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ABSTRACT 

In this paper, an alternative approach was proposed for the determination of the modcls taken into account in the 
modeling of the ınixture surface which is obtained on the experiınental regjon. Thjs approach depends on the 
examination of all possible subset regression models obtained for the mixturc model. In addition, model control 
graphs are taken into account to determine the best models. In this situation, with the help of different subset 
regression n1odels, a n1ore comprehensive interpretation of the ınixture system and the components can be obtained. 
Then, proposed approach has been investigated on flare data set which is widely known in literature. 
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KARMA DENEMELERDE EN İYİ MODELLERiN BELİRLENMESİ •• • 
UZERINE 

ÖZET 
Bu çalışınada, deneysel bölge üzerinde elde edilen karına yüzeyin ınodellennıesi için ele alınan modellerin 

be1irlenınesinde alternatif bir yaklaşını önerilıniştir. Bu yaklaşıın, bir karına ınodel için elde edilen tün1 olası alt 
künıe regresyon n1odellerinin incelenınesine dayanmaktadır. Ayrıca en iyi ınode1lerin belirlenınesi için model 
kontrol grafikleri göz önüne alınmıştır. Bu duruında, elde edilen farklı alt küme regresyon modelleri yardıınıyla 
kanna sistenı ve bileşenler hakkında kapsamlı bir yorun1 elde edilebilir. Önerilen yaklaşan, literatürde çok bilinen 
tlare veri kümesi üzerinde ince1enrniştir. 

Anahtar Kelimeler: I<arına Model, Tüm olası alt küme seçiıni, Değişken seçiıni, R.egresyon modelleri 

1. Introduction 

In ınix tur e experin1ents, the measured response is 
assun1ed to depend only on the proportions of 
ingredients present in the ınixture and not on the 
amount of mixture. For example, the response ınight be 
the tensile strength of stainless steel which is a mixture 
of iron, nickel, copper and chroınium, or, it might be 
octane rating of a blend of gasolines. 'rhe purpose of 
mixture experin1ents is to build an appropriate nıodel 
re]ating the response(s) to mixture co1nponents. The 
resulting mode]s can be used to understand how the 
respanses depend on the ınixture components. 

In a q-coınponents ınixture in which X; represents the 

proportion of the ith coınponents present in ınixture, 

O<x. =::;l, i=l,2, ... ,q, � � x. =1 1 .L... ı==l 1 
(1) 
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The composition space of the q cornponents takes the 
forn1 of a regular (q-1 )-diınensional simplex. Physical, 
theoretical, or econonıic considerations often in1pose 
additional constraints on individual coınponents, 

O< L, :5: xi <U; � 1, i= 1, 2, ... , q (2) 
where Li and Ui denote lower and upper bounds, 

respectively. In general, restriction (2) red uc e the 
constraint region given by (1) to an irregular (q-1 )­
diınensional hyperpolyhedron. 

lt is asswned that the response or property of interest, 
denoted by 77, is to be exprcssed in terms of a suitable 

functionf of the mixture variabtes X;, 

1] = j (Xl ' X ı ' · · ·' X q ) (3) 
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A typical ınodel may thus be written, 

where Bi is assumed that B; D NID (O, CY2 ) • The 

function form of the response E (y) = f { xP x2, ... , xq) 

is usually not known. Often first- or second-degree 
polynomial approximation ınodel can be used. Mixture 
model forms most commonly used in fitting data are the 
cananical polynomials introduced by Scheffe [8] in the 
fonn, 

q q q 
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where Y is n x 1 veetar of observations on the respons e 

variable, X is n x p ('2:. q) matrix, where p is number of 

temıs in the ınodel, p is the px 1 veetar of parameters 

to be estimated and E is n x 1 veetar of errors. lt was 
assumed that the errors have the property 

E(y) = 7J = Lfi;x; +LL ,Bijx,.xi (5) 

where In is identity ınatrix and u2 is the error 

varian ce. Hen ce E (Y) = p =X� where J.l is coluınn 

veetar of all expected responses. The least squares 

estimator for p is b= (X'X)"1 X'y and variance-
i=l i=l i<j 

For modeling we11-behaved systeıns, generally the 
Scheffe polynoınials are adequate. For s ome situations, 
however, there are better modeling forms than Scheffe 
polynoınials which could be used. For exaınple, as an 
alten1ative to Scheffe mixture models, nıodels including 
inverse tenn are used in order to ınodel an extreıne 
change in the response behavior of one or ınore 
components, which are close to boundary of the 
simplex region [ 4]. Following, quadratic model 
including an inverse term has been proposed by Draper 
and St. John, 

(6) 
i=l i=l i<j i=l 

Scheffe polynomial models fails to satisfy the modeling 
of additive effect of one conıponent and at the same 
time accoınmodate the curvilinear blending effects of 
the remaining components. To model these effects 
jointly, Becker has developed a set of mixture ınodels 
which are hon1ogeneous of degree one [ 1]. They 
provide altematives to the Scheffe polynoınials. 
Becker' s three second ord er model s are of the form, 

q l} q 
H 1 : 17 = L /3; x,. + � L P u m in ( xi' x J ) 

i:::l i=l i<j 

q q q x.x. 

H 2 : 77 = L /3; x ; + L � fiu 
' ' 

(7) 
i=l i=l i<J X;+ X} 

q q 9 vı 
H3 :17 = LP;x,. + L�Pu(xix1) 

i=l 1=1 i<j 

In the H2 n1odel, 

(x; + x1) =O . 

x.x .j(x. + x.) =O 1 ) 1 ) whenever 

As usual, we can represent the Scheffe cananical 
polynomial models, mixture models with inverse tem1s 
and Becker Homogenous models in matrix form by 
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covariance matrix of b is var (b) = (X'X)-' (J'2 • A 

comprehensive reference on the design and analysis of 
mixture data is given by Comeli [2, 3 ). 

All of the work on mixture nıodeJs has been based on 
response surface concepts. A ınodel is fitted to data by 
an experiınental design. The response surface contours 
are exaınined to de termine the region of the factor space 
where best values of the response can be obtained. The 
purpose of thjs paper is to present soıne ınethods which 
enable one to obtain a better und erstanding of a mixture 
system and the role of the different components. In the 
following secti ons, the se ınethods are deseri bed. 

2. Determination and Comparison ofMixture 
Model s 

In mixture experiments, reduction of the n1odel is as 
much important as detennination of the model because 
it is not a very good approach to add all the terms of the 
chosen model to itself. In a situation like this, the model 
nıay include meaningless interaction terms. It may also 
be h ard to mak e comınents on the m ix ture system as the 
paran1eter values n1ay be affected. The sequential 
model fıtting n1ethods proposed by Draper and St John 
for mixture experiınents can be useful [ 4]. But, if the re 
are many terms, it can require too much 1abor. There 
are various ınethods for choosing a regression ınodel 
such as forward selection, backward eliınination and 
stepwise regression when there are many candidate 
model terrns. In addition, Cornell mentioned that the 
stepwise regression model can be investigated for 
various n1odels in mixture experiments [2]. The 
objective is to obtain a n1odel form that not only 
contains an adequate aınount of information about the 
mixture systeın under investigation but whose form also 
makes sense. However these ınethods result in only one 
model and altemative ınodels, with an equivalent or 
even better fıt, are easily overlooked. A more preferable 
n1ethod than these methods is to fit all possible 
regression models, and to evaluate these according to 
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soıne criterion. In this w ay a nuınber of best regression 
ınodels can be selected. In this case, altemative subset 
regression ınodels, which can be used to model the 
ınixture systeın on the siınplex region, can be obtained. 
However the fitting of all possible regression models is 
very coınputer intensive. In order to find the best subset 
regression model "RESEARCH procedure" on 
GENSTA T was used [5]. While using this procedure, 

linear ınixture terms (xl>x2, . • .  ,xq) w ere kept in the 

model and all possible combinations for the rest of the 
terms were added to the linear mixture terms. Froın the 
ınodels obtained, the n1odels with tern1s 
p- value< 0.05 according to F statistics have been 

taken into account. However, in order to  examine which 
of the n1odels are adequate, model control graphs 
should be obtained. For the models whose model 
control graphs are adequate� a decision can be made by 
looking at R.� and A1SE values of the nıodels. The 

proposed approach will be exaınined in the follo,ving 
part over the flare data set. 

3. Flare Experin1ent 

McLean and Anderson presented an example to 
illustrate the ir extreıne-vertices design [6]. l\ flare is 
n1anufactured by ınixing magnesium ( x1 ) , sodiıun 

nitrate ( x2) , strontiunı nitrate (x3), and binder ( x4) 
under the following constraints, 

0.40 � X1 < 0.60 

Ü. 1 Ü < X2 � 0. 4 7 

0.1 O � x3 :::; 0.4 7 

0.03 < x4 < 0.08 

The component proportions for design points as well as 
the nıeasw·ed illumination values are given in Table 1. 

Table 1. Coınponents Proportions and Ulumination Response Values 
for Flare Experiment 

B le n d ___ C_o_Jn__.p�....-o_,_ıe _n_t_P_r_o p'---or_t_io_n_s __ 
No x, X ı 

ı 0.40 0.10 
2 0.40 0.1 o 
3 0.60 0.10 
4 0.60 O. 1 O 
5 0.40 0.47 
6 0.40 0.42 
7 0.60 0.27 
8 0.60 0.22 
9 0.50 0.1000 
lO 0.50 0.3450 
1 1 0.40 0.2725 
12 0.60 0.1725 

0.50 0.2350 

x3 

0.47 
0.42 
0.27 
0.22 
O. 1 O 
0.10 
O. 10 
O. 1 O 

0.3450 
O. ı 000 
0.2725 
0.1725 
0.2350 

x4 

0.03 
0.08 
0.03 
0.08 
0.03 
0.08 
0.03 
0.08 

0.055 
0.055 
0.055 
0.055 
0.030 

llluminali on 
(1000 

candles) 
75 

180 
195 
300 
145 
230 
220 
350 
220 
260 
190 
310 
260 
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Snee and, Draper and St. John ınade a comparison of 
the mixture ınodels for the flare data set [9, 4]. In 
addition: Draper and St. John used the backward 
elimination regression procedure [ 4]. On the other han d, 
Piepel and Cornell gave a sumınary of the ınodels 
proposed for the flare data set till novv l7]. When the 
control graphs of these models are investigated, it can 
be seen that they are not adequate and also they have 
meaningless interaction and in verse ternı. In this study, 
subset regression ınodel for achıal con1ponents will be 
given by using Scheffc, I-Iomogenous H2 and Models 
including inverse tenn. 

Subset regression models obtained froın the modeling 
study done by using actual con1ponent for Scheffe, H2 
and the ınodeJs including inverse tenn are given in 
Tables 2-4 respectiveJy (see Appendix). The values 
given in parenthesis in Tables show the standard errors 
of the predicted paraıneters. In addition, the tenns 
sho\vn vvith the syınbol X are meaningless. 
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When the ınodel control graphs for subset regression 
modcls are investigated, it can be seen that the ınodels 
including inverse tenn are better than the other ınodels. 
This is because the control graphs for Scheffe and H2 
subset regression mode1s show that these ınodels are 
not adequate. In Table 4, only the control graphs of 
nıodels including inverse ten11 2, 3 and 7 show that the 

0.50 0.2 ı 00 0.2100 0.080 410 
15 0.50 0.2225 0.2225 0.055 425 

17 
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models are adequate. If R� and MSE values are 

taken in to account, model 7 can be chosen by the 
researcher. The control graphs of model 7 are given in 
Figure 1. 

The ınixture surface for x4 = 0.03 and x4 == 0.08 on the 

experimental region for the model including inverse 
term is shown respectively in Figure 2. 

zoo 

ıoo 

o 

soo 1-----+---
400 

x2 
300 x1 

200 

xl 

Figure 2. Mixture surfaces obtained for model including inverse 
terms 

4. Conclusion 

In this paper, subset regression models with . 
different terms of altemative mixture models on the 
experimental region were obtained. A comprehensive 
research can be done about different subset regression 
models together with mixture system. The researcher 
can choose among this subset regression models whose 
model control graphs were adequate. In this study, our 
aim is not to make a comparison between mixture 
models but it is to obtain subset regression models 
which can be used in the modeling of the mixture 
system. Therefore, in this study R� and MSE values 

were taken into account for the determination of the 
best model. 

Many researchers make a comparison of the models 
according to the numbers of terms the models include. 
Therefore, if the model includes few terms, this may 
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make it easier to understand the model. However, as the 
number of the reasonable in teraeti on terms of the model 
increase, it becomes easier to make a comment on the 
mixture system and to measure the effects of the 
component. Regression model including different 
numbers of term which can be used to model the 
mixture system can be chosen if the model control 
graphs are adequate. 

As a result, the models obtained in Tables 2-4 
differ from the regression models obtained with 
stepwise regression operations. On the other hand, 
meaningful regression terms can not always be obtained 
by using stepwise-type regression operations. The 
model control graphs of the models may not show if the 
models are adequate as well. For this reason, with the 
choice of all possible subset regression for mixture 
experiments better results can be obtained. 
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Appendix 
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Tab le 2. The parameter predictions of subset regression models obtained by us ing Scheffe model 

Scheffe X ı X ı x3 x4 XıXı x,x3 x,x4 XıX3 xıx4 x3x4 

Best 
su b set 469.897 -535.7 -716.5 2214.896 X X X 4345.936 X X with 1 (110.2) (236.8) (236.8) (736.1) (1820.3) 
tenns 
Best 

su b set -1326.6 -2281 -2363 3983.158 8121.991 7899.748 X X X X with2 (683.6) (974.9) (974.9) (1029.4) (3299.6) (3299.6) 
terms 

(X is indicate meaningless terms) 

Tab le 3. Parameter predictions of su b set regression n1odels obtained by us ing Becker H2 model 

Becker XıXı X1X3 XıX4 XıX3 XıX4 x3x4 
X ı X ı x3 x4 

(H2) Xı +x3 Xı +x4 x3 +x4 Xı +xı Xı +x3 Xı +x4 

Best 
su b set 287.692 -404.1 -584.9 2043.134 X X X 2442.910 X X with 1 (103.5) (162.6) (162.6) (666.3) (806.2) 
terms 
Best 

su b set -362.73 -1510.9 -1601.2 2110.746 3634.675 3422.316 
X X X X with 2 (210.5) ( 480.9) ( 480.9) (585.5) ( 1147.6) (1147.6) 

te rm s 
(X is indicate ıneaningless terms) 

Rı 
A MSE 

59.3 3720 

58.9 3752 

R
ı 
A MSE 

66.7 3045 

74.2 2357 
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Tab le 4. Parameter predictions of subset regression models obtained by using models inciurling inverse term 

Models 
w ith 

lnverse 
No 

Terms 

Xı X ı x3 x4 XıXı Xı X:J XıX4 x2x3 XzX4 x3x4 ( Xı) -ı ( Xı )-ı 

Best 
l 

370.511 4680.802 4499.992 6890.397 X X X X X X -1145.9 X (92.9) (1444.0) (1444.0) (1574.7) . . ... . .. ----�·· ·· --- - (347.829) 

( x3 )-ı (x4)-t R� MSE 

X X 69.3 2801 

subset 2 i04.834 .=427.168 308.715 2469.622 
X ·-- X -·- X X X X X -35.62 X X 64.1 3279 with l (147.3) (178.4} (231.8) (700.1) (12.748) 

terıns 3 682.848 449.420 -581.456 2445.641 X X X X X X X X -33.03 X 60.2 3638 (155.2) (244.2) (187.9) (737.4) (13.427) 
584.885 3294.105 3739.807 5972.952 X X X X X X -871.19 -24.35 X X 78.4 1977 

Best 
4 (122.4) (1357.8) (1258.3) (1383.1) (316.225) (10.71) 

subset 356.270 -187.926 -983.005 3038.738 X 4100.325 X X X X X -46.69 X X 76.5 2147 with 2 5 (183.2) (173.0) (548.6) (610.4) {1636.7) (11.22) 
terms 6 309.047 -935.823 -324.892 3056.605 4397.194 X X X X X X X -44.9° X 74 6 2321 -- - {190.Ş)_ . (?7Q.5) .. (179.9) - {634.7) (1701.8) (11.666). .............. . 

Best 
subset 
with 3 
te rm s 

7 1340.480 1185.443 1107.848 3153.739 
(248.4) (549.8) (549.8) (562.4) 

(X is indicate meaningless terıns) 

X X X -8874.5 
(3803.4) X X X -65.37 

(19.0) 
-Q1.36 
(19.0) X 81.1 1724 
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