Hacet. J. Math. Stat. Volume 51 (5) (2022), 1248 – 1259 DOI: 10.15672/hujms.980307

RESEARCH ARTICLE

Geometric properties of normalized Rabotnov function

Sevtap Sümer Eker*, Sadettin Ece

Department of Mathematics, Faculty of Science, Dicle University, Diyarbakır, Turkey

Abstract

In the present paper, our aim is to study geometric properties of normalized Rabotnov functions. For this purpose, we determined sufficient conditions for univalency, close-to-convexity, convexity and starlikeness of the normalized Rabotnov functions in the open unit disk.

Mathematics Subject Classification (2020). 33E12, 33E20 30C45, 30C55

Keywords. Rabotnov function, univalent, starlike, convex and close-to-convex

1. Introduction

In 1948, Yu. N. Rabotnov, who worked in solid mechanics included plasticity, creep theory, hereditary mechanics, failure machanics, nonelastic stability, composites and shell theory, introduced a special function applied in viscoelasticity [12]. This function, known today as the Rabotnov fractional exponential function or briefly Rabotnov function, is defined as follows

$$R_{\alpha,\beta}(z) = z^{\alpha} \sum_{k=0}^{\infty} \frac{\beta^k}{\Gamma((k+1)(1+\alpha))} z^{k(1+\alpha)}.$$

The convergence of this series at any values of the argument is evident. Noting that for $\alpha = 0$ it reduces to the standard exponential $\exp(\beta z)$. Rabotnov function is the particular case of the familiar Mittag-Leffler function widely used in fractional calculus. The relation between the Rabotnov function and Mittag-Leffler function can be written as follows

$$R_{\alpha,\beta}(z) = z^{\alpha} E_{1+\alpha,1+\alpha}(\beta z^{1+\alpha}),$$

where E is Mittag-Leffler function and $\alpha, \beta, z \in \mathbb{C}$.

Our aim in this study is to determine geometric properties of Rabotnov function. For this we need the following well-known definitions of geometric function theory.

 $Email\ addresses:\ sevtaps@dicle.edu.tr\ (S.\ S\"umer\ Eker),\ ecesadettin 47@gmail.com\ (S.\ Ece)$

Received: 08.08.2021; Accepted: 19.02.2022

^{*}Corresponding Author.

Let \mathcal{A} denotes the class of functions f which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. Thus, each function $f \in \mathcal{A}$, has the following series representation:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \ (z \in \mathbb{U}).$$
 (1.1)

We denote by S the subclass of A consisting of functions f which are univalent in \mathbb{U} . A function $f \in A$ is called starlike (with respect to the origin), denoted by $f \in S^*$, if f is univalent in \mathbb{U} and $f(\mathbb{U})$ is a starlike domain with respect to the origin. The analytic characterization of S^* is

$$\mathcal{S}^* = \left\{ f: \ f \in \mathcal{A}, \ Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \mathbb{U} \right\}.$$

A function $f \in \mathcal{A}$ that maps \mathbb{U} onto a convex domain is called convex function. We denote by \mathcal{C} the class of all functions $f \in \mathcal{A}$ that are convex. The analytic characterization of \mathcal{C} is

$$\mathcal{C} = \left\{ f : \ f \in \mathcal{A}, \ Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \ z \in \mathbb{U} \right\}.$$

A function $f \in \mathcal{A}$ is called close-to-convex, if the range $f(\mathbb{U})$ is close-to-convex, i.e. the complement of $f(\mathbb{U})$ can be written as the union of nonintersecting half-lines. We denote by \mathcal{K} all close-to-convex functions. The class \mathcal{K} can be analytically characterized as follows:

$$\mathfrak{K} = \left\{ f: \ f \in \mathcal{A}, \ Re\left(\frac{f'(z)}{g'(z)}\right) > 0, \ z \in \mathbb{U}, \ g \in \mathfrak{C} \right\}.$$

Every convex function is close-to-convex. More generally, every starlike function is close-to-convex. Furthermore the Noshiro-Warschawski Theorem implies that, every close-to-convex function is univalent in \mathbb{U} . These remarks can be given by the following chain of proper inclusions: $\mathcal{C} \subset \mathcal{S}^* \subset \mathcal{K} \subset \mathcal{S}$. For more details we refer to [4,6].

The starlikeness, convexity, close-to-convexity and some other geometric properties of special functions such as Bessel, Struve, Wright, Mittag-Leffler etc. have been studied by many mathematicians recently (see for example [1–3, 10, 11, 13, 14]). However, there are no studies in the literature on the geometric properties of the Rabotnov function.

Throughout this paper, we shall restrict our attention to the case of real-valued $\alpha \geq 0$, $\beta > 0$ and $z \in \mathbb{U}$. It is clear that the Rabotnov function $R_{\alpha,\beta}(z)$ does not belong to the family \mathcal{A} . Thus, it is natural to consider the following normalization of Rabotnov functions:

$$\mathbb{R}_{\alpha,\beta}(z) = z^{1/(1+\alpha)} \Gamma(1+\alpha) R_{\alpha,\beta}(z^{1/(1+\alpha)})$$

$$= z + \sum_{k=2}^{\infty} \frac{\beta^{k-1} \Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^k.$$
(1.2)

In order to present our results we need the following Lemmas.

Lemma 1.1. ([9]) Let f define by (1.1) and suppose that

$$1 \ge 2a_2 \ge \cdots \ge ka_k \ge \cdots \ge 0$$

or

$$1 \le 2a_2 \le \dots \le ka_k \le \dots \le 2.$$

Then f is regular and univalent in \mathbb{U} .

Following the proof of Ozaki it can be proved that if a function f satisfies the conditions given in Lemma 1.1, then f is close-to-convex with respect to the convex function -log(1-z).

Lemma 1.2. ([5]) If $a_k \ge 0$, $\{ka_k\}$ and $\{ka_k - (k+1)a_{k+1}\}$ both are non-increasing, i.e., $\{ka_k\}$ is monotone of order 2, then f defined by (1.1) is in S^* .

Lemma 1.3. ([9]) Let f define by (1.1) and suppose that one of the four conditions

$$1 \ge 3a_3 \ge 5a_5 \ge \cdots \ge (2k+1)a_{2k+1} \ge \cdots \ge 2a_2 \ge 4a_4 \ge \cdots \ge 2ka_{2k} \ge \cdots \ge 0$$

$$1 \le 3a_3 \le 5a_5 \le \cdots \le (2k+1)a_{2k+1} \le \cdots \le 2a_2 \le 4a_4 \le \cdots \le 2ka_{2k} \le \cdots \le 2ka$$

$$1 \ge 3a_3 \ge 5a_5 \ge \cdots \ge (2k+1)a_{2k+1} \ge \cdots \ge 2ka_{2k} \ge \cdots \ge 4a_4 \ge 2a_2 \ge 0$$

$$1 \le 3a_3 \le 5a_5 \le \cdots \le (2k+1)a_{2k+1} \le \cdots \le 2ka_{2k} \le \cdots \le 4a_4 \le 2a_2 \le 2a_2$$

is verified. Then f is regular and univalent in \mathbb{U} .

From the Lemma 1.3, we can easily write that, if f is an odd function (i.e., a_{2k} in (1.1) is zero for each $k \ge 1$) such that

$$1 \ge 3a_3 \ge \dots \ge (2k+1)a_{2k+1} \ge \dots \ge 0, \tag{1.3}$$

or

$$1 \le 3a_3 \le \dots \le (2k+1)a_{2k+1} \le \dots \le 2 \tag{1.4}$$

then the function f is univalent in \mathbb{U} .

We can verify directly that if an odd function f satisfies (1.3) or (1.4), then f is close-to-convex with respect to the convex function $2^{-1}log(\frac{1+z}{1-z})$.

Lemma 1.4. ([7]) If the function $f \in \mathcal{A}$, satisfy |(f(z)/z) - 1| < 1 for each $z \in \mathbb{U}$, then f is univalent and starlike in $\mathbb{U}_{1/2} = \{z : |z| < 1/2\}$.

Lemma 1.5. ([8]) If the function $f \in A$, satisfy |f'(z) - 1| < 1 for each $z \in \mathbb{U}$, then f is convex in $\mathbb{U}_{1/2}$.

2. Main results

Theorem 2.1. Let $\alpha \geq 0$ and $\beta > 0$. If $\alpha \geq 2\beta - 1$, then normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is close-to-convex with respect to $-\log(1-z)$ and hence univalent in \mathbb{U} .

Proof. The function $\mathbb{R}_{\alpha,\beta}(z)$ defined by (1.2) can be rewritten as

$$\mathbb{R}_{\alpha,\beta}(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

where

$$a_k = \frac{\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}, \text{ for } k \ge 2 \text{ and } a_1 = 1.$$
 (2.1)

We note that under the stated conditions $a_k \geq 0$ for all $k \geq 1$ and $2a_2 = \frac{2\beta\Gamma(1+\alpha)}{\Gamma(2(1+\alpha))} \leq 1$. We use Lemma 1.1 to prove that $\mathbb{R}_{\alpha,\beta}(z)$ is close-to-convex with respect to -log(1-z). Therefore, we need to show that $\{ka_k\}$ is a decreasing sequence. For $\alpha \geq 0$, we can write

$$ka_k - (k+1)a_{k+1} = \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{(k+1)\beta^k\Gamma(1+\alpha)}{\Gamma((1+\alpha)(k+1))}$$

$$\geq \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{(k+1)\beta^k\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}$$

$$= \frac{k^2(1+\alpha)\beta^{k-1}\Gamma(1+\alpha)}{(\Gamma(1+\alpha)k+1)} - \frac{(k+1)\beta^k\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}$$

$$= \frac{\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}X(k)$$

where $X(k) = k^2(1+\alpha) - (k+1)\beta$. Using the fact that $k^2 \ge 2k - 1$, for all $k \ge 1$ we obtain

$$X(k) = k^{2}(1+\alpha) - (k+1)\beta$$

$$\geq (2\alpha - \beta + 2)k - \alpha - \beta - 1$$

$$\geq 1 + \alpha - 2\beta \geq 0,$$

under the hypotheses of the theorem. Thus, $\{ka_k\}$ is a decreasing sequence. This completes the proof of the theorem.

Example 2.2. The function $\mathbb{R}_{0,\frac{1}{2}}(z)=z+\sum_{k=2}^{\infty}\frac{\left(\frac{1}{2}\right)^{k-1}}{\Gamma(k)}z^k$ is close-to-convex with respect to -log(1-z) and hence univalent in \mathbb{U} .

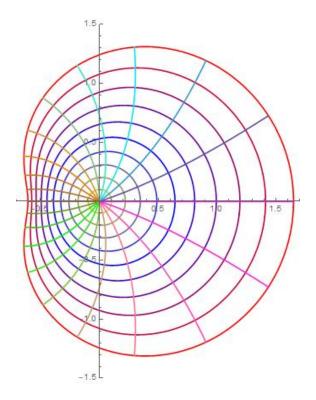


Figure 1. Mapping of $\mathbb{R}_{0,\frac{1}{2}}(z)$ over \mathbb{U}

Theorem 2.3. Let $\alpha \geq 0$ and $\beta > 0$. If $\alpha \geq 4\beta - 1$, then normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is starlike in \mathbb{U} .

Proof. We will use Lemma 1.2 in the proof of Theorem. By the proof of Theorem 2.1, the condition $\alpha \geq 4\beta - 1$ implies that the sequence $\{ka_k\}$ is non-increasing. We need to show that the sequence $\{ka_k - (k+1)a_{k+1}\}$ is also non-increasing. For this, we define $b_k = ka_k - (k+1)a_{k+1}$. Using (2.1), we find that

$$b_{k} - b_{k+1} = ka_{k} - 2(k+1)a_{k+1} + (k+2)a_{k+2}$$

$$= \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{2(k+1)\beta^{k}\Gamma(1+\alpha)}{\Gamma((1+\alpha)(k+1))} + \frac{(k+2)\beta^{k+1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)(k+2))}$$

$$\geq \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{2(k+1)\beta^{k}\Gamma(1+\alpha)}{\Gamma((1+\alpha)(k+1))}$$

$$\geq \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{2(k+1)\beta^{k}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}$$

$$= \frac{k^{2}(1+\alpha)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)} - \frac{2(k+1)\beta^{k}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}$$

$$= \frac{\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}Y(k)$$

where $Y(k) = k^2(1+\alpha) - 2(k+1)\beta$. We want to show that Y(k) is non-negative for all $k \ge 1$. Using the fact that $k^2 \ge 2k - 1$, for all $k \ge 1$ we obtain

$$Y(k) \ge 2(\alpha - \beta + 1)k - (\alpha + 2\beta + 1).$$

By hypotheses $2(\alpha - \beta + 1)$ is non-negative and

$$Y(k) > Y(1) = \alpha - 4\beta + 1 > 0.$$

This observation shows that the sequence b_k , namely the sequence $\{ka_k - (k+1)a_{k+1}\}$ is non-increasing. This proves the theorem.

Example 2.4. If we take $\beta = 1/4$ and $\alpha = 1/2$ in Theorem 2.3, then

$$\mathbb{R}_{\frac{1}{2},\frac{1}{4}}(z) = z + \sum_{k=2}^{\infty} \frac{(\frac{1}{4})^{k-1} \Gamma(\frac{3}{2})}{\Gamma(\frac{3}{2}k)} z^k$$

is starlike in $\mathbb U$.

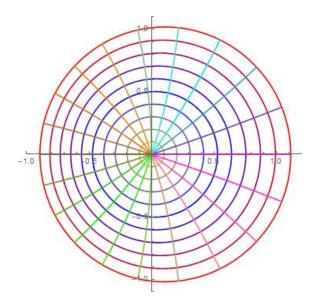


Figure 2. Mapping of $\mathbb{R}_{\frac{1}{2},\frac{1}{4}}(z)$ over \mathbb{U}

The following lemma allows us to prove our next theorem.

Lemma 2.5. If $k \in \mathbb{N}$ and $\alpha \geq 0$, then

$$(1+\alpha)^{k-1}(k-1)!\Gamma(1+\alpha) \le \Gamma\left((1+\alpha)k\right).$$

Proof. We will prove by induction that for all integers $k \in \mathbb{N} = \{1, 2, ...\}$. The case k = 1 is trivial. Now we assume that the inequality holds for k = n. Hence by the induction hypothesis we get

$$(1+\alpha)^n n! \Gamma(1+\alpha) = (1+\alpha)n(1+\alpha)^{n-1}(n-1)! \Gamma(1+\alpha)$$

$$\leq (1+\alpha)n\Gamma((1+\alpha)n)$$

$$= \Gamma((1+\alpha)n+1)$$

$$\leq \Gamma((1+\alpha)(n+1)).$$

This completes the proof.

From Lemma 2.5, for $k \in \mathbb{N}$ and $\alpha \geq 0$ we can write

$$\frac{\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} \le \frac{1}{(1+\alpha)^{k-1}(k-1)!}.$$
(2.2)

Theorem 2.6. Let $\alpha \geq 0$ and $\beta > 0$. If $\alpha > \frac{\beta}{W(2e)-1} - 1$, where W is the Lambert W function, then normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is starlike in \mathbb{U} .

Proof. Let p(z) be the function defined by

$$p(z) = \frac{z\mathbb{R}'_{\alpha,\beta}(z)}{\mathbb{R}_{\alpha,\beta}(z)}, \ (z \in \mathbb{U}).$$

Since

$$\frac{\mathbb{R}_{\alpha,\beta}(z)}{z} \neq 0, \ (z \in \mathbb{U}),$$

the function p is analytic in \mathbb{U} and p(0) = 1. To prove our theorem, we need to show that Re(p(z)) > 0, $z \in \mathbb{U}$. It is easy to show that, if |p(z) - 1| < 1, $z \in \mathbb{U}$, then Re(p(z)) > 0. For $z \in \mathbb{U}$, using (1.2) and (2.2) we obtain

$$\left| \mathbb{R}'_{\alpha,\beta}(z) - \frac{\mathbb{R}_{\alpha,\beta}(z)}{z} \right| = \left| \sum_{k=2}^{\infty} \frac{(k-1)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^{k-1} \right|$$

$$< \sum_{k=2}^{\infty} \frac{(k-1)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}$$

$$\leq \sum_{k=2}^{\infty} \frac{(k-1)\beta^{k-1}}{(1+\alpha)^{k-1}(k-1)!}$$

$$= \frac{\beta}{(1+\alpha)} e^{\frac{\beta}{1+\alpha}}$$
(2.3)

and

$$\left| \frac{\mathbb{R}_{\alpha,\beta}(z)}{z} \right| = \left| 1 + \sum_{k=2}^{\infty} \frac{\beta^{k-1} \Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^{k-1} \right|$$

$$> 1 - \sum_{k=2}^{\infty} \frac{\beta^{k-1} \Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}$$

$$\ge 1 - \sum_{k=2}^{\infty} \frac{\beta^{k-1}}{(1+\alpha)^{k-1}(k-1)!}$$

$$= 2 - e^{\frac{\beta}{1+\alpha}}.$$

$$(2.4)$$

From (2.3) and (2.4), we get

$$\begin{aligned} |p(z) - 1| &= \left| \frac{z \mathbb{R}'_{\alpha,\beta}(z)}{\mathbb{R}_{\alpha,\beta}(z)} - 1 \right| \\ &= \left| \frac{\mathbb{R}'_{\alpha,\beta}(z) - \frac{\mathbb{R}_{\alpha,\beta}(z)}{z}}{\frac{\mathbb{R}_{\alpha,\beta}(z)}{z}} \right| \\ &< \frac{\frac{\beta}{1+\alpha} e^{\frac{\beta}{1+\alpha}}}{2 - e^{\frac{\beta}{1+\alpha}}}. \end{aligned}$$

Thus $\mathbb{R}_{\alpha,\beta}(z) \in \mathbb{S}^*$ if $\frac{\beta}{1+\alpha}e^{\frac{\beta}{1+\alpha}} < 2 - e^{\frac{\beta}{1+\alpha}}$ or equivalently $\alpha > \frac{\beta}{W(2e)-1} - 1$, where W is the Lambert W function. This completes the proof of the theorem.

Example 2.7. If we take $\beta = 1$, then from Theorem 2.6 it should be $\alpha > \frac{1}{W(2e)-1} - 1 \approx 1,67$. Thus the function $\mathbb{R}_{2,1}(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(3)}{\Gamma(3k)} z^k$ is starlike in \mathbb{U} .

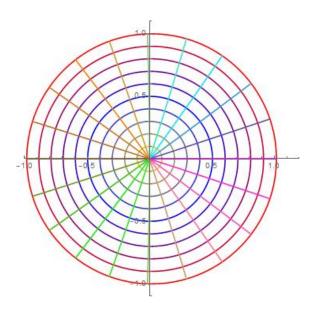


Figure 3. Mapping of $\mathbb{R}_{2,1}(z)$ over \mathbb{U}

Theorem 2.8. Let $\alpha \geq 0$ and $\beta > 0$. If $\frac{\beta}{1+\alpha} < 0.199496$ then normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is convex in \mathbb{U} .

Proof. Let p(z) be the function defined by

$$p(z) = 1 + \frac{z \mathbb{R}''_{\alpha,\beta}(z)}{\mathbb{R}'_{\alpha,\beta}(z)}, \ (z \in \mathbb{U}).$$

Then p(z) is analytic in \mathbb{U} and p(0) = 1. To prove $\mathbb{R}_{\alpha,\beta}(z)$ is convex in \mathbb{U} , we need to show that |p(z) - 1| < 1, $z \in \mathbb{U}$. For $z \in \mathbb{U}$, using (1.2) and (2.2), we get

$$\left| z \mathbb{R}_{\alpha,\beta}^{"}(z) \right| = \left| \sum_{k=2}^{\infty} \frac{k(k-1)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^{k-1} \right|
< \sum_{k=2}^{\infty} \frac{k(k-1)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}
\le \sum_{k=2}^{\infty} \frac{k(k-1)\beta^{k-1}}{(1+\alpha)^{k-1}(k-1)!}
= \frac{\beta(2\alpha+\beta+2)e^{\frac{\beta}{1+\alpha}}}{(1+\alpha)^2},$$
(2.5)

and

$$\left| \mathbb{R}'_{\alpha,\beta}(z) \right| = \left| 1 + \sum_{k=2}^{\infty} \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^{k-1} \right|$$

$$> 1 - \sum_{k=2}^{\infty} \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}$$

$$\ge 1 - \sum_{k=2}^{\infty} \frac{k\beta^{k-1}}{(1+\alpha)^{k-1}(k-1)!}$$

$$= 2 - \frac{(\alpha+\beta+1)e^{\frac{\beta}{1+\alpha}}}{1+\alpha}.$$

$$(2.6)$$

From (2.5) and (2.6), we get

$$\left| \frac{z \mathbb{R}''_{\alpha,\beta}(z)}{\mathbb{R}'_{\alpha,\beta}(z)} \right| < \frac{\frac{\beta(2\alpha+\beta+2)e^{\frac{\beta}{1+\alpha}}}{(1+\alpha)^2}}{2 - \frac{(\alpha+\beta+1)e^{\frac{\beta}{1+\alpha}}}{1+\alpha}}.$$

Thus $\mathbb{R}_{\alpha,\beta}(z) \in \mathcal{C}$ if

$$\frac{\beta}{1+\alpha} \left(\frac{\left(2 + \frac{\beta}{1+\alpha}\right) e^{\frac{\beta}{1+\alpha}}}{2 - \left(1 + \frac{\beta}{1+\alpha}\right) e^{\frac{\beta}{1+\alpha}}} \right) < 1$$

or equivalently $\frac{\beta}{1+\alpha} < 0.199496$. This completes the proof of the theorem.

Example 2.9. The function
$$\mathbb{R}_{1,\frac{1}{3}}(z) = z + \sum_{k=2}^{\infty} \frac{1}{3^{k-1}\Gamma(2k)} z^k$$
 is convex in \mathbb{U} .

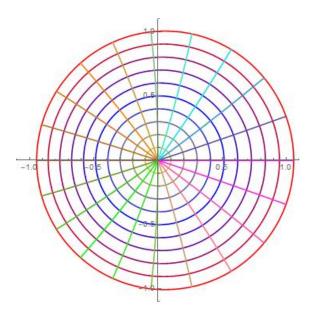


Figure 4. Mapping of $\mathbb{R}_{1,\frac{1}{2}}(z)$ over \mathbb{U}

Theorem 2.10. Let $\alpha \geq 0$ and $\beta > 0$. If $\alpha \geq 3\beta - 1$, then $\mathbb{R}_{\alpha,\beta}(z^2)/z$ is close-to-convex with respect to convex function $2^{-1}log(\frac{1+z}{1-z})$.

Proof. It is easy to see that

$$\frac{\mathbb{R}_{\alpha,\beta}(z^2)}{z} = z + \sum_{k=2}^{\infty} a_{2k-1} z^{2k-1}$$

where

$$a_{2k-1} = \frac{\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}, \text{ for } k \ge 2 \text{ and } a_1 = 1.$$

We note that under the stated conditions $a_{2k-1} \ge 0$ for all $k \ge 2$ and $3a_3 = \frac{3\beta\Gamma(1+\alpha)}{\Gamma(2(1+\alpha))} \le 1$. In view of Lemma 1.3 we have to prove that $\{(2k-1)a_{2k-1}\}_{k\ge 2}$ is a decreasing sequence. Basic computations gives

$$(2k-1)a_{2k-1} - (2k+1)a_{2k+1} = \frac{(2k-1)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{(2k+1)\beta^{k}\Gamma(1+\alpha)}{\Gamma((1+\alpha)(k+1))}$$

$$\geq \frac{(2k-1)\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} - \frac{(2k+1)\beta^{k}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}$$

$$= \frac{\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k+1)}T(k)$$

where $T(k) = 2(1+\alpha)k^2 - (1+\alpha+2\beta)k - \beta$. Using the fact that $k^2 \ge 2k - 1$, for all $k \ge 1$ we obtain

$$T(k) \ge (3\alpha - 2\beta + 3)k - (2\alpha + \beta + 2).$$

By the hypotesis we can write $3\alpha - 2\beta + 3 \ge 0$. So we obtain

$$T(k) \ge T(1) = \alpha - 3\beta + 1 \ge 0.$$

Thus, $\{(2k-1)a_{2k-1}\}$ is a decreasing sequence. This completes the proof of the theorem.

Example 2.11. The function $\mathbb{R}_{0,\frac{1}{3}}(z^2)/z = z + \sum_{k=2}^{\infty} \frac{1}{3^{k-1}\Gamma(k)} z^{2k-1}$ is close-to-convex with respect to convex function $2^{-1}log(\frac{1+z}{1-z})$.

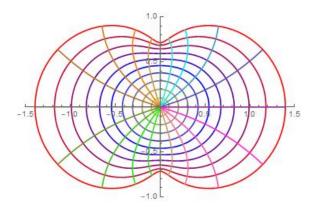


Figure 5. Mapping of $\mathbb{R}_{0,\frac{1}{4}}(z^2)/z$ over \mathbb{U}

Theorem 2.12. Let $\alpha \geq 0$ and $\beta > 0$. If $\alpha > \beta \log_2 e - 1$, then normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is univalent and starlike in $\mathbb{U}_{1/2}$.

Proof. From (1.2) and (2.2) we can write

$$\left| \frac{\mathbb{R}_{\alpha,\beta}(z)}{z} - 1 \right| = \left| \sum_{k=2}^{\infty} \frac{\beta^{k-1} \Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^{k-1} \right|$$

$$< \sum_{k=2}^{\infty} \frac{\beta^{k-1} \Gamma(1+\alpha)}{\Gamma((1+\alpha)k)}$$

$$\leq \sum_{k=2}^{\infty} \frac{\beta^{k-1}}{(1+\alpha)^{k-1}(k-1)!}$$

$$= e^{\frac{\beta}{1+\alpha}} - 1.$$

In view of Lemma 1.4, normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is starlike in $\mathbb{U}_{1/2}$, if $e^{\frac{\beta}{1+\alpha}} - 1 < 1$. This is equivalent to hypothesis of theorem. This completes the proof of the theorem.

Example 2.13. The function
$$\mathbb{R}_{\frac{1}{2},1}(z) = z + \sum_{k=2}^{\infty} \frac{\Gamma(\frac{3}{2})}{\Gamma(\frac{3}{2}k)} z^k$$
 is starlike in $\mathbb{U}_{1/2}$.

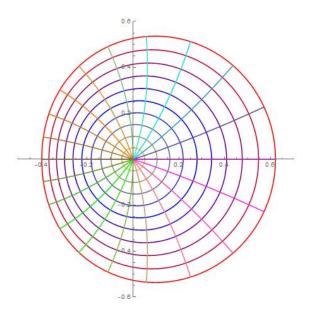


Figure 6. Mapping of $\mathbb{R}_{\frac{1}{2},1}(z)$ is starlike in $\mathbb{U}_{1/2}$

Theorem 2.14. Let $\alpha \geq 0$ and $\beta > 0$. If $\alpha > \frac{\beta}{W(2e)-1} - 1$, where W is the Lambert W function, then the normalized Rabotnov function $\mathbb{R}_{\alpha,\beta}(z)$ is convex in $\mathbb{U}_{1/2}$.

Proof. Straightforward calculation would yield

$$\begin{split} \left| \mathbb{R}'_{\alpha,\beta}(z) - 1 \right| &= \left| \sum_{k=2}^{\infty} \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} z^{k-1} \right| \\ &< \sum_{k=2}^{\infty} \frac{k\beta^{k-1}\Gamma(1+\alpha)}{\Gamma((1+\alpha)k)} \\ &\leq \sum_{k=2}^{\infty} \frac{k\beta^{k-1}}{(1+\alpha)^{k-1}(k-1)!} \\ &= \left(1 + \frac{\beta}{1+\alpha} \right) e^{\frac{\beta}{1+\alpha}} - 1. \end{split}$$

Under the given hypotheses, $\left(1+\frac{\beta}{1+\alpha}\right)e^{\frac{\beta}{1+\alpha}}-1<1$. Using Lemma 1.5, we obtain $\mathbb{R}_{\alpha,\beta}(z)$ is convex in $\mathbb{U}_{1/2}$.

Example 2.15. The function $\mathbb{R}_{0,\frac{1}{3}}(z) = z + \sum_{k=2}^{\infty} \frac{1}{3^{k-1}\Gamma(k)} z^k$ is convex in $\mathbb{U}_{1/2}$.

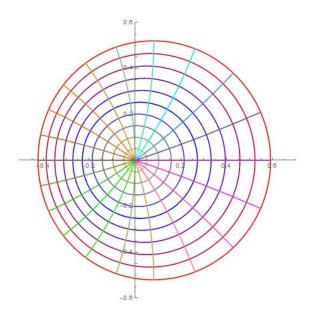


Figure 7. Mapping of $\mathbb{R}_{0,\frac{1}{2}}(z)$ is convex in $\mathbb{U}_{1/2}$

References

- [1] D. Bansal and J.K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ. **61**(3), 338350, 2016.
- [2] D.Bansal, M.K. Soni and A. Soni, Certain geometric properties of the modified Dini function, Anal. Math. Phys. 9, 13831392, 2019.
- [3] A. Baricz, Geometric properties of generalized Bessel functions, Publ. Math. Debrecen. **73**(1-2), 155178, 2008.
- [4] PL. Duren, *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, New York, NY, USA: Springer-Verlag, 1983.
- [5] L. Fejér, Untersuchungen uber Potenzreihen mit mehrfach monotoner Koeffizientenfolge, Acta Litt. Sci. Szeged 8, 89-115, 1936.
- [6] A.W. Goodman, *Univalent Functions*, New York, NY, USA: Mariner Publishing Company, 1983.
- [7] T.H. MacGregor, The radius of univalence of certain analytic functions II, Proc. Amer. Math. Soc. 14, 521524, 1963.
- [8] T.H. MacGregor, A class of univalent functions, Proc. Amer. Math. Soc., 15, 311317, 1964.
- [9] S. Ozaki, On the theory of multivalent functions, Science Reports of the Tokyo Bunrika Daigaku, Section A, 2(40), 167-188, 1935.
- [10] S. Ponnusamy and A. Baricz, Starlikeness and convexity of generalized Bessel functions, Integral Transform Spec. Funct. 21(9), 641653, 2010.
- [11] J.K. Prajapat, Certain geometric properties of the Wright functions, Integral Transforms Spec. Funct. 26(3), 203212, 2015.
- [12] Y. Rabotnov, Equilibrium of an Elastic Medium with After-Effect, Prikladnaya Matematika i Mekhanika, 12, 1948, 1, pp. 53-62 (in Russian), Reprinted: Fractional Calculus and Applied Analysis, 17, 3, pp. 684-696, 2014.
- [13] D. Răducanu, Geometric properties of Mittag-Leffler functions, Models and Theories in Social Systems, Springer: Berlin, Germany, 403-415, 2019.
- [14] S. Sümer Eker, S. Ece, Geometric Properties of the Miller-Ross Functions Iran. J. Sci. Technol. Trans. Sci., 2022.