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Norm attaining multilinear forms on the spaces c0 or l1
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ABSTRACT. T ∈ L(nE) is called a norming attaining if there are x1, . . . , xn ∈ E such that ‖x1‖ = · · · = ‖xn‖ = 1

and |T (x1, . . . , xn)| = ‖T‖, where L(nE) denotes the space of all continuous n-linear forms on E. We investigate
norm attaining multilinear forms on c0 or l1.
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1. INTRODUCTION

Let us sketch a brief history of norm attaining multilinear mappings and polynomials on Ba-
nach spaces. In 1961, Bishop and Phelps [3] initiated and showed that the set of norm attaining
functionals on a Banach space is dense in the dual space. Shortly after, attention was paid to
possible extensions of this result to more general settings, specially bounded linear operators
between Banach spaces. The problem of denseness of norm attaining functions has moved to
other types of mappings like multilinear forms or polynomials. The first result about norm
attaining multilinear forms appeared in a joint work of Aron, Finet and Werner [2], where they
showed that the Radon-Nikodym property is sufficient for the denseness of norm attaining
multilinear forms. Choi and Kim [4] showed that the Radon-Nikodym property is also suffi-
cient for the denseness of norm attaining polynomials. Jimenez-Sevilla and Paya [7] studied
the denseness of norm attaining multilinear forms and polynomials on preduals of Lorentz
sequence spaces. Acosta and Dávila [1] characterized real Banach spaces Y such that the pair
(ln∞, Y ) has the Bishop-Phelps-Bollobás property for operators. Recently, Dantas et al. [5] intro-
duced and studied a concept of norm-attainment in the space of nuclear operators and in the
projective tensor product space of given two Banach spaces.

Let n ∈ N. We write BE and SE for the unit ball and sphere of a Banach space E. We
denote by L(nE) the Banach space of all continuous n-linear forms on E endowed with the
norm ‖T‖ = sup(x1,··· ,xn)∈SE×···×SE

|T (x1, · · · , xn)|. Ls(
nE) denotes the closed subspace of all

continuous symmetric n-linear forms on E. An element (x1, . . . , xn) ∈ En is called a norming
point of T if ‖x1‖ = · · · = ‖xn‖ = 1 and |T (x1, . . . , xn)| = ‖T‖. For T ∈ L(nE), we define

Norm(T ) = {(x1, . . . , xn) ∈ En : (x1, . . . , xn) is a norming point of T}.

Norm(T ) is called the norming set of T . Notice that (x1, . . . , xn) ∈ Norm(T ) if and only if
(ε1x1, . . . , εnxn) ∈ Norm(T ) for some εk = ±1 (k = 1, . . . , n). Indeed, if (x1, . . . , xn) ∈ Norm(T )
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then
|T (ε1x1, . . . , εnxn)| = |ε1 · · · εnT (x1, . . . , xn)| = |T (x1, . . . , xn)| = ‖T‖

which shows that (ε1x1, . . . , εnxn) ∈ Norm(T ). If (ε1x1, . . . , εnxn) ∈ Norm(T ) for some εk =
±1 (k = 1, . . . , n), then

(x1, . . . , xn) = (ε1(ε1x1), . . . , εn(εnxn)) ∈ Norm(T ).

For m ∈ N, let lm∞ := Rm with the supremum norm. Notice that for every T ∈ L(nlm∞),
Norm(T ) 6= ∅ since Slm∞ is compact. Kim [10] classified Norm(T ) for every T ∈ Ls(

2l2∞). If
Norm(T ) 6= ∅, T ∈ L(nE) is called ([2, 4]) a norm attaining n-linear form and we denote by

NA(L(nE)) = {T ∈ L(nE) : T is norm attaining }.
If SE is compact, then NA(L(nE)) = L(nE). Notice that if T ∈ NA(L(nE)), then λT ∈
NA(L(nE)) for every λ ∈ R. A mapping P : E → R is a continuous n-homogeneous poly-
nomial if there exists a continuous n-linear form L on the product E × · · · × E such that
P (x) = L(x, . . . , x) for every x ∈ E. We denote by P(nE) the Banach space of all continuous
n-homogeneous polynomials from E into R endowed with the norm ‖P‖ = sup‖x‖=1 |P (x)|.

An element x ∈ E is called a norming point of P ∈ P(nE) if ‖x‖ = 1 and |P (x)| = ‖P‖. For
P ∈ P(nE), we define

Norm(P ) = {x ∈ E : x is a norming point of P}.
Norm(P ) is called the norming set of P . Notice that Norm(P ) = ∅ or a finite set or an infinite
set. Kim [9] classify Norm(P ) for every P ∈ P(2l2∞). If Norm(P ) 6= ∅, P ∈ P(nE) is called [4] a
norm attaining n-homogeneous polynomial.

For more details about the theory of multilinear mappings and polynomials on a Banach
space, we refer to [6].

It seems to be natural and interesting to study about NA(L(nE)). In this paper, we investi-
gate NA(L(nE)) for E = c0 or l1, where

c0 = {(xj)j∈N : xj ∈ R, lim
j→∞

xj = 0},

l1 = {(xj)j∈N : xj ∈ R,
∞∑
j=1

|xj | <∞}.

2. RESULTS

Throughout the paper, we let n ∈ N, n ≥ 2. For a real sequence (xj)j∈N, we denote by
supp((xj)j∈N) = {j ∈ N : xj 6= 0}. For T ∈ L(nc0) or L(nl1) with

T ((x
(1)
j )j∈N, . . . , (x

(n)
j )j∈N) =

∑
(j1,...,jn)∈Nn

aj1···jn x
(1)
j1
· · ·x(n)jn

for some aj1···jn ∈ R, we denote by supp(T ) = {(j1, . . . , jn) ∈ Nn : ai1···in 6= 0}. Notice that if
supp(T ) is finite, then T is norm attaining. Without loss of generality, we may restrict T such
that supp(T ) is infinite.

The following theorem presents a sufficient condition that the norm of T ∈ L(nc0) is less
than of the sum of the absolute values of its coefficients.

Theorem 2.1. Let T ∈ L(nc0) be such that

T ((x
(1)
j )j∈N, . . . , (x

(n)
j )j∈N) =

∑
(j1,...,jn)∈Nn

aj1···jn x
(1)
j1
· · ·x(n)jn

for some aj1···jn ∈ R. If T ∈ NA(L(nc0)) and supp(T ) is infinite, then ‖T‖ <
∑

(j1,...,jn)∈A |aj1···jn |.
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Proof. Assume the contrary. Let ((x(1)j )j∈N, . . . , (x
(n)
j )j∈N) ∈ Norm(T ). Let A = supp(T ) and

Al := {il ∈ N : (i1, . . . , il, . . . , in) ∈ A} for l = 1, . . . , n. There is 1 ≤ l ≤ n such that
supp((x(l)j )j∈N)∩Al is infinite. Without loss of generality, we may assume that supp((x(1)j )j∈N)∩
A1 is infinite. Choose i

′

1 ∈ A1 such that |x(1)
i
′
1

| < 1
2 . Let (i

′

1, . . . , i
′

n) ∈ A. It follows that

‖T‖ =
∣∣∣T ((x(1)j )j∈N, . . . , (x

(n)
j )j∈N)

∣∣∣
=
∣∣∣ ∑
(j1,...,jn)∈A

aj1···jn x
(1)
j1
· · ·x(n)jn

∣∣∣
≤

∑
(j1,...,jn)∈A

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|

=
∑

(j1,...,jn)∈A\{(i
′
1,...,i

′
n)}

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|+ |ai′1···i′n | |x
(1)

i
′
1

| · · · |x(n)
i′n
|

≤
∑

(j1,...,jn)∈A\{(i
′
1,...,i

′
n)}

|aj1···jn |+
1

2
|ai′1···i′n |

<
∑

(j1,...,jn)∈A

|aj1···jn | ≤ ‖T‖

which is a contradiction. Therefore, ‖T‖ <
∑

(j1,...,jn)∈A |aj1···jn |. �

Remark 2.1. The converse of Theorem 2.1 is not true in general.
In fact, let

T ((xj)j∈N, (yj)j∈N) =
1

2
(x1y1 − x2y2 + x1y2 + x2y1) +

∞∑
k=3

1

2k−1
xkyk ∈ L(2c0).

Obviously, supp(T ) = {(k, k), (1, 2), (2, 1) : k ∈ N}. Let A = supp(T ).

Claim 1. 1 = ‖T‖ <
∑

(i,j)∈A |aij | =
5
2 .

We may consider the bilinear form x1y1 − x2y2 + x1y2 + x2y1 as an element of L(2l2∞). It was shown
[8] that for T ((x1, x2), (y1, y2)) = ax1y1 + bx2y2 + cx1y2 + dx2y1 ∈ L(2l2∞),

(2.1) ‖T‖ = max{|a+ b|+ |c+ d|, |a− b|+ |c− d|}.
By (2.1), ‖x1y1 − x2y2 + x1y2 + x2y1‖ = 1. It follows that

‖T‖ ≤ 1

2

∥∥∥x1y1 − x2y2 + x1y2 + x2y1

∥∥∥+ ∞∑
k=3

∥∥∥ 1

2k−1
xkyk

∥∥∥
=

1

2
+

1

2
= 1.

For n ∈ N,

‖T‖ ≥ |T (e1 +
n+2∑
k=3

ek, e1 +

n+2∑
k=3

ek)| = 1− 1

2n+1
→ 1

as n→∞. Hence, ‖T‖ = 1. Obviously,
∑

(i,j)∈A |aij | =
5
2 .

Claim 2. T /∈ NA(L(2c0)).
Assume the contrary. Let ((xj)j∈N, (yj)j∈N) ∈ Norm(T ). Notice that

S := supp((xj)j∈N) ∩ supp((yj)j∈N)
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is infinite because if S is finite, then ‖T‖ < 1 by the above argument. Choose i0 ∈ S\{1, 2} such that
|xi0 | < 1

2 . It follows that

1 = ‖T‖ =
∣∣∣1
2
(x1y1 − x2y2 + x1y2 + x2y1) +

∑
k∈S\{1,2}

1

2k−1
xkyk

∣∣∣
≤ 1

2

∣∣∣x1y1 − x2y2 + x1y2 + x2y1

∣∣∣+ ∑
k∈S\{1,2}

∣∣∣ 1

2k−1
xkyk

∣∣∣
≤ 1

2
+

∑
k∈S\{1,2,i0}

1

2k−1
|xk| |yk|+

1

2i0−1
|xi0 | |yi0 | (by (2.1))

<
1

2
+

∑
k∈S\{1,2,i0}

1

2k−1
+

1

2i0
< 1

which is a contradiction. Hence, T /∈ NA(L(2c0)).

Lemma 2.1. Let T ∈ NA(L(2c0)) and (x1, x2) ∈ Norm(T ) with xk = (x
(k)
j )j∈N for k = 1, 2. Then,

there is N ∈ N such that
(1) if n ≥ N and |x(1)j | < 1 for some j ∈ N, then T (ej , en) = 0,

(2) if n ≥ N and |x(2)j | < 1 for some j ∈ N, then T (en, ej) = 0.

Proof. (1) Since x1, x2 ∈ Sc0 , there are N ∈ N and 0 < δ < 1
2 such that if n ≥ N, then |x(k)n | < δ

for k = 1, 2. It follows that for 0 < λ < 1− |x(1)j | and 0 < β < 1− δ,

‖T‖ ≥ max{|T (x1 ± λej , x2 ± βen)|}
= max{|T (x1, x2)± βT (x1, en)± λT (ej , x2)± λβT (ej , en)|}
= |T (x1, x2)|+ β|T (x1, en)|+ λ|T (ej , x2)|+ λβ|T (ej , en)|
= ‖T‖+ β|T (x1, en)|+ λ|T (ej , x2)|+ λβ|T (ej , en)|

which shows that |T (x1, en)| = |T (ej , x2)| = |T (ej , en)| = 0.
(2) follows by the similar argument as in the proof of (1). �

The following theorem presents a sufficient condition that T ∈ NA(L(2c0)) is a finite-type
bilinear form.

Theorem 2.2. Let T ∈ NA(L(2c0)) and (x1, x2) ∈ Norm(T ) with xk = (x
(k)
j )j∈N for k = 1, 2.

Suppose that |{j ∈ N : |x(k)j | = 1}| = 1 for k = 1, 2. Then T ((xj)j∈N, (yj)j∈N) =
∑

1≤i,j≤N aijxiyj
for some aij ∈ R and N ∈ N. Hence, supp(T ) is finite.

Proof. LetN ∈ N be the number in the proof of Lemma 2.1. Let j1, j2 ∈ N be such that |x(k)jk
| = 1

and |x(k)j | < 1 for all j 6= jk. By the proof of Lemma 2.1, T (x1, en) = T (ej , en) = 0 for every
j 6= j1 and n ≥ N. It follows that

0 = T (x1, en) = T (
∑

1≤k≤N

x
(1)
k ek, en)

=
∑

1≤k≤N

x
(1)
k T (ek, en) = x

(1)
j1

T (ej1 , en)
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which implies that T (ej1 , en) = 0. Hence, T (ej , en) = 0 for all j ∈ N and n ≥ N. By the proof of
Lemma 2.1, T (en, x2) = T (en, ej) = 0 for every j 6= j2 and n ≥ N. It follows that

0 = T (en, x2) = T (en,
∑

1≤k≤N

x
(2)
k ek)

=
∑

1≤k≤N

x
(2)
k T (en, ek) = x

(2)
j2

T (en, ej2)

which implies that T (en, ej2) = 0. Hence, T (en, ej) = 0 for all j ∈ N and n ≥ N. Therefore,
T ((xj)j∈N, (yj)j∈N) =

∑
1≤i,j≤N aijxiyj for some aij ∈ R. �

Motivated by Theorem 2.2, we propose some question.
Question. Is it true that NA(L(2c0)) = {T ∈ L(2c0) : supp(T ) is finite}?
The following theorem characterizes NA(L(nl1)).

Theorem 2.3. Let T ∈ L(nl1) be such that

T ((x
(1)
j )j∈N, . . . , (x

(n)
j )j∈N) =

∑
(j1,...,jn)∈Nn

aj1···jn x
(1)
j1
· · ·x(n)jn

for some aj1···jn ∈ R. Then T ∈ NA(L(nl1)) if and only if there are j
′

1, . . . , j
′

n ∈ N such that ‖T‖ =∣∣∣aj′1···j′n ∣∣∣.
Proof. Without loss of generality, we may assume that T 6= 0.

(⇒) Assume the contrary. Let ((x(1)j )j∈N, . . . , (x
(n)
j )j∈N) ∈ Norm(T ). LetB = supp(T ).We claim

that B is infinite. Assume that B is finite. Let δ := max{|aj1···jn | : (j1, . . . , jn) ∈ B} < ‖T‖. It
follows that

‖T‖ =
∣∣∣T ((x(1)j )j∈N, . . . , (x

(n)
j )j∈N)

∣∣∣ = ∣∣∣ ∑
(j1,...,jn)∈B

aj1···jn x
(1)
j1
· · ·x(n)jn

∣∣∣
≤

∑
(j1,...,jn)∈B

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

| ≤ δ
∑

(j1,...,jn)∈Nn

|x(1)j1
| · · · |x(n)jn

| = δ < ‖T‖

which is a contradiction. Hence, B is infinite. Since T 6= 0, there are (j
′

1, . . . , j
′

n) ∈ B such that
j
′

k ∈ supp((x(k)j )j∈N) for k = 1, . . . , n. Then

‖T‖ =
∣∣∣T ((x(1)j )j∈N, . . . , (x

(n)
j )j∈N)

∣∣∣
=
∣∣∣ ∑
(j1,...,jn)∈B

aj1···jn x
(1)
j1
· · ·x(n)jn

∣∣∣
≤

∑
(j1,...,jn)∈B

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|

= |aj′1···j′n | |x
(1)

j
′
1

| · · · |x(n)
j′n
|+

∑
(j1,...,jn)∈B\{(j

′
1,...,j

′
n)}

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|
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< ‖T‖ |x(1)
j
′
1

| · · · |x(n)
j′n
|+

∑
(j1,...,jn)∈B\{(j

′
1,...,j

′
n)}

|aj1···jn | |x
(1)
j1
| · · · |x(n)jn

|

≤ ‖T‖
∑

(j1,...,jn)∈Nn

|x(1)j1
| · · · |x(n)jn

|

= ‖T‖(
∑
j1∈N
|x(1)j1
|) · · · (

∑
jn∈N

|x(n)jn
|) = ‖T‖

which is a contradiction.
(⇐) Since ‖T‖ = |T (ej′1 , . . . , ej′n)| for some (j

′

1, . . . , j
′

n) ∈ Nn, (ej′1
, . . . , ej′n) ∈ Norm(T ) and

T ∈ NA(L(nl1)). We complete the proof. �
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