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ABSTRACT

The objective of this paper is to introduce the use of entropy for knowledge acquisition in the algorithms which
use the covering approach in inductive leaming. REX-1 and REX-2 algorithms, which generate rules based on
the covering approach, are compared with other algoritbms using the same principle. These algorithms which
adapt the mentioned approach generate rules using the search methods. As is used in the algorithms generating
the decision tree, the entropy can be used as well in algorithms which utilize the covering approach. While
generating rules by search methods, it is vital that the algorithms give priority to the attributes with high
complexity in an example set. However, use of entropy attaches the priority to the attributes with lower
complexity. ID3 and C4.5 algorithms may be cited among those using the entropy. Instead of direct rule
generation, but they use the decision tree to induce rules.

Keywords - Knowledge Discovery, Rule Extraction, Decision-Trees, Entropy

KAPSAMA YAKLASIMINA GORE KURAL URETEN BILGI KESFi
ALGORITMALARINDA ENTROPI KULLANIMI

OZET

Bu yaymnin amaci, enditktif 9grenmede kapsama yaklasimim kullanan algoritmalarda bilgi kazanci igin entropi
kullammini saglamaktir. Kapsama yaklagimina gore kural iireten REX-1 ve REX-2 algoritmalar1 aym metodla
kural ireten diger algoritmalarla kargilagtinilacaktir. Bu algoritmalar arama metodlarini kullanarak kural ilretirler.
Entropi, k_a.rar agacl iireten algoritmalarda kullanildig1 gibi kapsama yaklasimmm kullanan algoritmalarda da
kulla{nlablllr. Arama metodlar1 tarafindan kurallar iiretilirken Ornek setindeki karmasikhigi yiksek olan
6zelliklere oncelik verilmesi kagimilmazdir. Ancak entropi kullamm karmasiklif1 daha az olan 6zelliklere

6ncelik verir, Ent.ropi kullanan algoritmalar arasinda ID3 ve C4.5 sayilabilir. Fakat bu algoritmalar dogrudan
kural tiretmek yerine karar agacini kurallara doniistiiriirler.

Anahtar Kelimeler -~ Bilgi kesfi, Kural ¢ikarma, Karar agaclar1, Entropi

L. INTRODUCTION learning algorithm should be sufficient to draw

Inductive learnjno ; multi;_)le conclusiops from lgaming exaqlples [1]..
training examplesgtolsl a process that uses sets of A major prob}em in the design of lea.v.m.mg algorlthgls
have been suggested tearn 4 concept. Many methods  is the generation of a complex description from noisy
leaming il Forot l%enerate decision rules .from examp}es. Leamming from noise corrupted .d.ata may
are needed for ge;lerat’ » p;nposez 8 res alg<.>rlthms result. In a large.nun?ber of complicated decision ruoles
description of (e coxi::lg trsu es which determine the  describing trivial instances. Hence, the .resu.ltmg
description bears on] €pts to be learned. But .the concept description may not.reﬂect ggneral situations.
interpretations of 4 ﬁﬁi out Lof many p(.)SSIble We call such a “overﬁt.tmg” which re.fer.s to a
present a meanin . daLa. and, yet, it may  tendency to force the rule induced from training data
& completely irrelevant to the to agree with these data too closely, at the cost of

meaning of the : ;
oncept. Therefore, an inductive generalization to other examples. Poor concept
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description may also cause the overfitting. To
overcome the noise-caused overfitting, many studies
have been performed and some methods have been
suggested. Among the solutions suggested, two
approaches are mentioned here. The first is to allow a
certain degree of inconsistent classification of training
examples so as to describe the basic attributes of a
concept in a general way. This approach is employed
by the ID family of algorithms [2,3]. The C4.5
algorithm by Quinlan is a descendant of ID3 which
converts its tree into rules and prunes both rule
conditions and whole rules[4]. The second approach is
to eliminate unimportant rules and only keep the ones
covering the largest number of examples and consider
them as general description of a concept [1].

I.1 Decision Tree and Rule-Based Algorithms

These algorithms generate concept descriptions from
examples by following specific procedures, and by
using a set of heuristics in separating examples of one
class from other classes. Such algorithms are
classified into two major families. The first is the
decision tree-based algorithms, and the second is rule-
based algorithms. An example of the first family
algorithms is the ID family of algorithms such as
ID3[2] and C4. The AQ family of algorithms is the
examples for the second type of algorithms. Popular
algorithms using this technique are the AQ family of
algorithms [5,6], RULES family [7,8,9], ILA[10],
REX-1[11] and REX-2[12].

I.1.1 Decision tree-based algorithms

These algorithms generate decision trees based on the
divide-and-conquer approach. Decision tree-based
algorithms usually use the information entropy
measure to grow a decision tree by searching for a
feature that gives maximum information gain. The
procedure of growing a decision tree continues by
dividing examples into smaller subsets until the
training examples are correctly classified based on a
user-specified termination criterion.

In real-world applications, training examples are
usually insufficient to define a concept description
uniquely. Therefore, leaming algorithms need a
flexibility to produce different generalizations from
given examples. In decision tree-based algorithms, the
description of a subset of examples in a leaf node of a
tree is uniquely described as series of feature tests
from the root to the bottom of a tree. This approach
does not have the flexibility of describing a target

concept in different ways.

I.1.2 Rule-based algorithms

These algorithms generate rules according to the
covering approach. Rule-based algorithms have the
ability to generate multiple descriptions of a concept.
An example 1s the AQI5 algorithm where the
empirical learning was treated by Michalski as the
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general covering problem[5]. The basic term of a
cover, used in the AQ family of algorithms, implies
that there may be multiple covers to cover positive
training examples. This resulted in the development of
procedures that produce a quasioptimal solution in
polynomial time. Generally, AQ algorithms follow a
greedy heuristics that tries to include/exclude as many
as possible of positive/negative examples in searching
for a complex. The AQ algorithms use a set of user
specified description preference criteria to describe a
subset of positive examples covered by a complex[1].
REX-1 and REX-2 are the type of algorithms which
generate rules according to the covering approach and
use the entropy in the process.

IL INFORMATION MEASUREMENT,
ENTROPY AND KNOWLEDGE GAIN

Roughly speaking, entropy is the degree of disorder of
a system. It is such an important physical concept that
many disciplines employ entropic functions such as
thertnodynamic entropy, topological entropy. As the
disorder of a system increases, any Increasing
function may be used as an entropic function [13,14].

Information value of example set is computed by

equation (1),

Info(S) =- )"
i=l1

(1)
where m denotes the number of classes in the example
set, |S| denotes the number of examples in the set, and
S; denotes the number of examples of the i™ class.
Entropy values are computed for each value in a class.
Let Ty, T,, ...T,, show the subsets which include the
examples with an element. k denotes the number of
elements in a subset, freq(C, T) denotes the number of
examples of Cy class in subset T and |T| denotes the
total number of examples in the subset. Therefore,
entropy for each value is computed with equation (2).

ﬁeq(ck ’ T)
a

i. log (i
NN

E(T) — _Z ﬁeql(y?‘k ’T)

-log,

i=1
(2)

Entropy for an attribute is equal to the addition of

entropy value multiplied with the probability of the
value (3).

2 T

E(A) = —

@=3 5

o

where A denotes a attribute, n the number of values in
a attribute, and E(T;) the entropy of i value.
Information gain of a attribute equals to the
information value of the example set minus the
entropy of the attribute. The information gain for
attribute A in example set S is computed with
equation (4). Info(S) is the same for all attributes, as it
is the information gain for the whole exainple set.

- E£(T)
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GainS, A) = Info(S) - E(A)
(4)

Split information 1s computed for each attribute with
equation (5).

S,
Splitinfo(S, A) = —-i:;’log2 - |
i=1

S
(5)

where the split information is computed for attribute
A in example set S.

A, : Number of values of attribute A4.

S;  : Number of examples where the i™ value of
attribute A appears.

S : Total number of examples in the example set.

The gain ratio for each attribute is computed with eqn.

(6).
GainRatio(S, A) =
(6)

Having sorted out the computed gain ratio values in
descending order, the example set is re-arranged.
Decision tree algorithms consider the attribute with
the highest GainRatio as the root of the tree.

Gain(S, A)
SplitInfo(S, A)

HL RULE GENERATION USING ENTROPY
AND KNOWLEDGE GAIN

The proposed algorithm efficiently induces general
rules from example sets (training data). We explain it
using the example of Golf as given in Table 1[15].
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Wind Slight, Strong

Calculate the entropy for each attribute and value. As
it is seen, the attribute, Weather, has three values:
Rainy, Sunny and Cloudy. The value, Rainy, of the
attribute, Weather, appears in 5 examples three of
which belong to the class, Play, and two of which
belong to the class, Don’t Play. Therefore, the entropy
for {Weather, Rainy} can be computed as:

2 2 3 3
EWeather,Rainy . "glogz 5 5 logz 'g
E = 0.971 bit

Weather,Rainy

The value, Sunny, of the attribute, Weather, appears in
5 examples three of which belong to the class, Don’t
Play, and two of which belong to the class, Play.
Therefore, the entropy for {Weather, Sunny} can be
computed as:

2
E —-—logz—z---~§-log22

Weather,Sunny — 5 5 5 5

E = 0.971 bit

Weather,Sunny

The value, Cloudy, of the attributes, Weather, appears
in 4 examples all of which belong to the class, Play.
Therefore, the entropy for {Weather, Cloudy} can be
computed as:;

4

4
E Weather,Cloudy ~— WZ ]0g2 Z

E Weather ,Cloudy =0 blt

From the above calculations, the entropy for the
attributes, Weather, is computed as:

E ——S—xE + ) xE -+ 3 X
Table 1. Golf Training Set Weather l Weather,Rainy l 4 Weather,Sunny l 4 eather,Cloudy

No Weather Temperature Humidity Wind Decision 5 5 4

1 Sunny High High Slight  Don’t Play E, .h, =—x(0.97 1) +—x(0.971) + —x(0)

2 Sunny High High Strong  Don’t Play 14 14 14

3  Cloudy High High Slight  Play =a 4 bi

4  Rainy Nommal High Slight  Play EW“"""' 0.694 bit

5 Rainy Low Normal Slight  Play . .

6 Reiny Low Normal Strong  Don’t Play Sec.ond attrlbute33 T emperature, has three. yalues.

7 Cloudy Low Normal Strong  Play {High, Low, Medium}, third attributes, Humidity, has

8§  Sunny Normal High Slight  Don’tPlay two values: {High, Normal}, and the fourth attributes,

9 Sunny Low Normal Slight  Play Wi : : -

. ind two values: {Slight, ng. 1

10 Rainy Normal Normal Slight  Play e hag fo 4 uelf {Slg iﬁohg} Th.ebentl'op 5

11 Sunny  Normal Normal  Strong Play computed for each value of the attributes are

12 Cloudy  Normal High Strong  Play presented in Table 2.

13 Cloudy High Normal Slight  Play

14 Rainy Normal High Strong  Don’t Play Table 2. Entropy values for the attributes and their values

The example set given in Table 1 consists of 14
examples, 4 attributes (Weather, Temperature,
Humidity, Wind) and 2 classes (Play, Don’t Play).
The attributes in the example and their values are
given below:

Attribute Values

Weather Rainy, Sunny, Cloudy
Temperature High, Medium, Low
Humidity Normal, High

24

Attribute Entropy (bif) | Value Entropy (bitﬂ
Rainy 0.971
Weather 0.694 Sunny 0.971 |
Cloudy 0 5
High 1
Temperature 0911 Low 0.811 -
Normal 0918
oy High 0.985
Humidity 0.788 Normal 0.592
: Slight 0.811
Wind 0.892 Strong 1
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Info is computed as 0.940 for the example set. The
SplitIinfo, Gain and GainRatio for each characteristic
are given in Table 3.

Table 3. Calculated values for characteristics

Att ibute SplitInfo Gain GainRatio
Weather 1.577 0.264 0.156
Temperature 1.577 0.029 0.018
Humidity 1.000 0.152 0.152
Wind 0.985 0.048 0.049

Sort out the Information GainRatios calculated in
descending order:

Weather (0.156) > Humidity (0.152) > Wind
(0.049) > Temperature (0.018)

Considering the above sorting, the example set in
Table 1 is rearranged according to the attributes,
Weather, Humidity, Wind, and Temperature, and the
results are given in Table 4.

Table 4. Re-arranged example set
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Table 6. Rules generated by REX-1 and C4.5 algorithms (Golf

problem)
Rule  Rule Description

1 [F Weather=Cloudy THEN Decision=Play

2 IF Humidity=High AND Weather=Sunny THEN
Decision=Don’t Play

3 [F Wind=Slight AND Weather=Rainy THEN
Decision=Play

4 [F Wind=Strong AND Weather=Rainy THEN
Decision=Don’t Play

5 [F Humidity=Nomal AND Weather=Sunny THEN
Decision=Play

IV. CONCLUSION

In this section, REX-2 algorithm, which adapts the
covering approach to generate rules using the entropy,
is compared with other algorithms by using different
example sets.

IV.1. Comparison of REX-2 with other algorithms,
using the IRIS example set

The rules generated by the REX-1, REX-2, Rules-3,
ID3 and Rules-3 Plus algorithms using the IRIS

No Weather Humidi Wind Tem Decision
I Sunny H:;h - Slight Highp' Don't Play exam;:lf: set are given in Table 7a, 7b, 7¢, 7d and 7e,
2  Sunny High Strong  High Don’t Play respectively.
3  Cloudy High Slight  High Play
4 Rainy High Slight Normal Play Table 7a. Rules generated by REX-1 (Iris example set)
5 Rainy Normal Slight Low Play Rule Rule Description D
6 Rainy Normal Strong Low Don’t Play 1 [F 1.35PW<I1.7 AND 3.95<PL<4.93 THEN IRIS=Iris-
7  Cloudy Normal Strong Low Play versicolor ,
8 Sumy  High Shiehd Tomill DuriFly - 00 DePWEDS] THEN IRISSirssethss
3 IF 1.7<PW<2.1 THEN IRIS =Iris-virginica
9 Sunny Normal Slight ~ Low Play 4 [F 0.9<PW<1.3 THEN IRIS =Iris-versicolor
10 Rainy Normal Slight ~ Normal Play 5 IF 2.1sPW<2.5 THEN IRIS =Iris-virginica
11 Sunny Normal Strong Normal Play 6 IF 1<PL<1.98 THEN IRIS=Iris-setosa
12 Cloudy High Strong Normal Play Ui [F 4.93<PL<5.91 AND 2.8<SW<3.2 THEN IRIS =Iris-
13 Cloudy  Normal Slight High Play virginica
14 Rainy High Strong Normal Don’t Play : Lr;rsligoslzzvq 7T AND 2.4<SW<2.8 THEN IRIS =lris-

Having sorted the example set as in Table 4, Table 5
gives the set of rules obtained using REX-2.

Table 5. Rules generated with REX-2 algorithm for Golf Example

__Rule Rule Description .
] [F Weather=Cloudy THEN Decision=Play
2 [F Weather=Sunny AND Humidity=High THEN
Decision=Don’t Play
3 IF Weather=Rainy AND Wind=Slight THEN

Decision=Play

4 [F Weather=Rainy AND Wind=Strong THEN
Decision=Don’t Play

2 IF Weather=Sunny AND Humidity=Normal THEN
Decision=Play

The rules generated by REX-1 and C4.5 algorithms
using the Golf Example are presented in Table 6. It is
noted that both algorithins produced the same rules
and the same number of rules just as REX-2 did.
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Table 7b. Rules generated by REX-2 (IRIS data set)

Ruole Rule Description

1 IF 1<PL<1.98 THEN IRIS=Iris-setosa

2 [F 1.7<sPW<2.1 THEN IRIS =Iris-virginica

3 IF 0.9<PW<1.3 THEN IRIS =Iris-versicolor

4 I[F 2.1<PW<2.5 THEN IRIS =Iris-virginica

5 IF 3.95<PL<4.93 AND 1.3<PW<1.7 THEN IRIS
=[ris-versicolor

: IF 4.93<PL<5.91 AND 2.8<SW<3.2 THEN IRIS =Iris-
virginica

[F 1.3<PW<1.7 AND 2.4<SW<2.8 THEN IRIS =Iris-
versicolor
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Table 7c. Rules generated by RULES-3 (Iris exarrjple set) Table 8. Number of rules and the mean of conditions per a rule

_Rule  Rule Description (IRIS example set)

1 IF 6.56<SL<7.13 AND 3.95<PL<4.93 THEN IRIS=Iris- . N ber of Number of
versicolor | Algorithm Rules Conditions

2 [F 5.91<PL<6.9 THEN IRIS =lIris-virginica RULES-3 11 17

3 [F 0.9<PW<1.3 THEN IRIS =Iris-versicolor RULES-3 PLUS 10 14

4 IF 4.93<PL<5.91 THEN IRIS =Iris-virginica RULESA 9 12 T

5 IF 6<SL<6.56 AND 3.95<PL<4.93 THEN IRIS =Iris- ID3 g 14
versicolor REX-1 8 11

6 [F 4.86<SL<5.43 AND 3.95<PL<4.93 THEN IRIS =Iris- REX-2 ;i 10
virginica

7 [F 1<PL<1.98 THEN IRIS =Iris-setosa : . :

3 T M N ey A T Compared with RULES family algorlthms3 .REX-I

9 IF 5.43<SL<6 AND 1.3<PW<]7 THEN IRIS =Iris- and. BEX-Z generated fewer rules and conditions. In
versicolor addition, using the IRIS example set, the rate of

10 [F 5.43<SL<6 AND 3.2<SW<3.6 THEN IRIS =Iris- efficiency in rule generation was 93.60%, 93.75% and
versicolor | 100% for Rules-4[9, 16], REX-1, and REX-2;

11 [F 2.8<SW<3.2 AND 1.7<PW<2.1 THEN IRIS =Iris- ol
yirgioicn respectively.

IV.2. Comparison of performance analyses of

Table 7d. Rules generated by ID3 (Iris example set) REX-2 with TDIDT and PRISM algorithms

Rule Rule Description -

1 IF 1<PL<1.98 THEN IRIS =Iris-setosa In this section, we give some information on the test
2 I[F 4.93<PL<5.91 THEN IRIS =Iris-virginica It f REX-2 ith TDIDT d PRISM
3 IF 5.91<PL<6.9 THEN IRIS =Iris-virginica St S - -

4 I[F 3.95<PL<4.93 AND 1 3<PW<1.7 THEN IRIS algorithms[17]. We use Monk1, Monk2, Monk3 and

=[ris~versicolor

5 IF 3.95<PL<4.93 AND 0.9<PW<1.3 THEN IRIS
=Iris-versicolor

Soybean example sets and their testing data sets. The
attributes of Monk data sets derived from real world
problems are given in Table 10. Soybean data sets

6 [F 3.95<PL<4.93 AND 1.7<PW<2.1 AND : .
2 4<SW<2.8 THEN IRIS =Iris-virg [14, 16] consist of 683 examples, 35 Attributes, and
7 IF 3.95<PL<4.93 AND 1.7<PW<2.1 AND 19 classes. The re.sults obFained with REX-2, TDIDT
3.2<SW<3.6 THEN IRIS =Iris-versi. and PRISM algorithms using example sets of Monkl,
8 IF 2.96<PL<3.95 THEN IRIS=Iris-versicolor _ Monk2, Monk3 and Soybean are presented in Table
9[17].
Tablo 7e. Rules generated by Rules-3 Plus (Iris example set)
Rule Rule Description T Table 9. Results obtained :;;t{l; rg[lgnI;EX—Z, TDIDT and PRISM
1 [F 1<PL<1.98 THEN IRIS=Iris-setosa s
2 IF 3.95<PL<4.93 AND 1.3<PW<1.7 THEN IRIS =Iris- EX"“‘"E;‘?SC‘ TIZ‘;)T PRI?“ REz’f'z
versicolor Monkz 27 %3 %3
3 IF 5.91<PL<6.9 THEN IRIS =Iris-virginica Mggm o - g
4 IF 4.93<PL<5.91 THEN IRIS =Iris-virginica Soybean 109 107 08
2 IF 2.'4.SSW<2'8 AND 1.7sPW<2.1 THEN IRIS =lris- Ps : INDUCED was used to obtain data from TDIDT and PRISM algorithms.
virginica
6 IF 2.96<PL<3.95 THEN IRIS =Iris-versicolor . ,
7 IF 0.9<PW<1.3 THEN IRIS =Iris-versiolor Mean number of conditions per a rule was obtained
8  IF 2.1<PW<1.5 THEN IRIS =Iris-virginica by the total number of conditions divided by the
9  IF 3.2<SW<3.6 AND 3.95<PL<4.93 THEN IRIS =Iris- number of rules. It is seen that TDIDT algorithm
" versicolor | generated the highest number of rules, compared with
gr gzi;ﬁiasqu RN e r=s2 L Wb, DRI the other algorithms. The number of rules for TDIDT,

PRISM and REX-2 are 270, 231
respectively.

Another preferred method of algorithin comparison 1is
using the testing example sets. These sets are used to
determine the rate of accuracy using the generated
rules. That 1s, they test the results generated by an
algorithm using an undefined example. Testing sets
are obtained from the original testing sets. The rate of
accuracy at the end of the tests is given in Table

10[18].

and 226,

It should be noted that while the number of rules and
conditions generated by REX-1 was 8 and 11,
respectively, REX-2 generated 7 rules and 10
conditions. On the other hand, ID3 produced 8 rules
and 14 conditions. The algorithms ID3, Rules-3,
Rules-3 Plus, Rules-4 and REX-1 were compared in
terms of the number of rules and conditions
generated. The results are given in Table 8.
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Table 10. Comparison of Rate of Accuracy using
Testing Example Sets

Example Number of

TDIDT  PRISM REX-2
Set Examples
Monk| 36 75.00% 77.78%  100.00%
Monk2 52 46.15%  53.85% 78.80%
Monk3 36 91.67%  83.33% 83.33%

~ Soybean 204 85.78%  84.80% 97.06%

—

Table 9 indicates that all of the algorithms, except
TDIDT, produce almost the same results. However,
the results obtained using the testing sets in Table 10
show that the introduced algorithin, REX-2, yields a
very high rate of accuracy. One of the reasons for
such a high rate may be the selection of attributes
based on the entropy and information gain values.

V. DISCUSSION

Algorithins using the covering approach generate
rules by performing only some search methods in the
example sets. On the other hand, the algorithins
benefiting from the divide-and-conquer approach
generate a decision tree based on the entropy value
and, then, induce rules out of the decision tree.
Thanks to that feature, decision tree algorithms are
able to generate a greater number of rules. Yet, some
decision tree algorithins employ a technique called
pruning which eliminates some unnecessary rules and
thereby, resulting in a fewer number of generated
rules [19]. As REX-2 algorithm uses both the
covering approach and the entropy value and does not
perform the pruning technique, it is capable of
generating fewer rules and classifying any given
example set with a higher rate of efficiency.

VL REFERENCES

[1] Cios, K.J., Liuy, N. Goodenday, L.S,,
“Generation of diagnostic rules via inductive
machine leaming”, Kybemetes, vol. 22, no 5,
44-56, 1993.

[2] Quinlan, J.R., “Leaming efficient classification
procedures and their application to chess end
games”. In: Michalski; R.S., Carbonell, J.G. and
Mitchell, T.M. (Eds), Machine Leamning: An
Arntificial  Intelligence @ Approach, Tioga
Publishing Co, Palo Alto. CA, 463482, 1983.

[3] Cheng, J., Fayyad, U.M.,, Irani, K.B., Qian, Z.,
“Improved decision trees: A generalized version
of ID3”, Proceedings of the Fifth Intemational
Conference on Machine Leaming, Ann Arbor,
Michigan, 100-106, 1988.

[4] Quinlan, J.R.,, “C4.5: Programs for Machine
Learning”, Morgan Kaufmann, San Mateo, CA,
1993.

[8] Pham, D. T; Dimov, S.S,,

Use Of Entropy In The Knowledge Discovery Algorithms
Which Generate Rules According To Covering Approach

O. Akgobek

[S] Michalski, R.S., “A theory and methodology of
inductive learmning”, Machine Leamning, Palo
Alto, CA, 83-134, 1983.

[6] Kaufman, K.A., Michalski, R.S., "An Adjustable

Rule Learner for Pattern Discovery Using the
AQ Methodology”, Jourmal of Intelligent
Information Systems, 14, 199-216, 2000.

[7] Pham D. T., Aksoy M.S., “An algorithin for
automatic rule induction”, Artificial Intel. Eng.,
8,277-282,1993.

“An algorithm for
incremental inductive learmning”. Proc. Instn.
Mech. Engrs, vol. 211, part B, 239 — 249, 1997.

[9] Pham D. T, Dimov S.S., “The RULES-4

iIncremental inductive learning algorithm”,
Applications of Artificial Intelligence in
Engineering XII, R.A. Adey G. Rzevski and R.
Teti (Eds) Computational Mechanics
Publications Southampton Boston, 163-166,
1997.

[10] Tolun, M. R., Abu-Soud S.M., “ILA:An

inductive learning algorithm for rule extraction”,
Expert Systems With Applications, Vol: 14, 361-
370, 1998.

[11] Akgdbek O., Aydin Y.S., Oztemel E., Aksoy
M.S.,, “A new algorithin for automatic

knowledge acquisition in inductive leamning”,
Knowledge-Based Systems 19, 388-395, 2006.

[12] Akgobek, O., “New algorithms for knowledge

acquisition in inductive learning”, Ph.D. Thesis,
Sakarya University, Sakarya, Turkey, 2003.

[13] Klinkenberg, R., “Rule set quality measures for

inductive learmning algorithms”, Master Thesis,
University Of Missouri — Rolla, 1996.

[14] Piramuthu S., Sikora T. R., “Iterative feature

construction for improving inductive learning

algorithms”, Expert Systems with Applications
36,3401-3406, 2009.

[15] Blake, C.L., Merz, C.J., “UCI Repository of

Machine Learning Databases™, [http://ftp.ics.uci.
edu/pub/ml-repos/machine-learning-databases/].
Irvine, CA: University of California, Department
of Information and Computer Science, 1998.

[16] Pham D. T., Dimov S. S., Salem Z., “Technique

for selecting examples in inductive learning”,
ESIT 2000, Aachen, Germany, 2000.

[17] Bramer, M. A., “Inducer: A rule induction
workbench for data mining”, IFIP World
Computer Congress Conference on Intelligent
Information  Processing, 2000, Beijing,
Proceedings. Beijing: Publishing House of
Electronics Industry, 499-506, 2000.

[18] Bramer M.A., “Automatic induction of
classification rules from examples using N-
Prism”, Research and Development in Intelligent
Systems XVI. Springer-Verlag, 99-121, 2000.

[19] Foumier, D., Cremilleux, B., “A quality index
for decision tree pruning”, Knowledge-Based
System 15, 3743, 2002.



	c13s1sy22
	c13s1sy23
	c13s1sy24
	c13s1sy25
	c13s1sy26
	c13s1sy27

