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Abstract

In the present paper, our aim is to study geometric properties of normalized Rabotnov
functions. For this purpose, we determined sufficient conditions for univalency, close-to-
convexity, convexity and starlikeness of the normalized Rabotnov functions in the open
unit disk.
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1. Introduction

In 1948, Yu. N. Rabotnov, who worked in solid mechanics included plasticity, creep
theory, hereditary mechanics, failure machanics, nonelastic stability, composites and shell
theory, introduced a special function applied in viscoelasticity [12]. This function, known
today as the Rabotnov fractional exponential function or briefly Rabotnov function, is
defined as follows

- s k(1+a)
R p(z) = 2¢ 2P
«p(2) ];)F((k+1)(1+a))
The convergence of this series at any values of the argument is evident. Noting that for
a = 0 it reduces to the standard exponential exp(/5z). Rabotnov function is the particular
case of the familiar Mittag-Leffler function widely used in fractional calculus. The relation
between the Rabotnov function and Mittag-Leffler function can be written as follows

Rop(2) = 2*Fria14a(B2 ),

where E is Mittag-Leffler function and «, 3,z € C.
Our aim in this study is to determine geometric properties of Rabotnov function. For
this we need the following well-known definitions of geometric function theory.
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Let A denotes the class of functions f which are analytic in the open unit disk U =
{z € C : |z| <1} and normalized by the conditions f(0) = f/(0) —1 = 0. Thus, each
function f € A, has the following series representation:

z):z+iakzk, (z € U). (1.1)

We denote by 8 the subclass of A consisting of functions f which are univalent in U.
A function f € A is called starlike (with respect to the origin), denoted by f € 8%, if f
is univalent in U and f(U) is a starlike domain with respect to the origin. The analytic
characterization of 8* is

S*:{f: fed, Re(széz;)) >0, ze[U}.

A function f € A that maps U onto a convex domain is called convex function. We
denote by € the class of all functions f € A that are convex. The analytic characterization

of Cis
"
e:{f: feAa, Re<1—|—zf (Z)) >0, zeU}.
f'(2)

A function f € A is called close-to-convex, if the range f(U) is close-to-convex, i.e.
the complement of f(U) can be written as the union of nonintersecting half-lines. We
denote by X all close-to-convex functions. The class K can be analytically characterized
as follows:

f'(z)

{f feh Re(Q(Z)

Every convex function is close-to-convex. More generally, every starlike function is
close-to-convex. Furthermore the Noshiro-Warschawski Theorem implies that, every close-
to-convex function is univalent in U. These remarks can be given by the following chain
of proper inclusions: € C 8* C K C 8. For more details we refer to [4,6].

The starlikeness, convexity, close-to-convexity and some other geometric properties of
special functions such as Bessel, Struve, Wright, Mittag-Leffler etc. have been studied by
many mathematicians recently (see for example [1-3,10, 11,13, 14]). However, there are
no studies in the literature on the geometric properties of the Rabotnov function.

Throughout this paper, we shall restrict our attention to the case of real-valued o > 0,
f > 0and z € U. It is clear that the Rabotnov function R, g(z) does not belong to
the family A. Thus, it is natural to consider the following normalization of Rabotnov
functions:

>>0, zeU,geG}.

Ra,ﬁ(z) _ 21/(1+a)r(1 + a)R 5( 1/(1+o¢))
5k 1r (14+a) 4 (1.2)
z+ Z k) —_—Z .
In order to present our results we need the followmg Lemmas.
Lemma 1.1. ([9]) Let f define by (1.1) and suppose that
1>2a > >kap>---2>20

or
1<2a < < kap < -+ < 2.

Then f is regular and univalent in U.

Following the proof of Ozaki it can be proved that if a function f satisfies the conditions
given in Lemma 1.1, then f is close-to-convex with respect to the convex function —log(1—

z).
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Lemma 1.2. ([5]) Ifap > 0, {kayx} and {kap — (k+ 1)ag+1} both are non-increasing, i.e.,
{kay} is monotone of order 2, then f defined by (1.1) is in 8*.

Lemma 1.3. ([9]) Let f define by (1.1) and suppose that one of the four conditions

1>3az >5a5 > -+ > 2k + 1)agg+1 > -+ > 2a2 > 4ag > -+ > 2kag, > --- >0

1<3a3z <bas <--- < (2k+1aggt1 <+ <2ap <day <--- <2kag, <--- <2

1> 3az > 5a5 > -+ > (2k + 1)aggt1 > -+ > 2kagg, > -+ > 4as > 2a3 >0

1 <3az <b5a5 < -+ < (2k + 1)aggr < -+ < 2kagy, < -+ <day < 2a3 < 2
is verified. Then f is regqular and univalent in U.

From the Lemma 1.3, we can easily write that, if f is an odd function (i.e., ag in (1.1)
is zero for each k > 1) such that

123G3Z-~-Z(2k+1)a2k+12--~ZO, (1.3)
or
1§3a3§---§(2k+1)a2k+1S---§2 (1.4)

then the function f is univalent in U.
We can verify directly that if an odd function f satisfies (1.3) or (1.4), then f is close-

to-convex with respect to the convex function 2‘”09(%1‘2).

Lemma 1.4. ([7]) If the function f € A, satisfy |(f(z)/z) — 1| < 1 for each z € U, then
[ is univalent and starlike in Uy o = {2 : |2 < 1/2}.

Lemma 1.5. ([8]) If the function f € A, satisfy |f'(z) — 1| <1 for each z € U, then f is
convez in Uy /p.

2. Main results

Theorem 2.1. Let a« > 0 and > 0. If « > 28 — 1, then normalized Rabotnov function
Ra,5(2) is close-to-convex with respect to —log(1 — z) and hence univalent in U.

Proof. The function R, g(z) defined by (1.2) can be rewritten as

o
Rop(2) =2+ Z apz”
k=2

where
BT (14 )

=— 7~ f > 2 =1. 2.1
ay TR or k>2 and ay (2.1)

We note that under the stated conditions a; > 0 for all £k > 1 and 2as = % <1

We use Lemma 1.1 to prove that R, g(2) is close-to-convex with respect to —log(1 — 2).
Therefore, we need to show that {kay} is a decreasing sequence. For o > 0, we can write
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_ B 4a) (k4 1B+ )
kap — (k4 1)apq = T(1+a)k) T((1+a)(k+1))

ESFIT(14+a) (k4 1)BFT(1+ )

- TI'((1+ a)k) N1+ a)k+1)
21+ )1 +a) (k+1)BT(1+a)
Tl+a)k+1)  T(Q+a)k+1)
BRI (14 )
S T((1+a)k+ 1)X(k)
where X (k) = k?(1 + o) — (k + 1)B8. Using the fact that k? > 2k — 1, for all k > 1 we
obtain

X(k)=kK(1+a)—(k+1)8
>R2a—-—p+2)k—a—-F—-1
>14+a—-28>0,

under the hypotheses of the theorem. Thus, {ka;} is a decreasing sequence. This com-
pletes the proof of the theorem. O

k—1
1
oo =
Example 2.2. The function R; 1(2) = 2z + Z <;)( B 2F is close-to-convex with respect
2
k=2

to —log(1 — z) and hence univalent in U.

S
i H‘ “
e -
1B =% g 15 1.5
TR "|
) 3_ ;! Il

Figure 1. Mapping of Ry 1 (2) over U

Theorem 2.3. Let a« > 0 and 6 > 0. If « > 48 — 1, then normalized Rabotnov function
Ro 5(2) is starlike in U.
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Proof. We will use Lemma 1.2 in the proof of Theorem. By the proof of Theorem 2.1,
the condition o > 48 — 1 implies that the sequence {kay} is non-increasing. We need to
show that the sequence {kar — (k + 1)agy1} is also non-increasing. For this, we define
by, = kax, — (k + 1)ag41. Using (2.1), we find that

be — b1 = ka — 2(k + Dagsr + (k + 2)apio
kBTl 4a) 2k+1)BT(14a)  (K+2)BMT(1+«)

(1 + a)k) N1+ a)(k+1)) L((1+a)(k+2))
kBFIT(1+a)  2(k+1)BT(1+a)

— T((1+ a)k) D((1+a)(k+1))
EBF I (1 +a)  2(k+1)BT(1 +a)

= I(Q+a)k  T(Q+a)k+1)

B4 T(1+a) 2+ 1)1 +a)

T+ a)k+1) L((1+a)k+1)
BFIT(1 + @) Y (k)

T T+ a)k+1)
where Y (k) = k(1 + a) — 2(k + 1)3. We want to show that Y (k) is non-negative for all
k > 1. Using the fact that k2 > 2k — 1, for all £ > 1 we obtain

Y(k)>2a—-p+1)k—(a+28+1).
By hypotheses 2(av — 8 + 1) is non-negative and
Yk)>Y(1)=a—-48+1>0.

This observation shows that the sequence by, namely the sequence {kay — (k + 1)ags1} is
non-increasing. This proves the theorem. (I

Example 2.4. If we take § =1/4 and o = 1/2 in Theorem 2.3, then

is starlike in U .

7 = | N

\ | .
3 f -; 03 e

\\‘ ,f-
N,

Figure 2. Mapping of R
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The following lemma allows us to prove our next theorem.

Lemma 2.5. Ifk € N and a > 0, then

(14+a)f (k=DM +a) <T((1+a)k).

Proof. We will prove by induction that for all integers k € N = {1,2,...}. The case k =1
is trivial. Now we assume that the inequality holds for £k = n. Hence by the induction
hypothesis we get

(14 «)"n!Il(1 =(1+a)n(l+a)" ' n-1IT1+a)
< (14 a)nl'((1 4 a)n)
=T((14+a)n+1)
<T((14+a)(n+1)).

This completes the proof. O
From Lemma 2.5, for ¥ € N and a > 0 we can write
I'l+a) 1
< . 2.2
F'(1+a)k) =~ 1+ a)k1(k-1) (22)

Theorem 2.6. Let « > 0 and 8 > 0. If a > W(ﬁ) — 1, where W is the Lambert W
function, then normalized Rabotnov function R, g(z) is starlike in U.

Proof. Let p(z) be the function defined by

Rl
p(z) = R;(()) (- D).
Since
Rasle) 4o, (zew),

the function p is analytic in U and p(0) = 1. To prove our theorem, we need to show that
Re (p(z)) > 0, z € U. It is easy to show that, if |p(z) — 1| < 1, z € U, then Re (p(z)) > 0.
For z € U, using (1.2) and (2.2) we obtain

, Rap(2)| | (k= 1)BT(1+a) ,
Raplz) = =] = k; T((1+ a)k) S
= (k—1)8'T(1 + a)

T((1+ a)k)

<
k=2

= o (2.3)
<3 (k- 1)8

(T +a)f1(k—1)

5 =
1+a)

and

Rq, 5k 1F 1 +04) k-1

’ 14 Z B
Bk 1F( +a)

o0 6k 1

Z _|_a k 1 1)!

2
B

z

>1-—

=2 —el+
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From (2.3) and (2.4), we get

2R}, 5(2)

|p(2’) - 1| = Raﬁ(z)

.

8 8
Thus R, g(2) € 8* if lf_aeH_a < 2 —el+a or equivalently o > % — 1, where W is the

Lambert W function. This completes the proof of the theorem. O
Example 2.7. If we take § = 1, then from Theorem 2.6 it should be o > ﬁ — 1=

=T
1,67. Thus the function Ry 1(2) = z + % F((33k))

2% is starlike in U.

" _\\

=N

Figure 3. Mapping of Ry 1(z) over U

Theorem 2.8. Let « > 0 and f > 0. If Hia < 0.199496 then mormalized Rabotnov
function Ry, g(2) is convex in U.

Proof. Let p(z) be the function defined by

2R3 5(2)

W, (Z S [U)

p(z) =1+

Then p(z) is analytic in U and p(0) = 1. To prove R, 5(2) is convex in U, we need to show
that |p(z) — 1| <1, z € U. For z € U, using (1.2) and (2.2), we get
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and

1+Zkﬁk 1F (I+a) 4

a)k)
kpk- 1F(1 + )
1oy kBT +a)
= I'((1+ a)k)
o0 k‘ﬁk_l
Z 1- Z fo—
= (1+ )1k —-1)
9 (a+5+1)el+ia
a 1+ ’
From (2.5) and (2.6), we get
B(2a+5+2)el+ia
Ros(2)| T arar
R} ,g( z) B (a+ﬁl+1)el+ia '
+a
Thus R, g(z) € € if
B =
B (2 -+ m) el+ <1
I+ais (14_1-%)6”“

or equivalently Hia < 0.199496. This completes the proof of the theorem.

o0
1
Example 2.9. The function R, 1(2) = 2+ Z mzk
3

is convex in U.

1255

(2.5)

(2.6)
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Figure 4. Mapping of Rl’%(z) over U

Theorem 2.10. Let a >0 and 8> 0. If a > 33 — 1, then R, 5(2%)/z is close-to-convex
with respect to convex function 27 log(112).

Proof. 1t is easy to see that

R (o]
0,8(2%) =24+ Za%_lz%q
where
BT+ @)
ag1=————, for k>2 and a; =1.
H T+ k) - 1
We note that under the stated conditions ag;_1 > 0 for all kK > 2 and 3ag = M <1.

r2(1+a))
In view of Lemma 1.3 we have to prove that {(2k — 1)agx—_1}r>2 is a decreasing sequence.
Basic computations gives

2k — 1) T(1+a)  (2k+ DB + )
(2k — Dagg—1 — (2k + Dagg1 = (1 + a)k) B N(14+a)(k+1))
_ Q-1 T+ ) (2k+1)BT(1+a)
= T+ k) 1+ gk +1)
BEIP(1 + )

F((l + o)k + 1)T(k)

where T(k) = 2(1 + a)k? — (1 + a + 2B8)k — 3. Using the fact that k% > 2k — 1, for all
k > 1 we obtain
T(k)> Ba—28+3)k— 2o+ [+ 2).
By the hypotesis we can write 3a — 25 + 3 > 0. So we obtain
Tk)>T(l)=a—35+1>0.

Thus, {(2k — 1)agk_1} is a decreasing sequence. This completes the proof of the theorem.
O
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2k

o0
Example 2.11. The function R, 1(2%)/z = 2+ Z ~!is close-to-convex with
’3
k=2

1
31T (k)

respect to convex function 2_1log(i‘j).

Figure 5. Mapping of Ry 1 (2%)/z over U

Theorem 2.12. Let o« > 0 and 8 > 0. If a > [logye — 1, then normalized Rabotnov
function Ry, g(2) is univalent and starlike in Uy 5.

Proof. From (1.2) and (2.2) we can write

Rap(2) | _ [~ BT +a)
Pl | - 2 T+ k)
- . BEIT(1 4 «)

2 T((1+ a)k)

o0 kal
= k; A+ a)F (k=1
_B_

=elta — 1.

]
In view of Lemma 1.4, normalized Rabotnov function R, s(2) is starlike in Uy o, if eTFa —
1 < 1. This is equivalent to hypothesis of theorem. This completes the proof of the

theorem. t
. SYRAC) TR
Example 2.13. The function R1 ,(z) = z + E RED 2" is starlike in Uy /5.
27 S
k=2 2
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Figure 6. Mapping of R%’l(z) is starlike in Uy /o

Theorem 2.14. Let o > 0 and g > 0. If a > W(2e) — 1, where W is the Lambert W
function, then the normalized Rabotnov function R, g(z ) is convez in Uy /o.

Proof. Straightforward calculation would yield

EBEIT(1+a) 4
/ k—1
Ros(2) = 1| = ‘Z T((1+a)k) -

Z EBFIT(1 + @)

= 2T+ a)k)
0 kﬁk_l
= kz:; T+ a)f1(k—1)
B\
= <1 + e a) e 1.

]
Under the given hypotheses, (1 + H_ia) eTfo — 1 < 1. Using Lemma 1.5, we obtain

Ry 5(2) is convex in Uy /.
O

1
Example 2.15. The function Ro,é( z)=z+ kz% mzk is convex in Uy /5.
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Figure 7. Mapping of RO’%(Z) is convex in Uy /o
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