feng 2012) considered a beam supporting
transverse mechanical load and ISO 834 fire.
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The present study is devoted to the analysis of vibration char-
acteristics as well as critical temperature at failure of a vertical
metallic beam supporting simultaneous actions of axial load and
fire, based on mathematical model and numerical simulation. Two
types of fire are considered; ISO 834 fire which is the standard fire
and parametric fire which is reported by the literature to be closer
to the real fire situation. The structure and modeling are presented
in Section II, while section III focuses on numerical simulation,
results and discussion, with sub-section III.1 for ambient tempera-
ture, sub-section III.2 concentrates on ISO 834 fire and sub-section
II1.3 focuses on parametric fire. A conclusion is drawn in section
Iv.

STRUCTURE, MATHEMATICAL MODELING AND NUMERI-
CAL SCHEME

The structure

Consider a beam-column submitted to axial load and fire expo-
sure. This situation is common in civil and structural Engineering
(buildings and bridges) but also in marine Engineering (offshore).
The system consists of an elastic beam with mass m, density p,
young modulus E, length [, inertial moment I and a rectangular
cross section A. An axial load P is applied to the beam which
simultaneously undergoes the effect of an external fire. Two types
of fire should be studied; the ISO 834 fire and the parametric fire.
Under the influence of fire, the beam temperature changes with
time and reaches high values that affects its material properties
which are called to vary with temperature as the beam vibrates.
The coordinates system associated with the beam (figure 1) of
width b and thickness & consists of a Cartesian frame with origin
O, coinciding with the bottom edge midpoint of the beam. The
x-axis is oriented toward the beam length such that 0 < x <[ the
y-axis is parallel to the beam width such that —% <y< % and the

z-axis parallel to the thickness with f% <z< ’%
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Figure 1 Sketch of the investigated system

Mathematical modeling
The following assumptions are made :

¢ The fire is uniformly distributed along the beam;

* Material degradation is not considered though material prop-
erties are temperature-dependent;

¢ The study is made under the limit of validation of Hooke law.

The system modeling the beam behavior in such a situation
consists of the heat conduction equation coupled with the field
equation written respectively as follows (Timoshenko 1951; Nayfeh
1979; Kant 1991; Huang 2002)

oT ?*T | 0°T de
T)= =Ar| =+ | —arE(T) = 1
CP()at T(ax2+azz) ar ()at ()
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Equation (1) must be completed with prescribed boundary and
initial conditions on temperature. Into equation (2), the term
E (T) AaTAT refers to the internal axial load developed in the
member as a result of thermal expansion against ends restraints.
Equation (2) has to be completed with given initial and boundary
conditions on displacement. A beam with clamped-clamped ends
has been considered in this study In equations (1) and (2) , U is the
transversal displacement of the beam, a7 is the thermal conductiv-
ity, T(x, t) is the temperature field, e(x, t) the total strain, cp(T) the
specific heat, At the coefficient of thermal expansion, AT = T — T
the temperature difference, Ty the room temperature and Mr the
thermal moment given by the following expression :

@)

h/2
[ (T (20— To) 2z @)
~h/2

MT =E (T) leT

In Egs. (1)-(2), since the temperature varies in a range that af-
fects material properties, one has to take into account the variation
with temperature of material properties (see appendix). One is
concerned for the purpose of this study with constructional steel.
According to the above assumption, the mass m(T) of the beam
is taken to be constant. It is also assumed that the heat flow that
acts on the beam is much slower than the mechanical stress-strain
variations. Therefore, the temperature distribution can be consid-
ered independent of the deformation and can thus be defined by a
given function which represents the quasi-steady state of the heat
transfer equation (1). This allows the reduction of the conductivity
equation. The temperature field is assumed to be uniform along
the beam and the thermal moment intervening in equation (2) thus
vanishes. The design fire is modeled by an international standard
time-temperature law defined for ISO 834 from (Eurocode 3 2003)
by:

T(t)=To+345In(8t+1) 4)

The parametric fire will be modeled later. Thereafter, the sys-
tem of equations (1)-(2) is reduced to the following dimensionless
equation.

*Uu ou *u U
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Where, function g(t) and k. (t) are given in Eq. (17)-(19) (see

appendix) .
" Pz AL?
I P

« is the axial load ratio and € the nonlinearity coefficient. The

critical Euler load is classically given by :

(6)

EI
Py = nzﬁ (7)

CHAOS Theory and Applications



. 2 .
Therefore, setting a.r = % , one obtains ac = 72

It should be pointed out that P, is influenced by temperature
change and can be written at any temperature as follows :

Py (T) = P20ke (T) (8)

Where k. (T) is given in Eq. (A.2). The variation of P, with
temperature is plotted in fig. 2. It is a decreasing function of
temperature.
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Figure 2 Variation with temperature of critical load ratio

NUMERICAL SIMULATION, RESULTS AND DISCUSSIONS

Nonlinear integral partial differential equation (5) is numeri-
cally computed for constructional steel with the following parame-
ters values.

E=21x10"Pa; 1=52x10""m? p=7800kg.m 5;

o ©)
A=25x10"3m? L=05m; ar=14x10"°"C"!

Initial and boundary conditions associated with equation (5)
are set as follows. For the concern of boundary conditions, a beam
clamped at both ends is considered as this is one of the frequently
found situations for structural components in engineering.

Ut = % —0; UL = w =0  (10a)
U (x,0) = W =0 (10b)

Zero initial conditions on deflection and velocity have been
considered and associated with a small transverse load g = 5N /m
for the sake of nontrivial solutions.

A full discretization using centered finite differences within
space of PDE (5) associated with Runge Kutta 4 on time, has been
used for the purpose of numerical method. The axial load ratio « is
varied as the temperature increases in the beam and the previous
equation is numerically solved in the sake of vibrational behavior
of the structure.

Behaviour at ambient conditions

Fig. 3 presents the deflection versus position within the mid-
line of the beam at ambient conditions. It can be observed that the
mid-span position admits maximum deflection amplitude. The
effect of temperature on this result will be presented in the next
sections.
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Figure 3 Deflection versus position on the beam mid-line at am-
bient temperature for « = 0.5

Figures 4(a)-4(c) present the time histories of the beam mid-
span at ambient temperature for different values of axial load ratio,
namely « = 0.25 (fig.4(a)), « = 0.5 (fig. 4(b)) and a = 0.75 (fig.4(c)).
It can be seen that the deflection has constant amplitude within the
time and there is no notably change in amplitude nor in frequency
for these different values of axial load ratios. The effect of fire
on these responses are investigated in the next sections. Figures
4(d) and 5(a) present the time history and bending moment at
beam mid-span for higher value of axial load ratio, « = 9.0. It is
found that amplitude and frequency of oscillations had increased
compared to the previous cases corresponding to smaller values
of « (figs. 4(a)-4(c)). Meanwhile, the oscillations remain regular
within the time. However as from the critical value of axial load
(« = 10.0), oscillations lose their regular behaviour and the beam
responds with increasing amplitude within the time. This can be
seen in figures 5(b) and 5(c) presenting mid-span time history and
bending moment at room temperature for critical value of axial
load ratio,x = 10 = .. It can be seen in these figures that the
responses explode due to the buckling of the structure at critical
axial load ratio.

This inspires to plot the time to failure of the beam as a function
of axial load ratio at room temperature (see fig. 5(d)). To obtain
this figure, a failure criterion is defined (see eq.(11)) comparing the
resistant moment of the beam and the bending moment resulting
from the applied loads.

M (t) > nMcr (11)

where

Mcr =0p X A (12)

0p is the temperature free yield stress and 7 is a safety factor.

It is observed that the time to failure is a decreasing function
of the axial load ratio. The beam undergoes rapid collapse for «
greater than the critical value a¢, =~ 10.0, and the higher the value
of «, the sooner the failure. Eqgs. (11)-(12) show that the time to
failure grows with the cross section of the beam.
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(d) Time history at room temperature for « = 9.0

Figure 4 Time history at room temperature for different values of
o
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Figure 5 Time history and Bending moment at room temperature
for different values of &
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Observing fig. 5(d), an approximated analytical expression
given fc as a function of axial load ratio « can be suggested as
follows.

2.0
x—95
Such an expression is useful in practice as it allows designers
to set some predictions from simple calculation. Eq. (13) gives

a graph quite similar to that of fig. 5(d) for a belonging to the
interval [10 — 12].

tc = (13)

Behaviour in presence of ISO fire 834

Vibrational responses:In presence of an ISO 834 fire modeled
by the time-temperature law (Eq.4), the following results are ob-
tained. Figures 6 present mid-span time histories in presence of
ISO 834 fire and mechanical load with axial load ratios & = 0.25
(Fig. 6(a)), « = 0.5 (Fig. 6(b)) and & = 0.75 (Fig. 6(c)) respectively.
Figures 7 present the bending moment in fire for same conditions
and parameters. It can be observed in opposition to the situation
at ambient temperature previously presented in figures 4(a)-4(c)
where amplitudes of oscillations were small and constant that in
presence of fire, oscillations amplitudes keep increasing during
the fire action. Moreover, a shift within the time towards positive
values of the centers of oscillations is observed. This agrees with
results obtained from computational software ANSYS and SAFIR
(Seputro 2001; Mourao 2007).

It is also important to note that after some duration of fire ex-
posure, oscillations lose their reversible character and amplitudes
keep increasing with a faster speed. Figures 5-7 show that oscilla-
tion amplitudes increase with axial load ratio in presence of fire
faster than in ambient conditions. In presence of fire, oscillations
lose their reversible character sooner for greater values of &. As
an example, this happens after 50 minutes exposure to fire for
a = 0.25, 40 minutes for &« = 0.5 and 35 minutes for & = 0.75, see
Figures 7.

Figure 8 presents the mid-span time history in presence of fire
for different positions along the beam. It is seen that the maximum
deflection amplitudes are observed for the beam mid-span as was
the case in figure 3 for ambient conditions. Figure 9 presents the
beam deformation versus position on the beam mid-line in pres-
ence of fire for axial load ratio & = 0.5, at different temperature
T = 100°C (Fig. 9b) and T = 300°C (Fig. 9c). These responses
are compared with those obtained at ambient conditions (Fig. 9a)
in order to exhibit the influence of warming on the responses. It
is observed that the deflection amplitude grows with tempera-
ture and is at 100°C three times the one at ambient conditions
while at 300°C it worth about nine times the amplitude at room
temperature.
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Figure 6 Time history in presence of fire for different values of

81



L] 10 20 30 40 50 60
t (min)

(a) Bending moment in fire for « = 0.25

0.6 . r

0.5

0.4
M(t)
(N.m) o3

0.2

0.1

0

0.1 I I L L
0 10 20 30 40 50

t (min)

(b) Bending moment in fire for « = 0.5
0.6 - - - - - - -

0.5

0.4

M(t)
(N.m) 0.3

t (min)

(c) Bending moment in fire for « = 0.75

Figure 7 Bending moment in fire for different values of «

3.5%10® T T T T T T
3x10% |- c 4
2510 A
U (m) /
2x10% - N g
1.5x10% - J -
1x108 WA ) 1

sx107 - YV VAVAYVAVA |

o B

0 3 10 15 20 23 30 35 40 43

t (min)

Figure 8 Time histories at different positions along the beam (a)

mid-span, (b) height, (c) quarter.

82 | Ndoukouo et al.

2x107 T T T
1.8x107 L - E
1.6%107 | .
1ax107 | < B
U (m)
1.2%107 | R
12107 | R
8x10%® [ -
6x10% |- b E
4x10% | -

2x10° | .

N ! ) L )
0 0.1 0.2 0.3 0.4 0.5

X (m)

Figure 9 Deflection versus mid-line position of the beam at dif-
ferent temperatures. « = 0.5(a) T = 20°C, (b) T = 100°C, (c)
T = 300°C (at t=30 min)

Structural failure under ISO 834 fire: The above observation in-
spires to think of structural failure after some time spent by the
structure under simultaneous actions of fire exposure and me-
chanical applied and internal axial loads. What is referred to as
structural failure here is not necessarily the collapse of the structure
but the fact of reaching a limit state of usage defined by the needed
design. As one is dealing with civil and structural engineering
components such as buildings or bridges, it is advantageous to
define this limit so as to avoid structural damage which could be a
risk for people or goods using the structure but also for firefighting
personal. This is the reason why the elastic limit is considered as
the limit state of usage in this study and as such a safety factor
7 (0 < 5 < 1) is introduced into the failure criterion under fire.
Hence conditions set in eqs (11)-(12) are used with actually the re-
sistance moment in fire being a function of time as it is influenced
by temperature (Seputro 2001; Ndoukouo 2011; Nubissie 2011).
The bending moment in fire results of all mechanical and thermal
action on the structure. Eq.(12) becomes :

Mer (£) = 0er (£) x A = opky (£) A (14)

ky ( t) is the reduction factor of the yield strength defined as a
sequential relation of temperature and thus of time (see eqs. A-7-
A-8 (A.7)-(A.8)). 0y is the temperature free yield stress. Condition
(11) associated with eq.(14) enables to obtain Fig. 10 presenting
the time to failure of the structure in fire as a function of axial load
ratio. It is observed that the time to failure decreases as the axial
load ratio increases. This time indicates the maximum duration
the fire fighting personal disposes in order to proceed with the
rescue of people and goods present in the structure without enor-
mous risk of damaging the mechanical integrity of the carrying
structure. Figure 11 presents the critical deflection reached with
corresponding time to failure of the fire-exposed structure. These
deflections are increasing function of the critical time.
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Figure 11 Critical deflection in fire versus time to failure for ISO
834 fire

Behaviour in presence of parametric fire

Vibrational responses: For the sake of comparison of results ob-
tained from ISO 834 fire, we consider a more realistic model in this
section, namely, the parametric fire. It is made of a burning phase
where fire grows following the standard ISO curve and a cooling
phase following a linear heating rate. For the considered paramet-
ric fire, the growing period lasts for the first twenty minutes and
the cooling phase follows a decay rate of 625°C per hour according
to Eurocode reference decay rate (ECI, 1994). The corresponding
time-temperature law can be written as follows :

To+345In (8t + 1 1t < 20min
T(H=4{ " (B wrs (15)

—10.416 (t —20) +781 :t > 20min

Applying this type of fire to the investigated system, the follow-
ing results are obtained.

Figures 12 and 13 present the mid-span time history and bend-
ing moment in fire for parametric fire with mechanical axial load
ratio equal to 0.5. Figure 14 presents the mid-span time history
in fire for axial load ratios « = 1.0. Figures 15 and 16 present the
mid-span time history and bending moment in fire for & = 2.0.
Unlike the previously studied case of ISO 834 fire, it is observed
that the deflection does not increase abruptly with fire exposure
time.

There is an increase of deflection during the burning phase fol-
lowed by a decrease during the cooling phase. This agrees with
results obtained with the aid of computational software SAFIR
(Seputro 2001). Moreover, due to the cooling, the rapid increase
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of deflection with sooner arise of irreversible deformation as was
the case with ISO 834 fire is not observed for parametric fire. It is
possible for structure under this type of fire to undergo elastic de-
formation for axial load ratios greater than the values that induce
irreversible responses under ISO 834 fire. This will obviously im-
pacts structural failure under parametric fire differently from what
obtained with ISO 834.This can be understood since parametric
fire burns up to a given duration (20 minutes for the considered
case) and starts decaying afterwards whereas this is not the case
for ISO fire.
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Figure 12 Time history at beam mid-span for parametric fire
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Figure 13 Bending moment in fire at beam mid-span for para-
metric fire. « = 0.5

83



ST T T T T T T
ox107 |
3!10'7 - 4
7x107 -
U (m)
6x107 | o
sx107 - E

4x107 E

3x107 |- 4

2x107

1x107 -

ax107 i L L L L | s |
0 10 20 30 40 50 60 70 80 90

t (min)

Figure 14 Time history at beam mid-span for parametric fire.
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Structural failure under parametric fire: Vibrational analysis made
in previous section for parametric fire exposed beam has given
results with some important differences as regard to those obtained
under Iso fire. This section investigates the structural failure of
the beam under simultaneous action of mechanical axial load and
parametric fire. Taking into account the time-temperature law
modeling the parametric fire (eq.13) and the failure conditions
(eq.11) and (eq.12) the following results are obtained. Figure 17
presents the time to failure of the beam as a function of axial
load ratio while figure 18 presents the variation of the reached
maximum deflection with the corresponding time to failure. It is
seen that the time to failure is a decreasing function of the axial
load ratio. It can be noted that there is no failure by vibration for
axial load ratio less than &« = 2.0 whereas one had obtained failure
by vibration with axial load ratio less than « = 1.0 in presence
of ISO fire (see fig. 10). This can be explained by energy and
momentum redistribution associated with internal axial load in
the beam due to cooling phase of the parametric fire.
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Figure 17 Failure time as a function of axial load ratio under
parametric fire
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Figure 18 Critical deflection in fire versus time to failure for para-
metric fire
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CONCLUSION

Vibrational behavior as well as structural failure of a metallic
clamped column, supporting mechanical axial load and simulta-
neous action of fire exposure have been investigated. Two types
of fire have been considered, namely standard ISO fire 834 and
parametric fire. A model based on the heat conduction equation
and field equations with inclusion of temperature-dependence of
physical parameters of the structure as well as internal axial load
due to thermal expansion has been considered. For the purpose of
numerical simulation of the obtained PDEs, real numerical data
from constructional steel have been chosen. Results have been
presented in terms of vibrational analysis and structural failure in
fire. For vibrational analysis concern, beam deformation against
position for several temperatures, time histories as well as bend-
ing moment in fire have been presented for the two types of fire.
As per the structural failure concern, structural failure conditions
have been set and results presented in terms of time to failure as
a function of axial load ratio and maximum deflection reached
against critical time for ISO 834 fire and for parametric fire.

As far as the vibrational analysis is concerned it has been ob-
tained that for ISO fire the deflection amplitude grows with time
and the axial load ratio. Higher values of axial load ratio generate
higher deflection amplitude with rapid increase within the time
and sooner arrival of irreversible responses. The axial load ratio
could not exceed some critical value for this type of fire without
sooner apparition of irreversible responses. Meanwhile in presence
of parametric fire, deflection amplitudes increase during the burn-
ing period and decrease during the cooling phase. However this
type of fire shows an improvement of reversible deflection within
the time. Moreover the responses do not diverge for axial load
ratio greater than those giving irreversible responses under ISO
fire, although the deflection and bending moment present higher
values for greater values of axial load ratio.

As per the structural failure concern, the time to failure has been
obtained as a decreasing function of the axial load ratio for each
type of fire. Under ISO 834 fire the time to failure has been obtained
for axial load ratio values less than 1.0, with sooner irreversible
responses for greater values of axial load ratios. Meanwhile under
parametric fire there was no failure by vibration for axial load ratio
less than « = 2 unlike the case of ISO fire 834.

APPENDIX

Variation laws with temperature of some material properties of
the structure (Seputro 2001; Eurocode 2003; Ndoukouo 2011; Feng
2012). The modulus of elasticity can be written at any temperature
as:

E=E(T) = Eoke (T) (A-1)

In Eq. A-1, ke (T) denotes the reduction factor of the Young

modulus and can be obtained as a function of temperature for the

given material the structure is made with. Ey represents the value

of the Young modulus at ambient temperature Tj. In the case of
constructional steel for example k. (T) can be given as follows :

1.0+ 20°C < T <600°C

__T
2000 In 5 (A-2)

__T
690 X 1—8% :  600°C < T < 1000°C

ke (T) =

For the concern of variation with temperature of the effective
length of the beam, the thermal elongation can be written as a
function of thermal expansion :
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I(T)=L(1+¢ey)=LA+arAT) =Lg(T) (A-3)
I (T)represents the effective length of the beam at current tem-
perature and L the length at room temperature. Function g (T) is
given by :
1+12x107°T +0.4 x 10787 — 2.416 :
20°C < T <750°C

1411x1072T: 750°C < T < 860°C

2x107°T—62x1073 :860°C < T < 1200°C
(A-4)
The variation with temperature of the specific heat is given as

follows :

4254+ 7.73T —1.69 x 107372 +2.22 x 107°T3 :

20°C < T <600°C

cp(T) =1 666+ A%2 . 600°C < T <7350C

545+ 7820 7350C < T <9000C

650:9000C < T <12000C
(A-5)
Meanwhile the temperature-dependent thermal conductivity is
given as :

54 —-333%x1072T: 20°C < T <800°C
Ar = (A-6)

27.3: 800°C < T <1200°C

The yield strength of the material at given temperature o ( T), is
related to the value of room temperature by the following relation

o (T) = ooky (T) (A-7)

The reduction factor ky (T) varies with temperature as follows :

1.0: 20°C<T<215°C
ky (T) = (A-8)

(905 —T) /690: 215°C < T <905°C
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