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OZET

a, b pozitif tamsayilar olsun. Makalede, d = a?b? + 2b, a®b? + b,a® + 2,a? + a olmak iizere Vd' nin siirekli kesir
acilimu bulundu. d = a?b? + 2b, a®b? + b,a® + 2,a? + a olmak iizere v/d' nin siirekli kesir yaklagimlari kullanilarak
x* — dy? = +1 denklemlerinin fundamental ¢oziimleri elde edildi.

Anahtar Kelimeler: Diofant Denklemleri, Pell Denklemleri, Siirekli Kesirler.

Fundamental solutions to some pell equations

ABSTRACT

Let a, b be positive integers. In this paper, we find continued fraction expansion of v'd when d = a?b? + 2b, a®b? +
b,a? + 2,a? + a. We will use continued fraction expansion of v/d in order to get the fundamental solutions of the
equations x* — dy* = +1 when d = a?b? + 2b, a’b* + b,a’* + 2,a* + a.

Keywords: Diophantine Equations, Pell Equations, Continued Fractions.

1. INTRODUCTION

Let d be a positive integer which is not a perfect square
and N be any nonzero fixed integer. Then the equation
x?—dy?= N is known as Pell equation. For N = +1,
the equations x?—dy?>=1 and x?—dy>=—1 are
known as classical Pell equations. If a?— db?= N, we
say that (a,b) is a solution to the Pell equation x2 —
dy?= N. We use the notations (a,b) and a + bvd
interchangeably to denote solutions of the equation x? —
dy? = N.Also, if a and b are both positive, then a + bv/d
is a positive solution to the equation x> — dy? = N.

The Pell equation x?>—dy?=1 has always positive
integer solutions. When N # 1, the Pell equation x?—
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dy? = N may not have any positive integer solutions. It
can be seen that the equations x?— 3y? = —1 and x?—
7y? = —4 have no positive integer solutions. Whether or
not there exists a positive integer solution to the equation
x?—dy?= —1 depends on the period length of the
continued fraction expansion of v/d (See section 2 for
more detailed information).

In the next section, we give some well known theorems
and then we give main theorems in the third section.

2. PRELIMINARIES
If we know fundamental solution to the equations x? —

dy? = +1, then we can give all positive integer solutions
to these equations. Our theorems are as follows. For more
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information about Pell equation, one can consult [1], [2]
and [3].

Let x, +y;v/d be a positive solution to the equation
x*—dy*=N. We say that x;+y,Vdis the
fundamental solution to the equation x* — dy* = N, if
x, + y,Vd is a different solution to the equation x? —
dy* =N, then X1 + y1Vd < x, + y,\/d.
Recall that if a + bv/d and 7 + s+/d are two solutions to
the equation x> — dy®* = N, thena = rifandonly if b =
s,and a + bvd <r +sVdifandonlyifa < rand b <
S.

Theorem 2.1: Let d be a positive integer that is not a
perfect square. Then there is a continued fraction

expansion of v/d such that
\/a = [aO' ai,az, .. p-1, 2aO ]

where [ is the period lengthand for0 <n <n-—1, q;is
given by the recussion formulas;

ap = Vd, a, = [ ] and @44 =

k=0123,..
Recall that a, = 2a, and a;,, = a, for k > 1. The nt"
convergence of v/d for n > 0 is given by

1

Pn
— =|agy, a4, ...,a,| = ag + .
an [ 0r Y1y ==y TL] 0 ar+ 1

ap—ag ’

g
By means of the k" convergence of v/d, we can give the

fundamental solution to the equations x* — dy® = 1 and
x? —dy? = —1.

Now we give the fundamental solution to the equations
x? — dy? = +£1 by means of the period length of the

continued fraction expansion of Vd.

Lemma 2.2 Let [ be the period length of continued
fraction expansion of +d. If [ is even, then the
fundamental solution to the equation x* —dy* =1 is
given by

X1+ yVd =py + g4 Vd
and the equation x* — dy* = —1 has no positive integer
solutions. If [ is odd, then the fundamental solution to the
equation x* — dy® = 1 s given by

Xy + Y1‘/H =DP2-1t+ CI21—1‘/E
and the fundamental solution to the equation x* — dy? =
—1 is given by

X1 +y:Vd = pi_; + qi_1Vd.

Theorem 2.3: Let x; +y;V/d be the fundamental
solution to the equation x* — dy?® = 1. Then all positive
integer solutions of the equation x* — dy* = 1 are given
by

Xp + yn\/g =+ yl\/a)n
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withn > 1.

Theorem 2.4: Let x; +y,V/d be the fundamental
solution to the equation x*—dy®*=—1. Then all
positive integer solutions of the equation x? — dy* = —1
are given by

Xp t+ yn\/a =(x + yl\/E)Zn—l
withn > 1.
3. MAIN THEOREMS

From now on, we will assume that a and b are positive
integers. We give continued fraction expansion of v/d for
d = a’b? + 2b, a’b? + b,a*> + 2,a* + a.
Theorem 3.1: Let d = a?b? + 2b. Then
Vd = [ab, a,2ab].
Proof: Let @y = a®b? + 2b. It can be seen that

(ab)? < a?b? + 2b < (ab + 1)

Then, by Theorem 2.1, we get

ag = [[\/ a’b? + Zb]] =ab

and therefore

o = 1 __Va?b%+2b+ab
1™ JaZpZi2b-ab 2b :

On the other hand, since ab < Va?b? + 2b, it follows
that

ab+ab_ <\/a2b2+2b+ab< +1
20 ¢ 2b art
Then, by Theorem 2.1, we get
Ja2b2+2b+ab
a =[] = | =———| =
It can be seen that
a, =——  =a’h2+2b+ab

VaZb2+2b+ab
—_——a

2b

and therefore

a, = [a,] = [[\/azb2 +2b+ ab]] = 2ab

= 2aq.
Thus, by Theorem 2.1, it follows that
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J@@b7 ¥ 2b = [ab, @ 2ab].
Then the proof follows.
Theorem 3.2: Letd = a®b? + b. Then
Vd = [ab, 2a, 2ab].
Proof: Let a, = a?b? + b. It can be seen that

(ab)? < a?b? + b < (ab + 1)2.
Then by Theorem 2.1, we get
ao = [Va?b? + b] = ab,

and therefore

o = 1 __ Va?b%+b+ab
17 Ja?b2ib-ab b :

On the other hand, since ab < va?b? + b, it follows that

ab+ab
— =2
b

2KH2
<—””’;b+‘"’<2a+1.

Then, by Theorem 2.1, we get

va2b%2+ b+ ab
a; =[] = — 5 | =%
and therefore
1
0(2 = 2K2
a“b“+b+ab

2a
b

=4 a?b%2+ b + ab.

Since 2ab < Va?b2+b+ab <2ab+1, it follows
that

a, = [a,] = [[\/azbz +b+ ab]]

= 2ab = 2a,.
Thus, by Theorem 2.1, we get.

Jazb?+ b= [ab,Za,Zab]

This completes the proof.

Theorem 3.3: Letd = a? + a. Then

Vd = [a,2,2a].
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Proof: Let @y =a*+a. Since a* <a’*+a<(a+
1)2, it follows that
ao = [ao] = [Va? + a] = q,

and therefore

1 va’+a+a
a, = = :
' Vaita-a a

2
ata 7'1:;“” < 3, it follows that

Since —=2<
a

|[\/a2+a+a]l
a=|——| =2

a

and therefore

Since 2a <Va? +a+a < 2a+1,we get
a, = [[\/az—-l-a+a]] = 2a = 2a,.
Thus, by Theorem 2.1, we get
Va? +a=1[a22al.
This completes the proof.
Theorem 3.4: Letd = a? — a. Then
Va? —a = [a - 1,m].
Proof: Let @, = a® — a. It can be seen that
(a—1)?2 < (a? —a) < a’.
Then, by Theorem 2.1, we get
ag = [[\/m]] =a-1

and therefore

o = 1 _ Ja?-a+(a-1)
! va?-a-(a-1) a-1 ’
- — 2_ —
Since 2 ll:i Lo a:ra L < 3, it follows that

|[\/a2—a+a—1ﬂ
a, = =2

a—1
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and therefore

1

Ja?-a+a-1 _9

af2=

a-1

=+a?—a+(a—-1).

Since 2(a-1)<vVa?—-a+a—-1<2a-1,
follows that

azzﬂ az—a+a—1]]
=2(a—1) = 2a,.

Thus, by Theorem 2.1, we get
Vvaz—a= [a -1,2,2(a - 1)].

This completes the proof.

Theorem 3.5: Letd = a? + 2. Then

va? +2 = [a, a,2a].
Proof: Let @, = a? + 2. It can be seen that
a? < (@ +2)<(a+1)2.

Then, by Theorem 2.1, we get
a, = [[\/az +2]] =a

and therefore

o = 1 __Va?+2+a
1 Jaz+2-a 2 '
2
Since a < & ;’“a < a+ 1, it follows that

|[\/a2+2+aﬂ
@ =|——F—| =a

and therefore
1

vaZ+2+a a

2

a, = =ya*+2+a.

Thus a, = [[\/a2 +2+ a]] = 2a = 2a,.
Then, by Theorem 2.1, it follows that

Jaz+2=1a,a,?2al.
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This completes the proof.

Theorem 3.6: Letd = a? — 2. Then

Vat—-2=[a-1T1a-212(a- 1)

Proof: Let a, = a? — 2. It can be seen that

(a—1)? < (a?-2) < d?
Then, by Theorem 2.1, we get
ag = [[\/m]] =a-—1

and therefore

. = 1 _ va-2+(a-1)
L Jaz-2-(a-1) 2a-3
va?-2+(a-1)

Since 1+—< < 1+L, it follows
2a-3 2a-3 2a-3
that

HVa2—2+(a—1)ﬂ
a, = =1
2a -3

and therefore

1
va2-2+(a-1) _

1
2a-3

a, =

_Ja?-2+(a-2)
EEe—

Ja?-2+(a-2)
2

Sincea—2+§< < a — 1, it follows that

H\/az—2+a—2ﬂ
a = |——— | =a-2

and therefore

1
(Z3 = 2
va —22+(a—2) _ (a _ 2)
_ VJa?-2+(a-2)
- 2a-3
2_ -
Since 1 < Y& 2472 9 4 1 \we get
2a-3 2a-3
va—2+(a—2)
4 = 2a—3 =1
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and therefore

as; =+ya*>—2+(a—1).
Since 2@-1)<vVa?-2+(@a—-1)<2a-1, it
follows that

a3=|1\/a2—2+(a—1)]]=2(a—1)

= 2a,
Thus, by Theorem 2.1, we get

Vat-2=[a-1T1a-212(a- 1)

This completes the proof.

Now we give the fundamental solution to the equation
x> —dy*=1when d € {a’b? + 2b,a’*b? + b,a® +
2,a®> +a}.

Corollary 1: Let d = a?b? + 2b. Then the fundamental
solution to the equation x* — dy? = 1 is

x, + y;Vd = a?b + 1+ a Vd.

Proof: The period of length of continued fraction of

va?b?+2b is 2 by Theorem 3.1. Therefore the
fundamental solution to the equation x* —dy* =1 is

p1 + g1\/d by Lemma 2.2. Since

the proof follows.
Since the proofs of the following corollaries are similar,
we omit them.

Corollary 2: Let d = a?b? + b. Then the fundamental
solution to the equation x* — dy? = 1 is

x, + y1Vd = 2a%b + 1 + 2a Vd.

Corollary 3: Let d = a? + 2. Then the fundamental
solution to the equation x* — dy? = 1 is

X, +yVd =a® +1+aVd.

Corollary 4: Let d = a? + a. Then the fundamental
solution to the equation x* — dy* = 1 is

X, +y,Vd =2a+1+2Vd.
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Corollary 5: Let d = a? —a. Then the fundamental
solution to the equation x* — dy? = 1is

x1+y1\/8=2a—1+2\/3.

Corollary 6: Let d = a? — 2. Then the fundamental
solution to the equation x* — dy? = 1is

x, +y,Vd =a? -1+ ad.

Proof: The period of length of continued fraction of
va? — 2 is 4 by Theorem 3.6. Therefore the fundamental

solution to the equation x? — dy? = 1 is p; + q3Vd by
Lemma 2.2. Since

p3
P3 _ (g —
a3 (

the proof follows.
From Lemma 2.2, we can give the following corollary.

Corollary 7: Let d € {a®b?+ 2b,a*bh?*+b,a* +
2,a® + a}. Then the equation x* —dy* = —1 has no
integer solutions.
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