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ABSTRACT

In the present paper, to investigate the phonon frequencies of face-centered-cubic (f.c.c.) Fe-18%Cr-10%Mn-16%N1 and
Fe-18%Cr-12%Ni1-2%Mo alloys 1t has been used an empirical many-body potential (MBP) developed by Akgiin and Ugur,
recently. The parameters defining the MBP f.c.c. alloys may be computed by following a procedure described. The radial,
tangential and three-body force constants of the alloys have been calculated. Finally, the phonon frequencies of the alloys
along the principal symmetry directions have been computed using the calculated two-and three-body force constants. The
theoretical results are compared with thc experimental phonon dispersions. The agrecment shows that the proposed MBP
provides a reasonable description of the f.c.c. alloys.
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Fe-18%Cr-10%Mn-16%Ni ve Fe-18%Cr-12%Ni-2% Mo ALASIMLARININ
FONON DISPERSIYONU

OZET

Bu calismada, Akgiin ve Ugur tarafindan tanimlanan ¢ok-cisim etkilesmeli potansiyeli (MBP) kullanilarak fcc Fe-%18Cr-
%10Mn-%16Ni, Fe-%18Cr-%12Ni-%2Mo alagimlarinin fonon frekanslart incelendi. Incelenen alasimlarin MBP 'yi
tanimlayan parametreleri tanimlanan metoda goére hesaplandi. Alasimlarin agisal, radyal ve lig-cisim kuvvet sabitleri
hesaplandi. Sonug¢ olarak alasimlarin fonon frekanslari temel simetri dogrultulari boyunca, hesaplanan iki ve {i¢-cisim
kuvvet sabitleri kullanilarak bulundu. Fonon dispersiyonlarinda teorik sonuglar deneysel sonuglarla karsilastirildi. f.c.c.
alasimlarda, potansiyelin etkili oldugu gériildii.

Anahtar Kelimeler: cok-cisim etkilesme potansiyeli, fonon frekanslari , agisal kuvvet sabiti, radyal kuvvet sabuti.

described by Akgiin and Ugur [3-5], to the problem of
I. INTRODUCTION studying lattice dynamics of the Fe-18%Cr-10%Mn-16%Ni

e : : . and Fe-18%Cr-12%Ni1-2%Mo alloys.
Austenitic stainless steels find extensive applications due
to their high corrosion resistance and their good I[I. THEORY AND COMPUTATION
mechanical properties. These alloys are based on the Fe-
Cr-Ni system. However, only a few investigations of | h q bod .
phonon dispersion in austenitic steels have been ENErdl, may be eXpressed a5 a many-bocy EXpansion,

published at present. Recently the phonon dispersion ¢%¢2+¢’3+"'+¢’“+“' (1)
relations for Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr- Where ¢, ¢; and ¢, represent the total two-body, three-

The total interaction energy of a system of N atoms, in

12%Ni-2%Mo alloys have been measured using inelastic body, and n-body interaction energies, respectively. In this
neutron scattering at room temperature [1,2]. The aim of paper we have re-expressed the total interaction energy of a
the present work is to investigate the suitability of system simply by separating C as

applying both parametrization procedure and MBP 9=92-+Cd3 (2)
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where C is a three-body potential parameter to be
determined. The new MBP developed by Akgtin and
Ugur [3,4] contains both two-and three-body potentials.

[1.1. Two-body Model Potential

For the interatomic interactions between two atoms of a
attice the two-body model potential had been described
oy the modified form of the generalized Morse
potential[3], and the average total interaction energy per
atom had been written as

AT 2(n? -1 %(%} [B " exp(~mar, )~ mp exp(-or, )]
(3)

Where m and a control the width and the depth of the
potential, respectively. D is the dissociation energy of
the pair, r, is the separation of the atoms for minimum

n
potential, and £ = exp(a r,). In Eq.3 ( J modifies the
)

generalized Morse potential |3] to exhibit the correct
nature of the forces, particularly at short distances. r; is
the mteratomlc dxstance between atoms / and j, and r; =

a(m,,’ + n,,‘ sl * )" where m; , n;, l; are integers
representing the difference between the coordinates of i-
and j-th atoms of the lattice and a is the lattice constant.
The summation in the present calculations extends up to

10-th neighbours.
I1.2. Three-body Model Potential

In the present paper we have used a three-body potential
developed by Akgiin and Ugur [4,5], recently. The three-
body general potential coupling the atom i-th with its
neighbours j-and k-th 1s

uummmmmmm
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where r; and ry are the respective separations of the atoms

—mf} exp(—o.(r; +

j-and &-th from the atom i-th. C is the three-body potential

parameter to be evaluated.

I1.3. Calculation of the MBP Parameters

The parameters (o, r, D, C) defining the MBP,
¢ =¢, +Co;, for f.c.c Fe-18%Cr-10%Mn-16%Ni and Fe-
18%Cr-12%Ni-2%Mo alloys may be computed by
following a procedure described by present authors [4,5].

For equilibrium semi-lattice constant of the alloy (a,) in this
method:

¢2(rlj) T.=3 &= 80

¢2(rij) =a +¢3( 1k) =T =8, =¢

0P (ri')
— 2| L, =0 (5)
ar“ ij— 4o

ij

) . 2 .

o ¢2(T1J>| +5 ¢3(rljfik)| ~9ca B
afijz |rij=ao ook |1j=hk =40 0

Where & 1s the 1onic part of the total cohesive energy ¢, B is
the total Bulk modulus, and ¢ is a geometrical constant
depending on the type of the crystal (for f.c.c. crystal c=2).
For Fe-18%Cr-10%Mn-16%N1 and Fe-18%Cr-12%Ni-

2%Mo alloys the input data used in Egs.(5) are given in
Table I.

o Alloy _.,_e_g,,?:'m) _-a() ,_ ) V)
Fe-18%Cr-10%Mn-16%Ni 3.59 1.23528 159 4.2344
Fe-18%Cr-12%Ni-2%Mo 3.59 1.26816 1.57 4.3236

The MBP parameters (a, r, D, C) can be evaluated for a
many different values of the exponent m and n. In order
to determine the best values of the m and n defining the
MBP for the alloys we have then computed the second-
order elastic constants (¢, ¢;2, ¢44) for f.c.c. structure at
the lattice constant of the alloys. The elastic constants can
be evaluated from the well known expressions for cubic
crystals [8,9].

2 ) 1
% :fé ) 43 ¢2(1"13) L 2 n O ¢3(ri_]1"1k) >
11 o A 1J 2 | l_] Mk Zin. 4 ¥7
Cj#k1 || (Eh]J ) i ¢ 51"1_] Onik {
r ;
22 %42 (%) 3243 (xiti)
c _._22)2 mZn? 2lJ+ .M.y N LYk -
27V e ]| 0 @2 || K o o

644%(201 1—¢12) (6)

Where V, is the atomlc volume ry = a(mg - n,, + lu)’/z

and r;= a(m,,c +n; +l,k) . For c44, the relation developed by
Milstein et al.[10] is used. Comparing the computed values
with the experimental values of the second-order elastic
constants we have determined the best values of the
exponent m and n given in Table 11 for the alloys. For the
determined values of m and n the computed parameters (.
r, D, C) of the MBP are given in Table IlII. For the
calculations in Egs.(6) the summations extend up to 10-th
neighbours of the f.c.c. structure.




Table 11. Computed elastic constants (in units 10"' N/m?) for Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo at room
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Table I1I. Computed MBP parameters for Fe-18%Cr-10%Mn-16%Ni and Fe-
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11.4. Phonon Dispersion Relations

The usual secular determinant to determine the frequency
of vibration of a solid is given by

!D—mm21|=0

(7)

where D is a (3x3) dynamical matrix, m is the ionic mass,
and / is the unit matrix. In the present work the elements of

the dynamical matrix D,g are composed of two-body D;ﬂ

(pair central) and three-body D;"ﬂ (many-body) parts:

Dyp= D! opt [:a”’*ﬁ (8)

In the case of the two-body central pairwise, the
interactions are assumed to be effective up to 10-th nearest

neighbours and DiaB are evaluated by the scheme of

Shyam et al. [11]. The typical diagonal and off-diagonal

Table IV. The computed radial (2;) 2nd tangential (4 ) force constants.

R e
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matrix elements mof D:IB can be found in Ref. 11. In the

case of the central interaction, the first and second
derivatives of the two-body model potential [3] provide
two independent force constants, i.e. the tangential force
constant f; and radial force constant ¢, for the i-th set of
neighbours:

1 0b2(r;)

o
iy ch

2
a i
aim28) 1= 10 10. 9)

orjj

For Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-
2%Mo, [ and a; have been computed for f.c.c. structure
the lattice constant of the alloys. For Fe-18%Cr-10%Mn-
16%Ni and Fe-18%Cr-12%Ni-2%Mo alloys the computed

force constants are given in Table V.

T A A i e Dol RO e B e O R T et OO RS

Serial a,(lO'3Nm") G(10°Nm™)

_NO  Fe-18%Cr-10%Mn-6%Ni _Fe-18%Cr-12%Ni-2%Mo  Fe-18%Cr-10%Mn-16%Ni _ Fe-18%Cr-12%Ni-2%Mo
] 23413 16 22822 37 -219 8243 -243.3205
» -1296.963 -1363.229 143.5962 158.2303
3 -163.3133 -189.3236 12.98447 15.55341
4 -23.23424 -28.70595 1.550336 1.965995
5 -3.961706 -5.126328 0.233693 0.308970
6 -0.785891 -1.053315 0.042111 0.057473
7 -0.176235 -0.000242 0.008725 0.012208
8 -0.043698 -0.061545 0.002023 0.002887
9 -0.011782 -0.016894 0.000514 0.000746
10 -0.003410 -0.004963 0.000141 0.000208

In order to determine the contribution of the three-body
forces to the diagonal and off-diagonal matrix elements of

Dy » We follow the scheme of Mishra et al.[12], where a

three-body potential is used to deduce the force-constant
matrix, involving a single parameter:

Dol =4v[4-2¢2i~cj(cj+cy )],
(10)
Where 7 is the second derivative of the three-body

potential @s(ryry), c;/=cos (mak) and ca=cos (2nak). To
compute the three-body force constant y of Fe-18%Cr-

B-4Y|CI(CJ+Ck) ~2;

10%Mn-16%Ni1 and Fe-18%Cr-12%Ni-2%Mo at the
lattice constant of the alloys, we limit the short-range
three-body forces in the f.c.c. system only upto first-
nearest neighbours.

The computed values of the three-body force constants y
=892.831x10”> Nm™ for Fe-18%Cr-10%Mn-16%Ni, »
=5131.871x10” Nm"' for Fe-18%Cr-12%Ni-2%Mo.

Now one can construct the dynamical matrix D,gby using
2q.(8) and then solve the secular equation (7) to compute

the phonon frequencies along the principal symmetry
directions [100], [110] and [111] for the alloys.
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II1. RESULTS AND DISCUSSIONS

In the present work, the interaction system of f.c.c. Fe-
18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo
alloys has been considered to be composed of the two-
body and three-body parts. Therefore, the MBP is used to
investigate the dynamical behaviors of the these alloys. In
the mean-crystal model the equilibrium pair energy, Bulk
modulus, and total cohesive energy have been used as the
input data. Then we have computed the ab initio radial
(a;), tangential (4;) and three-body () force constants for
Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo
alloys, using the MBP. The computed values of the force
constants have been fed into the dynamical matrix [8] and
the phonon frequencies for the alloy have been calculated
by solving the secular determinant [7]. The computed
dispersion curves are shown by solid curves in Figure 1-2.

Consequently, the present results show that the proposed
MBP are sufficient to study the lattice dynamics in the
f.c.c. quaternary alloys. .
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Figure 1. Phonon dispersion curves at room temperature for Fe-18%Cr-
10%Mn-16%Ni the symbols o, ®, A represent the experimental
value [1, 13, 14]). The solid curves show the computed dispersion
curves according to the many-body interactions.
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Figure 2. Phonon dispersion curves al room temperature Fe-18%Cr-

12%N1-2%Mo the symbols A,V, A represent the

~ experimental value [2]. The solid curves show the computed
dispersion curves according to the many-body interactions
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