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ÖZET 

 

𝑎, 𝑏 pozitif tamsayılar olsun. Makalede, 𝑑 = 𝑎2𝑏2 + 2𝑏, 𝑎2𝑏2 + 𝑏, 𝑎2 ± 2, 𝑎2 ± 𝑎 olmak üzere √d′ nin sürekli kesir 

açılımı bulundu. 𝑑 = 𝑎2𝑏2 + 2𝑏, 𝑎2𝑏2 + 𝑏, 𝑎2 ± 2, 𝑎2 ± 𝑎 olmak üzere √d′ nin sürekli kesir yaklaşımları kullanılarak 

𝑥² − 𝑑𝑦² = ±1 denklemlerinin fundamental çözümleri elde edildi. 

 

Anahtar Kelimeler: Diofant Denklemleri, Pell Denklemleri, Sürekli Kesirler. 
 

 

Fundamental solutions to some pell equations 

 
 

ABSTRACT 

 

Let 𝒂, 𝒃 be positive integers. In this paper, we find continued fraction expansion of √𝐝 when 𝒅 = 𝒂𝟐𝒃𝟐 + 𝟐𝒃, 𝒂𝟐𝒃𝟐 +

𝒃, 𝒂𝟐 ± 𝟐, 𝒂𝟐 ± 𝒂. We will use continued fraction expansion of √𝐝 in order to get the fundamental solutions of the 

equations 𝒙² − 𝒅𝒚² = ±𝟏 when 𝒅 = 𝒂𝟐𝒃𝟐 + 𝟐𝒃, 𝒂𝟐𝒃𝟐 + 𝒃, 𝒂𝟐 ± 𝟐, 𝒂𝟐 ± 𝒂.   

 

Keywords: Diophantine Equations, Pell Equations, Continued Fractions. 

 

 

1. INTRODUCTİON 

 

Let 𝑑  be a positive integer which is not a perfect square 

and 𝑁 be any nonzero fixed integer. Then the equation 

𝑥² − 𝑑𝑦² = 𝑁 is known as Pell equation. For 𝑁 = ±1, 

the equations 𝑥² − 𝑑𝑦² = 1 and 𝑥² − 𝑑𝑦² = −1 are 

known as classical Pell equations. If 𝑎² − 𝑑𝑏² = 𝑁, we 

say that (𝑎, 𝑏) is a solution to the Pell equation 𝑥² −

𝑑𝑦² = 𝑁. We use the notations (𝑎, 𝑏) and 𝑎 + 𝑏√𝑑 

interchangeably to denote solutions of the equation 𝑥² −

𝑑𝑦² = 𝑁. Also, if 𝑎 and 𝑏 are both positive, then 𝑎 + 𝑏√d 

is a positive solution to the equation 𝑥² − 𝑑𝑦² = 𝑁.        

           

The Pell equation 𝑥² − 𝑑𝑦² = 1 has always positive 

integer solutions. When 𝑁 ≠ 1, the Pell equation 𝑥² −

                                                 
* Sorumlu Yazar / Corresponding Author 

𝑑𝑦² = 𝑁 may not have any positive integer solutions. It 

can be seen that the equations 𝑥² − 3𝑦² = −1 and 𝑥² −
7𝑦² = −4 have no positive integer solutions. Whether or 

not there exists a positive integer solution to the equation 

𝑥² − 𝑑𝑦² = −1 depends on the period length of the 

continued fraction expansion of √d (See section 2 for 

more detailed information).      

                                                                                                                                                         

In the next section, we give some well known theorems 

and then we give main theorems in the third section. 

 

2. PRELIMINARIES 

 

If we know fundamental solution to the equations 𝑥² −
𝑑𝑦² = ±1, then we can give all positive integer solutions 

to these equations. Our theorems are as follows. For more 
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information about Pell equation, one can consult [1], [2] 

and [3].   

        

Let 𝑥1 + 𝑦1√𝑑  be a positive solution to the equation 

𝑥² − 𝑑𝑦² = 𝑁. We say that 𝑥1 + 𝑦1√𝑑  is the 

fundamental solution to the equation 𝑥² − 𝑑𝑦² = 𝑁, if 

𝑥2 + 𝑦2√𝑑 is a different solution to the equation 𝑥² −

𝑑𝑦² = 𝑁, then 𝑥1 + 𝑦1√𝑑 < 𝑥2 + 𝑦2√𝑑.                                                                                                                                                                                                                                                                        

Recall that if 𝑎 + 𝑏√d and 𝑟 + 𝑠√d are two solutions to 

the equation 𝑥² − 𝑑𝑦² = 𝑁, then 𝑎 = 𝑟 if and only if 𝑏 =

𝑠, and 𝑎 + 𝑏√d < 𝑟 + 𝑠√d if and only if 𝑎 < 𝑟 and 𝑏 <
𝑠.        

 

Theorem 2.1: Let 𝑑 be a positive integer that is not a 

perfect square. Then there is a continued fraction 

expansion of √d such that 

√𝑑 = [𝑎0, 𝑎1, 𝑎2, . . 𝑎𝑛−1, 2𝑎0
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ] 

where 𝑙 is the period length and for 0 ≤ 𝑛 ≤ 𝑛 − 1,  𝑎𝑗 is 

given by the recussion formulas; 

 α0 = √d, 𝑎𝑘 = ⟦𝛼𝑘⟧ and 𝛼𝑘+1 =
1

𝛼𝑘−𝑎𝑘
  , 

             𝑘 = 0,1,2,3, … 

Recall that 𝑎𝑙 = 2𝑎0 and 𝑎𝑙+𝑘 = 𝑎𝑘 for 𝑘 ≥ 1. The 𝑛𝑡ℎ 

convergence of √𝑑  for 𝑛 ≥ 0 is given by 
𝑝𝑛

𝑞𝑛
= [𝑎0, 𝑎1, … , 𝑎𝑛] = 𝑎0 +

1

𝑎1+
1

1+
⋱ 

𝑎𝑛 

. 

By means of the 𝑘𝑡ℎ convergence of √d, we can give the 

fundamental solution to the equations 𝑥² − 𝑑𝑦² = 1 and 

𝑥² − 𝑑𝑦² = −1.     

                                                            

Now we give the fundamental solution to the equations 

𝑥² − 𝑑𝑦² = ±1 by means of the period length of the 

continued fraction expansion of √𝑑. 
 

Lemma 2.2 Let 𝑙 be the period length of continued 

fraction expansion of √d. If 𝑙 is even, then the 

fundamental solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

given by 

𝑥1 + 𝑦1√𝑑 = 𝑝𝑙−1 + 𝑞𝑙−1√d 

and the equation 𝑥² − 𝑑𝑦² = −1 has no positive integer 

solutions. If 𝑙 is odd, then the fundamental solution to the 

equation  𝑥² − 𝑑𝑦² = 1 is given by    

𝑥1 + 𝑦1√𝑑 = 𝑝2𝑙−1 + 𝑞2𝑙−1√𝑑 

and the fundamental solution to the equation 𝑥² − 𝑑𝑦² =
−1 is given by  

𝑥1 + 𝑦1√𝑑 = 𝑝𝑙−1 + 𝑞𝑙−1√𝑑. 

 

Theorem 2.3:  Let 𝑥1 + 𝑦1√𝑑  be the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1. Then all positive 

integer solutions of the equation 𝑥² − 𝑑𝑦² = 1 are given 

by 

𝑥𝑛 + 𝑦𝑛√𝑑 = (𝑥1 + 𝑦1√𝑑)𝑛 

with 𝑛 ≥ 1. 
 

Theorem 2.4: Let 𝑥1 + 𝑦1√𝑑  be the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = −1. Then all 

positive integer solutions of the equation 𝑥² − 𝑑𝑦² = −1 

are given by  

𝑥𝑛 + 𝑦𝑛√𝑑 = (𝑥1 + 𝑦1√𝑑)2𝑛−1 

with 𝑛 ≥ 1.              

                                                                                             

3. MAIN THEOREMS 

 

From now on, we will assume that 𝑎 and 𝑏 are positive 

integers. We give continued fraction expansion of √𝑑 for 

𝑑 = 𝑎2𝑏2 + 2𝑏, 𝑎2𝑏2 + 𝑏, 𝑎2 ± 2, 𝑎2 ± 𝑎.  

 

Theorem 3.1: Let 𝑑 = 𝑎2𝑏2 + 2𝑏. Then 

 

 √𝑑 = [𝑎𝑏, 𝑎, 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

Proof: Let 𝛼0 = 𝑎2𝑏2 + 2𝑏. It can be seen that 

 

(𝑎𝑏)2 < 𝑎2𝑏2 + 2𝑏 < (𝑎𝑏 + 1)2. 

 

 Then, by Theorem 2.1, we get  

 

𝑎0 = ⟦√𝑎2𝑏2 + 2𝑏⟧ = 𝑎𝑏 

 

and therefore 

 

𝛼1 =
1

√𝑎2𝑏2+2𝑏−𝑎𝑏
=

√𝑎2𝑏2+2𝑏+𝑎𝑏

2𝑏
. 

 

On the other hand, since 𝑎𝑏 < √𝑎2𝑏2 + 2𝑏, it follows 

that 

 

𝑎𝑏 + 𝑎𝑏

2𝑏
= 𝑎 <

√𝑎2𝑏2 + 2𝑏 + 𝑎𝑏

2𝑏
< 𝑎 + 1. 

 

Then, by Theorem 2.1, we get 

 

𝑎1 = ⟦𝛼1⟧ = ⟦
√𝑎2𝑏2+2𝑏+𝑎𝑏

2𝑏
⟧ = 𝑎. 

 

It can be seen that 

 

𝛼2 =
1

√𝑎2𝑏2+2𝑏+𝑎𝑏

2𝑏
−𝑎

 = √𝑎2𝑏2 + 2𝑏 + 𝑎𝑏 

 

and therefore 

 

 𝑎2 = ⟦𝛼2⟧ = ⟦√𝑎2𝑏2 + 2𝑏 + 𝑎𝑏⟧ = 2𝑎𝑏 

            = 2𝑎0.  
 

Thus, by Theorem 2.1, it follows that 
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√𝑎2𝑏2 + 2𝑏 = [𝑎𝑏, 𝑎, 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

Then the proof follows. 

 

Theorem 3.2:  Let 𝑑 = 𝑎2𝑏2 + 𝑏. Then  

 

√𝑑 = [𝑎𝑏, 2𝑎, 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

Proof: Let 𝛼0 = 𝑎2𝑏2 + 𝑏. It can be seen that 

 

(𝑎𝑏)2 < 𝑎2𝑏2 + 𝑏 < (𝑎𝑏 + 1)2. 

 

Then by Theorem 2.1, we get  

 

𝑎0 = ⟦√𝑎2𝑏2 + 𝑏⟧ = 𝑎𝑏, 

 

and therefore 

𝛼1 =
1

√𝑎2𝑏2+𝑏−𝑎𝑏
=

√𝑎2𝑏2+𝑏+𝑎𝑏

𝑏
. 

 

On the other hand, since 𝑎𝑏 < √𝑎2𝑏2 + 𝑏, it follows that  

 

𝑎𝑏+𝑎𝑏

𝑏
= 2𝑎 <

√𝑎2𝑏2+𝑏+𝑎𝑏

𝑏
< 2𝑎 + 1. 

 

Then, by Theorem 2.1, we get 

 

𝑎1 = ⟦𝛼1⟧ = ⟦
√𝑎2𝑏2 + 𝑏 + 𝑎𝑏

𝑏
⟧ = 2𝑎 

 

and therefore 

𝛼2 =
1

√𝑎2𝑏2+𝑏+𝑎𝑏

𝑏
− 2𝑎

 

 

= √𝑎2𝑏2 + 𝑏 + 𝑎𝑏. 
 

Since 2𝑎𝑏 < √𝑎2𝑏2 + 𝑏 + 𝑎𝑏 < 2𝑎𝑏 + 1, it follows 

that 

 

𝑎2 = ⟦𝛼2⟧ = ⟦√𝑎2𝑏2 + 𝑏 + 𝑎𝑏⟧ 

      = 2𝑎𝑏 = 2𝑎0. 
 

Thus, by Theorem 2.1, we get. 

 

√𝑎2𝑏2 + 𝑏 = [𝑎𝑏, 2𝑎, 2𝑎𝑏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 
 

This completes the proof. 

 

Theorem 3.3: Let 𝑑 = 𝑎2 + 𝑎. Then 

 

√𝑑 = [𝑎, 2,2𝑎̅̅ ̅̅ ̅̅ ]. 
 

Proof: Let 𝛼0 = 𝑎2 + 𝑎. Since 𝑎2 < 𝑎2 + 𝑎 < (𝑎 +
1)2, it follows that  

 

 𝑎0 = ⟦𝛼0⟧ = ⟦√𝑎2 + 𝑎⟧ = 𝑎, 

 

and therefore  

 

𝛼1 =
1

√𝑎2 + 𝑎 − 𝑎
=

√𝑎2 + 𝑎 + 𝑎

𝑎
. 

 

Since  
𝑎+𝑎

𝑎
= 2 <

√𝑎2+𝑎+𝑎

𝑎
< 3, it follows that 

 

𝑎1 = ⟦
√𝑎2 + 𝑎 + 𝑎

𝑎
⟧ = 2 

 

and therefore 

 

𝛼2 =
1

√𝑎2+𝑎+𝑎

𝑎
− 2

= √𝑎2 + 𝑎 + 𝑎. 

 

  Since 2𝑎 < √𝑎2 + 𝑎 + 𝑎 < 2𝑎 + 1, we get 

 

𝑎2 = ⟦√𝑎2 + 𝑎 + 𝑎⟧ = 2𝑎 = 2𝑎0. 

 

Thus, by Theorem 2.1, we get 

 

√𝑎2 + 𝑎 = [𝑎, 2,2𝑎̅̅ ̅̅ ̅̅ ]. 
 

This completes the proof. 

 

Theorem 3.4: Let 𝑑 = 𝑎2 − 𝑎. Then 
 

√𝑎2 − 𝑎 = [𝑎 − 1, 2,2(𝑎 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

Proof: Let 𝛼0 = 𝑎2 − 𝑎. It can be seen that 

 

(𝑎 − 1)2 < (𝑎2 − 𝑎) < 𝑎2. 

 

Then, by Theorem 2.1, we get   

 

𝑎0 = ⟦√𝑎2 − 𝑎⟧ = 𝑎 − 1 

 

and therefore 

 

𝛼1 =
1

√𝑎2−𝑎−(𝑎−1)
=

√𝑎2−𝑎+(𝑎−1)

𝑎−1
. 

 

Since  
𝑎−1+𝑎−1

𝑎−1
= 2 <

√𝑎2−𝑎+𝑎−1

𝑎−1
< 3, it follows that 

𝑎1 = ⟦
√𝑎2 − 𝑎 + 𝑎 − 1

𝑎 − 1
⟧ = 2 
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and therefore 

 

𝛼2 =
1

√𝑎2−𝑎+𝑎−1

𝑎−1
− 2

 

 

= √𝑎2 − 𝑎 + (𝑎 − 1). 
 

Since 2(𝑎 − 1) < √𝑎2 − 𝑎 + 𝑎 − 1 < 2𝑎 − 1, it 

follows that  

 

  𝑎2 = ⟦√𝑎2 − 𝑎 + 𝑎 − 1⟧ 

  = 2(𝑎 − 1) = 2𝑎0. 

 

Thus, by Theorem 2.1, we get 

 

√𝑎2 − 𝑎 = [𝑎 − 1, 2,2(𝑎 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

This  completes the proof. 

 

 

Theorem 3.5: Let 𝑑 = 𝑎2 + 2. Then  
 

√𝑎2 + 2 = [𝑎, 𝑎, 2𝑎̅̅ ̅̅ ̅̅ ]. 
 

Proof: Let 𝛼0 = 𝑎2 + 2. It can be seen that 

 

𝑎2 < (𝑎2 + 2) < (𝑎 + 1)2 . 

 

Then, by Theorem 2.1, we get 

 

𝑎0 = ⟦√𝑎2 + 2⟧ = 𝑎 

 

and therefore 

 

𝛼1 =
1

√𝑎2+2−𝑎
=

√𝑎2+2+𝑎

2
. 

 

Since  𝑎 <
√𝑎2+2+𝑎

2
< 𝑎 + 1, it follows that 

 

𝑎1 = ⟦
√𝑎2 + 2 + 𝑎

2
⟧ = 𝑎  

 

and therefore 

𝛼2 =
1

√𝑎2+2+𝑎

2
− 𝑎

= √𝑎2 + 2 + 𝑎. 

 

Thus  𝑎2 = ⟦√𝑎2 + 2 + 𝑎⟧ = 2𝑎 = 2𝑎0. 
Then, by Theorem 2.1, it follows that 

√𝑎2 + 2 = [𝑎, 𝑎, 2𝑎̅̅ ̅̅ ̅̅ ]. 

 

This completes the proof. 

 

Theorem 3.6: Let 𝑑 = 𝑎2 − 2. Then 
 

√𝑎2 − 2 = [𝑎 − 1, 1, 𝑎 − 2,1,2(𝑎 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

Proof: Let 𝛼0 = 𝑎2 − 2. It can be seen that 

 

 (𝑎 − 1)2 < (𝑎2 − 2) < 𝑎2. 
 

Then, by Theorem 2.1, we get  

 

 𝑎0 = ⟦√𝑎2 − 2⟧ = 𝑎 − 1  

 

and therefore 

 

 𝛼1 =
1

√𝑎2−2−(𝑎−1)
=

√𝑎−2+(𝑎−1)

2𝑎−3
.  

 

Since  1 +
1

2𝑎−3
<

√𝑎2−2+(𝑎−1)

2𝑎−3
< 1 +

2

2𝑎−3
 , it follows 

that 

 

𝑎1 = ⟦
√𝑎2 − 2 + (𝑎 − 1)

2𝑎 − 3
⟧ = 1  

 

and therefore 

 

𝛼2 =
1

√𝑎2−2+(𝑎−1)

2𝑎−3
− 1

 

 

                   =
√𝑎2−2+(𝑎−2)

2
. 

 

Since 𝑎 − 2 +
1

2
<

√𝑎2−2+(𝑎−2)

2
< 𝑎 − 1, it follows that 

 

𝑎2 = ⟦
√𝑎2 − 2 + 𝑎 − 2

2
⟧ = 𝑎 − 2 

 

and therefore   

 

𝛼3 =
1

√𝑎2−2+(𝑎−2)

2
− (𝑎 − 2)

 

              =
√𝑎2−2+(𝑎−2)

2𝑎−3
.                       

 

Since 1 <
√𝑎2−2+(𝑎−2)

2𝑎−3
< 1 +

1

2𝑎−3
,  we get 

 

𝑎3 = ⟦
√𝑎 − 2 + (𝑎 − 2)

2𝑎 − 3
⟧ = 1  
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and therefore 

 

𝛼3 = √𝑎2 − 2 + (𝑎 − 1). 
 

Since 2(𝑎 − 1) < √𝑎2 − 2 + (𝑎 − 1) < 2𝑎 − 1, it 

follows that 

 

𝑎3 = ⟦√𝑎2 − 2 + (𝑎 − 1)⟧ = 2(𝑎 − 1)          

                                 = 2𝑎𝑜 

 

Thus, by Theorem 2.1, we get 

 

√𝑎2 − 2 = [𝑎 − 1, 1, 𝑎 − 2,1,2(𝑎 − 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]. 
 

This completes the proof. 

 

Now we give the fundamental solution to the equation 

𝑥² − 𝑑𝑦² = 1 when 𝑑 ∈ {𝑎2𝑏2 + 2𝑏, 𝑎2𝑏2 + 𝑏, 𝑎2 ±
2, 𝑎2 ± 𝑎}. 

 

Corollary 1: Let  𝑑 = 𝑎2𝑏2 + 2𝑏. Then the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

 

𝑥1 + 𝑦1√𝑑 = 𝑎2𝑏 + 1 + 𝑎 √𝑑. 
 

Proof: The period of length of continued fraction of 

√𝑎2𝑏2 + 2𝑏 is 2 by Theorem 3.1. Therefore the 

fundamental solution to  the equation 𝑥² − 𝑑𝑦² = 1 is 

𝑝1 + 𝑞1√𝑑  by Lemma 2.2. Since  

 

𝑝1

𝑞1

= 𝑎0 +
1

𝑎1

= 𝑎𝑏 +
1

𝑎
=

𝑎2𝑏 + 1

𝑎
, 

 

the proof  follows. 

Since the proofs of the following corollaries are similar, 

we omit them. 

 

Corollary 2: Let  𝑑 = 𝑎2𝑏2 + 𝑏. Then the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

 

𝑥1 + 𝑦1√𝑑 = 2𝑎2𝑏 + 1 + 2𝑎 √𝑑. 
 

Corollary 3: Let  𝑑 = 𝑎2 + 2. Then the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

 

𝑥1 + 𝑦1√𝑑 = 𝑎2 + 1 + 𝑎 √𝑑. 
 

Corollary 4: Let  𝑑 = 𝑎2 + 𝑎. Then the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

 

𝑥1 + 𝑦1√𝑑 = 2𝑎 + 1 + 2 √𝑑. 
 

Corollary 5: Let  𝑑 = 𝑎2 − 𝑎. Then the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

 

𝑥1 + 𝑦1√𝑑 = 2𝑎 − 1 + 2 √𝑑. 
 

Corollary 6: Let  𝑑 = 𝑎2 − 2. Then the fundamental 

solution to the equation 𝑥² − 𝑑𝑦² = 1 is 

 

𝑥1 + 𝑦1√𝑑 = 𝑎2 − 1 + 𝑎 √𝑑. 
 

Proof: The period of length of continued fraction of 

√𝑎2 − 2 is 4 by Theorem 3.6. Therefore the fundamental 

solution to  the equation 𝑥² − 𝑑𝑦² = 1 is 𝑝3 + 𝑞3√𝑑 by 

Lemma 2.2. Since  

 

 
𝑝𝟑

𝑞𝟑
= (𝑎 − 1) +

1

1+
1

(𝑎−2)+
1
1

 

      =
𝑎2−1

𝑎
, 

 

the proof  follows. 

 

From Lemma 2.2, we can give the following corollary. 

 

Corollary 7: Let 𝑑 ∈ {𝑎2𝑏2 + 2𝑏, 𝑎2𝑏2 + 𝑏, 𝑎2 ±
2, 𝑎2 ± 𝑎}. Then the equation 𝑥² − 𝑑𝑦² = −1 has no 

integer solutions. 
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