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Abstract

This paper concentrates on a simple population model incorporating fear. Firstly, positivity
and steady state analysis are performed, where the theoretical investigations show that
change in the level of fear in prey population does not effect the local stability of the
system around each equilibria (either stable or unstable). For the deterministic model, the
numerical simulations are plotted for the density of prey species as a function of various
system parameters. The stability analysis of the coexisting state shows that only transcritical
bifurcation, where the steady states intersect, is observed. Secondly, the model is analysed
with Gaussian noise term incorporated in the prey’s death rate. The model comprising
noise term turns the system into stochastic differential equations and irregular noise related
oscillations are observed in the densities of both species.

1. Introduction

Due to the complexity of the ecosystem, it is often challenging to predict the effects of the various parameters in the dynamics
of species using only statistical information. Therefore it is very crucial to incorporate mathematical formulations into
research to better comprehend the reasons and outcomes of the dynamics of species in the ecosystem. In particular, theoretical
formulations may help to foresee the required conditions for controlling ecological balance. In this context, the latest theories
regarding the evolution of predator-prey type interactions shed lights on the prediction of population dynamics for multiple
species, including their response to environmental conditions.

In mathematical terms, the impact of prey species response to predator species has been analysed using a wide variety
functional responses. Here, a functional response refers to the consumption rate of a predator on prey [1]. The most common
functional responses that have been used to model predator and prey interactions are Holling type I (i), Holling type II (ii) and
Holling type III (iii) functional responses, classified by Crawford Stanley Holling [2]-[4]. In this paper, Holling type I, leading
to a linear functional response will be taken into consideration.

The presence of prey species directly or indirectly depends on the presence of predators. Most of the available models
analyse the direct influence of predator species on the prey species such as predation via direct killing. However, the change
in the prey density may have also been affected due to indirect factors including psychological conditions such as fear. In
fact, scared prey species may change their habitat and live in various conditions, where the quality of the new habitat may
lead an increase or decrease in the density of prey population. There are many experimental studies to explore the role of fear
in a population [5]-[7]. From the mathematical point of view, the fear effect has been thoroughly explored in recent years.
For example, the role of fear in a prey-predator system with BeddingtonDeAngelis functional response has been studied by
Pal et al. [8]. The instability of a population dynamics due to large fear parameters has been analysed by Wang and Zou
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[9]. The impact of group defence along with fear has been discussed by Sasmal and Takeuchi [10]. See [11]-[13] for other
comprehensive works taking the fear effect into account.

Although previously studied deterministic models do not take stochastic effects into account, the random fluctuations may
occur in nature due to climate change or some short term diseases which may affect the evolution of species. In fact these
fluctuations may appear in any biological process. Therefore, it is worth to incorporate environmental noise in the model
to better capture the dynamics of species in ecology. Many scientist have studied models with Gaussian noise from various
point of view, including stochastic models with stage structure [14], foraging [15], anti-predator defence [13], intra-specific
competition [16], leading to stochastic differential equations.

This paper is organised as follows: The deterministic model given in [17] is revisited in Section 2, where positivity of
the model, its steady states and local stability analysis are derived respectively in Sections 2.1, 2.2 and 2.3. In Section 3,
incorporation of the white Gaussian noise in the prey’s death rate is discussed. Numerical simulations resulting from local
stability analysis, as well as the comparison between deterministic model and stochastic model are demonstrated in Section 5.
Furthermore the conditions under which prey and predator species go to extinction are provided in Section 4.

2. Deterministic dynamics of the model

A deterministic model based on the paper [17] is written as in the following:

dx
dt

= r0x f1(k,y)−dx−ax2− f2(x)y := A1(x,y, t),
dy
dt = y(−m+ c f2(x)) := B1(x,y, t), (2.1)

where parameters r0,k,d,a and m respectively stand for the birth rate for prey, the level of fear due to predator, the natural
death rate of prey, the death rate of prey as a result of intra-species competition and the natural death rate of predator. Here c
denotes the conversion rate from prey to predator biomass. All parameters stated in the model are positive for their biological
meaning. The function f1 denotes the fear factor and function f2 represents linear functional response.

The function f1(k,y) satisfies the following conditions:

f1(0,y) = 1, f1(k,0) = 1,
lim
k→∞

f1(k,y) = 0, lim
y→∞

f1(k,y) = 0,

∂ f1(k,y)
∂k

< 0,
∂ f1(k,y)

∂y
< 0.

(2.2)

and f2(x) = px is taken as a linear function. To make the system mathematically attainable, fear factor is adopted in a form of
f1(k,y) = 1/1+ ky, that satisfies the conditions given in equation (2.2) [17].

2.1. Positivity

It is straightforward to show that all solutions (x(t),y(t)) of the model given by (2.1) are non-negative with positive initial
conditions, i.e. (x0,y0) ∈ R2

+ for ∀t ∈ R+. Using the first equation in model (2.1), one can write that

dx
x

= A2(x,y, t)dt, (2.3)

where A2(x,y, t) = r0/(1+ ky)−d−ax− py. Integrating both sides of equation (2.3) it follows that

lnx− lnx0 =

t∫
0

A2(x,y,s′)ds′. (2.4)

Subtracting x from equation (2.4) leads to

x(t) = x0exp


t∫

0

A2(x,y,s′)ds′

 , ∀t > 0.

Similarly, positivity of the predator variable y can be shown as

dy
y

= B2(x, t)dt, ⇒ y = y0exp


t∫

0

B2(x,s′)ds′

 , ∀t > 0.

where B2(x,s) =−m+ cpx. Since (x0,y0) ∈ R2
+ for ∀t > 0, it is obtained that x(t)> 0 and y(t)> 0. Thus the interior of R2

+

is an invariant set of model (2.1). This is also biologically meaningful as the densities of prey and predator species are expected
to be non-negative.
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2.2. Steady state analysis

The model given by (2.1) has three steady states which can be found using A1(x,y, t) = 0 and B1(x,y, t) = 0. The first steady
state is the trivial equilibrium E0 = (0,0) where both prey and predator populations go to extinction. The second steady state
is semi trivial state S1 = ((r0−d)/a,0) bywhich prey population still exists in the system in the absence of predator. The
last steady state is coexisting state, say S2 = (x∗,y∗), where both prey and predator populations exist in the system. Here
x∗= m/cp can be easily found using B1(x,y, t) = 0 for y 6= 0. The critical value for predator y∗ are obtained solving

r0

1+ ky
−d−ax− py = 0, (2.5)

which can be rewritten for coexisting state as

(py∗+h)(ky+1) = r0, h = d +am/cp.

Here equation (2.5) has two roots one of which may be positive (thus biologically meaningful) under the condition r0 > h, for
which coexisting state S2 = (x∗,y∗) exists.

In addition the nullclines of the model can be similarly found:

x = m/cp, (straight line for predator nullcline),
pky2 +(hk+ p)y+h− r0 = 0, (parabolic curve for prey nullcline).

2.3. Local stability analysis around coexisting state

Stability of the system (2.1) can be determined using linearisation argument, where the prey and predator densities are perturbed
from their steady state. Considering

x = x∗+x̃, and y = y∗+ỹ,

where accents ·̃ represent the perturbed variables. Substituding these in the original model the following linearised system of
equations are obtained:

dx̃
dt

=

(
r0

1+ ky∗
−d−2ax∗−py∗

)
x̃+
(
− kr0x∗
(1+ ky∗)2 − px∗

)
ỹ,

dỹ
dt

= cpy∗ x̃+(cpx∗−m) ỹ.

The coefficient matrix for the above linear system of equations can be written as

MJ =

(
r0

1+ky∗ −d−2ax∗−py∗ − kr0x∗
(1+ky∗)2 − px∗

cpy∗ cpx∗−m

)
for which corresponding characteristic polynomial are obtained using Det(MJ−µI ) = 0 where I is a 2×2 unit matrix and
µ is the eigenvalues of the system for local stability. The characteristic equation can be explicitly written as

µ
2−E1(MJ)µ +E2(MJ) = 0, (2.6)

where

E1 =
r0

1+ ky∗
−d−2ax∗−py∗+cpx∗−m,

E2 =

(
r0

1+ ky∗
−d−2ax∗−py∗

)
(cpx∗−m)+

(
kr0x∗

(1+ ky∗)2 + px∗
)

cpy∗

and the roots for the equation (2.6) is given as

µ1,2 =
1
2

[
E1(MJ)±

√
E1(MJ)−4E2(MJ)

]
.

It is worth noting that E1 and E2 respectively stand for trace and determinant of the matrix MJ .

In Figure 2.1, stability of the prey density is shown with regard to parameters p,k,a,r0 that respectively stand for the
strength of linear functional response, rate of fear due to predator, the death rate of prey due to intraspecies competition and
the birth rate of prey. As seen there is a switch in the stability when eigenvalues crosses the transcritical bifurcation, that is a
typical case in population models referring to invasion. In fact transcritical bifurcation demonstrates the onset of coexisting
state in the system [18, 19]. Here the dashed line indicates unstable state where the number of eigenvalues with positive real
part is 1, whereas the straight line indicates the stable state with both eigenvalues are found with negative real part.
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Figure 2.1: Transcritical bifurcation occurs in the model (2.1) with respect to various parameters, i.e. p, k, a and r0. See text around the
system (2.1) for biological interpretations of these parameters.

3. Analysis of the model with white Gaussian noise

Deterministic model provided in Section 2 does not comprise the role of environmental fluctuations which may be any unpre-
dictable factor including the quality of food, climate change, diseases as well as temperature [14, 20]. Hence incorporating
random noise in model parameters may significantly alter dynamics of both prey and predator species. Although any parameter
of the model may be affected by environmental noise, the uncertain growth and death rates may be particularly influenced, see
for example [16, 21, 22].

dx =
[
r0x f1(k,y)−dx−ax2− pxy

]
dt− εxdβ , dy = [cpxy−my]dt. (3.1)

which can be also written as

dx = A1(x,y, t)dt− εxdβ , dy = B1(x,y, t)dt. (3.2)

where β = {β (t); t > 0} denotes standart Wiener process. Here ε represents noise parameters. Here we assume that the death
rate of prey could be noisy, thus d = d + εβ̇ (t). The presence of noise terms turns the model (2.1) into a system of stochastic
differential equations. The numerical solutions of the system (3.1) can be found using Euler Maruyama method [23].

4. Extinction probability

The notion of extinction is one of the key subjects in population dynamics. In biological terms the extinction occurs in a
population if there is no individual that can reproduce or create a new generation in a long term [12]. In mathematical terms
a population goes to extinction with probability one if lim

t→∞
X (t) = 0, where X is the density of a population. Thus the

conditions for which the prey and predator species go to extinction can be found in a fluctuating environment as given in
system (3.1).
In this context from the first bit of stochastic equation (3.1) it can be written that

dx =
[
r0x f1(k,y)−dx−ax2− pxy

]
dt− εxdβ . (4.1)
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Considering U(t) = lnx(t) and V (t) = lny(t) and applying Itô formula, the equation (4.1) can be written as

d lnx(t) =

[
∂U
∂ t

+A1(x,y, t)
∂U
∂x

+
1
2
(−εx)2 ∂ 2u

∂x2

]
dt +(−εx)

∂U
∂x

dβ , (4.2)

=

(
A2(x,y, t)−

ε2

2

)
dt− εdβ , (4.3)

with initial values U(0) = lnU0 and V (0) = lnV0. Equation (4.3) can be rewritten as

dU(t) =

(
A2(eU ,eV , t)− ε2

2

)
− εdβ ,

=

(
r0

1+ keV −d−aeU − peV − ε2

2

)
dt− εdβ ,

≤
(

r0−d−aeU − ε2

2

)
dt− εdβ ,

dlnx ≤
(

r0−d−ax− ε2

2

)
dt− εdβ . (4.4)

Taking f̃ (x) = r0−d−ax− ε2/2 and finding the supremum of f̃ one can derive that f̃ ′(x) =−a < 0. This implies that f̃ is
an decreasing function and has maximum at x = 0. Thus it can be written that f̃ (0) = r0−d− ε2/2. From equation (4.4) it
follows that

lnx≤ lnx0 +

(
r0−d− ε2

2

)
t− εβ := H (t),

from this

limsup
t→∞

lnx(t)
t
≤ limsup

t→∞

H (t) = r0−d− ε2

2
.

thus this concludes that one can have limsup
t→∞

lnx
t ≤ 0 with the condition r0 ≤ d + ε2

2 and this leads to lim
t→∞

x(t) = 0.

5. Numerical simulations

In Figure 5.1, the evolution of prey density with respect to time is shown for different noise strengths where ε = 0 (a), ε = 0.002
(b), ε = 0.01 (c) and ε = 0.02 (d). The red and magenta lines represent the density of prey species deterministic and stochastic
models respectively. The system is stable with damping oscillations, leading to a stable spiral with complex eigenvalues having
negative real part, in the absence of noise as demonstrated in Fig. 5.1(a), corresponding to deterministic model. For a small
perturbation, e.g. ε = 0.002, the stochastic model demonstrates similar behaviour to deterministic model. Increasing noise
term a bit further, irregular and large amplitude oscillatory dynamics for a stochastic model is observed, see 5.1(c,d).
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(a) (b)

(c) (d)

Figure 5.1: Comparison for time evolution of prey (x) species between the deterministic model (2.1) and stochastic model (3.1) based on
different values of noise parameter ε = 0(a), ε = 0.002(b), ε = 0.01(c) and ε = 0.02(d) with initial conditions (x0,y0) = (0.2,0.1). Red and
magenta colors respectively correspond to deterministic and stochastic dynamics of prey population.

(a) (b)

(c) (d)

Figure 5.2: The comparison between phase portraits of two-component deterministic and stochastic prey-predator model, respectively
presented in (2.1) and (3.1) for different values of noise terms ε = 0(a), ε = 0.002(b), ε = 0.01(c) and ε = 0.02(d) with initial conditions
(x0,y0) = (0.2,0.1). (black star). Steady state of the system is given by black point at (xs,ys) = (0.25,0.0443).
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In Section 4 the analytical conditions for extinction of prey and predator species for the stochastic model are developed. Here
it has been discussed that the extinction of species depends on the strength of noise term. It is found that high values of
perturbation may lead extinction of both species. In Figure 5.3, it is demonstrated that prey and predator are wiped out from
the system with the condition r0 ≤ d + ε2/2 where ε = 0.2, r0 = 0.03 and d = 0.01.

(a) (b)

Figure 5.3: Extinction of prey and predator species with the condition r0 ≤ d + ε2/2, where ε = 0.2, r0 = 0.03 and d = 0.01.

In Figure 5.4, the corresponding phase portrait of the extinction case given in Fig. 5.3 is plotted for ε = 0.2. The blue and
cyan color respectively stand for deterministic and stochastic phase diagram. Here the initial condition is (x0,y0) = (0.2,0.1).
(black star) and the steady state of the system is given by black point at (xs,ys) = (0.25,0.0443). Increasing the noise term,
irregular nonperiodic random peaks are observed more frequently which can be also observed from the phase planes.

All simulations are performed using parameters: r0 = 0.03, k = 0.1, d = 0.01, a = 0.01, p = 0.5, m = 0.05, c = 0.4 with
increasing values of noise strengths (ε).

Figure 5.4: Phase diagram of the extinction state for prey and predator populations corresponding to Figure (5.3).
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6. Conclusion

Since natural fluctuations appear in many biological system, analyses performed on prey-predator type interactions with
stochastic effects are much realistic compared to deterministic models. In this paper, the fear effect in a population model with
a linear functional response is considered with random perturbation in prey’s death rate. The model in the absence of white
Gaussian noise is based on the paper written by Wang et al. [17], though without taking stochastic effects into account. Here a
further analysis of the deterministic model including its positivity is presented. Compared to its deterministic version, it is
also demonstrated that the high and low values of noise strength, denoted with ε , in the stochastic system give rise to rich
spectrum of interesting results. Furthermore, excessive noise strength may induces both species to undergo extinction with
r0 ≤ d + ε2/2. This result is also biologically understandable as high environmental fluctuations may have a drastic impact on
the populations and may lead extinction.

Numerical bifurcation is performed for different parameters and a transcritical point where stability changes is observed. In
fact, linear functional response is the simplest choice and one could expect more interesting dynamics with other functional
responses such as Holling type II and Holling type III. Although it is more challenging to perform analytical results for
stochastic system, the theoretical conditions where prey and predator species undergo extinction are determined. Here it is
found that high level of noise increase the probability of both species to be wiped out from the system.

One straightforward extension of this work would be to incorporate local and non-local delay terms in the model. In
fact the interactions between prey and predator are not straightforward and require some time lag, e.g. gestation period. Then
the stochastic model would be extended to comprise delay terms. It is well known that delay term in the model supports
periodic oscillations,where Hopf bifurcation may occur through a limit cycle around the coexisting state. Therefore, more
complex behaviour in the dynamics of both species are expected [24].
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