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ABSTRACT

The method of differential quadrature developed by Richard Bellman in the 1970s is a numerical solution
technique for differential systems by means of a polynomial-collocation approach at a finite number of points. In
this paper a global method of generalized differential quadrature is presented to solve the problems on deflection,
buckling and vibration behaviour of structural components. Furthermore, the applicability of this method to the
deflection analysis of beams due to a point load is also demonstrated. An inherent advantage of the approach is
its basic simplicity and small computational effort with easy programmability. Results are obtained for various
boundary and loading conditions and are compared with existing exact and numerical solutions by other
methods. Numerical examples have shown the accuracy, efficiency and great potential of this method for
structural analysis.

Key Words: Differential quadrature method, Numerical solution methods, Partial differential equations

GENELLEŞTİRİLMİŞ DİFERANSİYEL QUADRATURE METODUNUN YAPI
ELEMANLARININ YER DEĞİŞTİRME VE BURKULMA ANALİZİNE

UYGULANMASI

ÖZET

Richard Bellman tarafından 1970’lerde geliştirilen Diferansiyel Quadrature metodu, diferansiyel denklemlerin
sonlu sayıdaki düğümlerinin, sayısal çözümüdür. Bu çalışmada Genelleştirilmiş Diferansiyel Quadrature
metodunun, yapıların yer değiştirme ve burkulma analizine uygulanışı verildi. Ayrıca, kirişlerin tekil yük
altındaki çökmesinin bu metoda uygulanabilirliği de gösterildi. Metodun en önemli bir avantajı, sistemlere
basitçe uygulanabilirliği, hesaplama süresinin kısalığı ve programlamanın basitliğidir. Değişik sınır şartları ve
farklı yüklemelerde elde edilen sonuçlar,  mevcut gerçek ve sayısal sonuçlarla karşılaştırıldı. Elde edilen
sonuçların çok ince hassasiyetle doğruluğu gösterildi.

Anahtar Kelimeler : Diferansiyel quadrature metodu, Sayısal çözüm metotları, Kısmi diferansiyel denklem

1. INTRODUCTION

Numerical solution procedures for the solution of
partial differential equations have been of extreme
importance to progress in many areas of engineering
sciences. Admittedly the finite element method, the
finite differences technique and the boundary

element procedure are the almost universal
methodologies, which allow for reliable and prompt
solutions for practically and well-posed
mathematical models. However, in a large number
of practical applications where only reasonably
accurate solutions at few specified physical co-
ordinates are of interest, the finite element or the
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finite difference methods becomes inappropriate
since they still require a large number of grid points
and so large computer capacity. In addition, these
methods require considerable skill from the analyst,
especially if he is required to prepare the computer
code.

In seeking a more efficient numerical method which
requires fewer grid points yet achieves acceptable
accuracy, the method of differential quadrature,
which is based on the assumption that the partial
derivatives of a function in one direction can be
expressed as a weighted linear sum of all the
function values at all mesh points along that
direction, was introduced by Bellman (Bellman and
Casti, 1971; Bellman et all., 1971). Since then,
applications of differential quadrature method to
various engineering problems have been investigated
and their successes have demonstrated the potential
of the method as an attractive numerical analysis
technique (Bellman and Roth, 1979; Civan and
Sliepcevich, 1986).

However, there exist some major difficulties, which
are explained in section (2), in the application of the
original method of differential quadrature proposed
by Bellman (Bellman and Casti, 1971; Bellman et
all., 1971). In order to overcome these difficulties, a
method of generalized differential quadrature (GDQ)
was developed by Shu and Richard (Shu and
Richards, 1992) and has been applied to solve some
problems in fluid dynamics. Preliminary results have
shown the effectiveness and efficiency of the
method.

This paper presents the generalized differential
quadrature method and investigates its applications
to the problems of deflection, buckling and vibration
of structural elements. The applicability of this
method to deflection analysis of beams due to a
point load is also demonstrated. The weighting
coefficients for the approximation of derivatives
required in differential quadrature formulation are
calculated in a very simple way without any
restriction on the choice of grid points. Numerical
implementation of the method is straightforward and
different boundary conditions can be easily
incorporated. This paper is also to explore the
potential of the GDQ method as an accurate,
efficient and simple numerical method for structural
analysis.

2. GENERALIZED DIFFERENTIAL
QUADRATURE

The method of differential quadrature is developed
based on the assumption that the partial derivative of

a function with respect to a space variable of a given
discrete point can be expressed as a weighted linear
sum of the function values at all discrete points in
the domain of that variable. To illustrate the concept,
let us consider the first derivative of a one-
dimensional function f(x). Suppose xi (i = 1, 2,..., N)
are the grid points obtained by subdividing the
x-variable into N discrete values, then the first
derivative x/)x(f ∂∂  at x=xi can be written as;

)x(fc
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i

N
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ij
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∂
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; for i=1,2,..., N                   (1)

which cij
( )1  are the weighting coefficients of the first

derivative.

Two extensively decisive factors in the accuracy of
the differential quadrature solutions are; the
accuracy of the weighting coefficients and the
choice of grid points. In the original formulation of
differential quadrature (Bellman and Casti, 1971;
Bellman et all., 1971), two approaches were
proposed. One assumes that the test functions gk(x)
to be gk(x) = xk (k = 1, 2,..., N-1), leading to a set of
linear algebraic equations, which are called
Vandermonde system of equations, from which the
weighting coefficients can be determined. However
Vandermonde matrices are known to be inherently
ill conditioned and in fact, it is experienced that the
weighting coefficients obtained by a direct solution
of the Vandermonde equations become increasingly
in accurate with an increasing number of grid points.
The other approach assumes the test function to be
the Nth order Legendre polynomial, leading to
simple algebraic expression for the weighting
coefficients. However, it requires that xi
(i = 1, 2, ..., N) have to be the roots of the shifted
Legendre polynomial. This means that once the
number of grid points N is specified, the roots of the
shifted Legendre polynomial are given, thus the
distribution of the grid points is fixed regardless of
the physical problems being considered.

In order to find simple algebraic expressions for the
weighting coefficients without restricting the choice
of grid meshes, the generalized differential
quadrature method was developed by Shu and
Richards (Shu and Richards, 1992). In generalized
differential quadrature, the test functions are
assumed to be the Lagrange interpolated polynomial
as;
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= ; For k=1, 2, ..., N       (2)
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Upon substitution of (2) into (1), the following
relationship can be established (Forray and
Newman, 1962).
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Equations (3) and (4) are very simple algebraic
expressions for computing )1(

ijc . There is no
restriction in the choice of grid co-ordinates.
However, the determination of )1(

iic  requires the
availability of the second order derivative of M(x)
which is more difficult to obtain. Instead of using (4)
to calculate )1(

iic , a more convenient relationship can
be established. It can be shown from Taylor series
expansion that the following relationship holds for
cij

( )1 .

∑ =
=

N
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ij 0c ;for i = 1, 2,..., N                                     (5)

Thus the coefficients )1(
iic  can be calculated as;

)1(
iic = ∑−

≠=

N

ij,1j
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ijc ; for i = 1, 2,..., N                           (6)

Similarly the weighting coefficients for the second
and higher order derivatives can be computed. Again
assume the mth order derivative can be expressed as;
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Then an amazing recurrence relationship can be
established for the mth order weighting coefficients
cij

m( ) when Lagrange interpolated polynomials are
used as test functions.
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The value of )m(
iic  can be obtained from the

relationship similar to equation (6),

)m(
iic = ∑−
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N
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ijc ;for i = 1, 2,..., N                         (9)

To summarise, the recurrence relationships (8) and
(9) together with the formulations for the
coefficients of first derivatives (3) and (6) constitute
complete formulae for the determination of the
weighting coefficients from the first to as high as the
(N-1)th order derivatives. This set of expressions for
the determination of the weighting coefficients is so
compact and simple and very easy to be
implemented in formulating and programming
because of the recurrence feature. All these features
give a great convenience to the GDQ for solving
practical problems in structural analysis.

Also, it should pointed out that the GDQ method can
be used in structural analysis for solving both
ordinary and partial differential equations The
application of this method to static problems leads to
a set of algebraic equations with the function values
at grid points as unknowns, while its application to
time dependent dynamic problems results in a set of
ordinary differential equations with time dependent
function values at grid points as unknowns, which
can then be solved by an existing integration
scheme. Finally, once the function values at all grids
are obtained, it is very easy to determine the
function values in the overall domain in terms of
polynomial approximation,

∑ ⋅=
=

N

1i
ii )x(g)x(f)x(f                                            (10)

where )x(gi  are Lagrange interpolated polynomials
as expressed in (2).

A natural and often convenient choice for the grid
points is that of the equally spaced sampling points.
These are given in the normalized form in the x-
direction as;

Type-1: Equally spaced sampling points.

Xi = 1N
1i

x −
− ; i = 1, 2,..., xN                                    (11)

Second type of selection for the grid points is the
equally spaced sampling points with adjacent δ -
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points. The adjacent points are necessary in some
cases to implement the boundary conditions to the
general equations. The closeness between the
adjacent points could of the order

;10or10 514 −=δ≅δ then these points would virtually
correspond to a single point, i. e., the boundary point
itself. These points can be expressed in the
normalized form as;

Type 2: Equally spaced sampling points with
adjacent −δ points.

X1=0, X2= δ , XN-1=1-δ    XN=1        (12)

3N
2iXi −

−
= ; i = 3, 4,..., N-2                                 (13)

3. APPLICATIONS

The method of GDQ is used in the following for
analyzing some static and dynamic structural
problems. Firstly deflection of a beam due to a point
load is considered. Secondly buckling behaviours of
columns for different boundary conditions are
analysed.

3. 1. Static Deflection of a Beam Due to a
Point Load

For a Bernoulli-Euler beam in bending, the general
form of the governing equation can be written in
terms of deflection as;

0
I.E

)x(M
dx

yd
2

2

=− ; constitutive relation                (14)

where EI≡ flexural rigidity, x≡ position along the
beam.

Now, lets consider the beam shown in Figure 1. The
moment value along the beam is:
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1            2               3               4               5

Figure 1. A cantilevered beam loaded at the free end
with a point force

)xL.(P)x(M −=                                                  (15)

From equation (14) and (15) the following equation
can be obtained.

)xL(
I.E

P
I.E

)x(M
dx

yd
2

2

−⋅==                                  (16)

If the variables x and y are normalized as;

X
L
x

= , Y=
α
y

with =α reference length and substitute in equation
(16), the following equation can be obtained.

)X1(
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L.P

dX
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L 2
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2
−⋅=⋅

α                                        (17)

If α  is selected as α = (P.L3)/(E.I), equation (17)
becomes,

X1
dX

Yd
2

2

−=                                                          (18)

and then if this equation is differenciated once, the
following equation can be obtained;

1
dX

Yd
3

3

−=                                                              (19)

The boundary conditions for the beam are;

Y=0, 0
dX
dY

= ; for X = 0

(20)

0
dX

Yd
2

2

= ; for X = 1                                              (21)

Noting that Y1 = 0 and choosing Type-1 grid points
with N = 5 the equation (19) can be expressed in the
GDQ form as;

∑ −=
=

N

2j
j

)3(
ij 1Y.c ;for i = 2,..., N                                (22)

The solution of equation (22) with the boundary
conditions gives the results. The analytical solution

for this system is Y= )3X(
6

X2

−⋅ . The obtained

results are given in Table 1 with the exact deflection
values. As can be seen, the numerical results are
very accurate even using five grid points.
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Table 1. Deflection Values of the Beam Shown in
Figure 1

X W(exact) W(GDQ, N = 5)
         0.0        0.0        0.0

0.25 -0.0286458333 -0.0286458333

         0.5 -0.1041666667 -0.1041666667
0.75 -0.2109375000 -0.2109375000

         1.0 -0.3333333333 -0.3333333333

3. 2. Column Buckling

Consider the problem of determining the critical
buckling load of a slender elastic column shown in
Figure 2.

For the buckling behaviour of a slender elastic
column, the governing differential equation can be
expressed as;

x

P P

L

Figure 2a. Buckling of a slender elastic column

Figure-2b. First type selection of grid points

Figure 2c. Second type selection of grid points

0
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Introducing the dimensionless variables, X = x/L,

W = w/a, a=
I.E
L.f 4

0  and substituting in (23) one

obtains

2

2
2
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For a prismatic column this equation becomes,

'''
2

''' W.
I.E

L.PW −=                                                  (25)

and GDQ analog of this equation is;
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N
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I.E
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==
; for i = 1, 2,..., N       (26)

For a tapered (non-prismatic) column (Figure 3), the
equation (24) can be written as;

I X W
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dX

W
d I
dX

W
P L

E
W( ) ' ' ' ' ' ' ' ' ' ' '⋅ + ⋅ ⋅ + ⋅ = −

⋅
⋅2

2

2

2

 (27)

The GDQ analog of equation (27) is,
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for i = 1, 2,..., N where I can be a given as a function
of X.

Equation (26) and (28) can be written in matrix form
as;

[A].{W}=λ .[B].{W}                                          (29)

where 0
2 I.E/L.P−=λ , {W}=[W1,W2,...,WN]T.

If the cross-sectional area is defined as follows ;

b(x) = b(0); ]L,0[x∈∀

)1L/x()0(h)x(h +⋅α⋅= ; 0≥α                           (30)

Then the equation (28) can be written as follows.
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for i = 1, 2,...,N. The equation (31) is the general
equation for a tapered beam.

From equation (26) also the general equation for a
prismatic beam can be obtained as:

j

N

1j

)2(
ijj

N

1j

)4(
ij W.c.W.c ∑∑

==

λ= ;for i=1,2,..., N             (32)

The buckling load can be obtained by solving the
above eigen-value problems together with
appropriate boundary conditions.

Three different sets of boundary conditions are
considered for both prismatic and non-prismatic
columns. For the grid selection of Type 1, boundary
conditions for each case can be expressed as
follows:

1) Simply supported at X = 0 and X = 1
W(0)= 0)0(W =′′

W(1)= 0)1(W =′′                                                   (33)

Taking N nodes, the method of GDQ yields;

0W.c j
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)2(
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−

=

0W.c j

1N

2j

)2(
Nj =∑

−

=

                                                  (34)

2) Clamped at X = 0 and X = 1
W(0) = 0)0(W =′

W(1) = 0)1(W =′                                                   (35)

Applying the method of GDQ, the following
expressions are obtained.

0W.c j
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3) Clamped at X=0 and simply supported at X = 1

W(0)= 0)0(W =′

W(1)= 0)1(W =′′                                                   (37)

Applying the method of GDQ, the following
expressions are obtained.
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The general equations for prismatic and tapered
beams can be written for this 3 type boundary
conditions from equations (31) and (32) as;
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; for i = 3,...,N-2 (for a

prismatic beam)                                                    (39)
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for i = 3,..., N-2 (for a tapered beam)

For the second type selection of grid points the
general equations are same but the boundary
conditions are a little different. For the same (3)
cases they can be expressed as follows.

1-) Simply supported at X = 0 and X = 1
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2j

)2(
j2 =∑

−
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)2(
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2-) Clamped at X = 0 and X = 1
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3-) Clamped at X=0 and simply supported at X = 1

0W.c j
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)1(
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=

0W.c j
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)1(
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−

=
−                                                  (43)

where the nodes i = 2 and i=N-1 are taken at a very
small distance from the beam ends (see Figure 2 and
Figure 3).

Figure 3. Buckling of a tapered slender elastic
column

The solutions for the critical buckling loads can be
obtained solving the boundary conditions with the
general equations, individually.

The obtained buckling loads of the prismatic
columns using the first and second type of grid
points are listed in Table 2 and the solutions for the
non-prismatic columns are given in Table 3, for
different values of α .

For both type of columns, exact analytical results are
given wherever available. The obtained results for
tapered beams are compared with the finite element
results. The results are in excellent agreement with
the eigenvalues obtained using the finite element
method.

For prismatic columns, calculations are performed
for various number of grid points. As observed, the
convergence of the solutions using GDQ is
excellent. Comparison of the present results with the
exact ones shows that the GDQ is a very accurate
numerical technique.

Table 2. Critical Buckling Load Coefficients of Prismatic Columns
Boundary

cond.
Pcr

(Exact)
Pcr (FEM)

Ref.10
Error
(%)

Grid
points

Pcr (GDQ)
Type-1

Error
(%)

Pcr (GDQ)
Type-2 (δ=10-4)

Error
(%)

Pcr (GDQ)
Type-2 (δ=10-5)

Error
(%)

Pinned-
pinned

9.8696 9.9438 0.75 N=7
N=9

N=11

10.060718
9.8641905
9.8697017

1.936
-0.055
0.001

9.97169
9.871428
9.87358

1.034
0.018
0.040

9.96816
9.86787
9.87003

0.998
-0.339
0.004

Fixed-fixed 39.4784 39.9730 1.25 N=7
N=9

N=11

49.090909
38.847825
39.516455

24.34
-1.5957
0.096

42.44441
39.35976
39.50049

7.513
-0.300
0.056

42.43486
39.34453
39.48629

7.489
-0.339
0.02

Fixed-
pinned

20.1421 20.4972 1.76 N=7
N=9

N=11

19.778356
20.254631
20.186532

-1.805
0.558
0.220

20.08122
20.22468
20.1986

-0.302
0.410
0.280

20.07296
20.21641
20.19032

-0.344
0.369
0.239

Table 3. The Critical Buckling Load Coefficients Of Non-Prismatic Columns (δ = 10-4, N = 11, Finite Element
Results are Obtained Using 40 Elements)

GDQ Method Finite Element Method
Boundary conditions α 0.1 0.2 0.3 0.1 0.2 0.3
Pinned-pinned 11.399 13.015 14.716 - - -
Fixed-fixed 45.403 51.968 58.661 - - -
Fixed-pinned 23.335 26.632 30.060 23.309 26.603 30.070

The generalized differential quadrature anologs of
the boundary conditions and general equation can be
written as

W1 = 0

∑
=

ϖ−=
N

2j
i

2
j

2
ij W.W.c ; for i = 2, 3,..., (N-1)

∑
=

=
N

2j
j

1
Nj 0Wc                                                        (46)

From this set of eigenvalue equations using the grid
point selection of Type-1, the fundamental
frequency can easily be evaulated. The obtained
results are given in Table 4 from which the
convergence of the method can easily be seen.
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4. CONCLUSIONS

The numerical technique of generalized differential
quadrature method for the solution of partial
differential equations was introduced and used to
solve some problems in structural analysis for
various boundary conditions. The main advatages of
the method are its inherent conceptual simplicity and
the fact that easily programmable algoritmic
expressions are obtained. The present method is seen
to yield excellent results for the cases treated even
when only a small number of grid points are used for
the evaluation. And also boundary conditions are
easy to be incorporated in the GDQM. The superb
accuracy, efficieny and convenience of this method
have shown the great potential of this method for
being used in structural analysis.
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