
SAÜ Fen Bilimleri Enstitüsü Dergisi 10. Cilt, 2.Sayı, 
s. 60-66, 2006 

Unifıed Forınulation Of J-lntegraJ For Commen 
Crack Types Using Genetic Programıning 
İ. Güzelbey 

UNIFIED FORMULATION OF J-INTEGRAL FOR COMMON CRACK 
TYPES USING GENETIC PROGRAMMING 

Ihrahim H. GUZELBEYa, NihatATMA CA b, Abdulkadir CEVIKc 

a Department of Mechanica1 Engineering, University of Gaziantep, TURKEY, 
b Gaziantep Vocational School ofHigher Education, University of Gaziantep, TURKEY 

c Department of Civil Engineering, University of Gaziantep, TURKEY 

ABSTRACT 

This study proposes Genetic Progran1ming (GP) as a new tool for the analysis and formulation of the J-integral for the 
opening mode offracture mechanics. The proposed GP formulation is based on extensive Finite Element (FE) results. A 
GP based I-integral formulation for the three different geometries w�ich are commonly used in fracture mechanics has 
been obtained. The results of thjs study are very promising. 
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GENETİK PROGRAMLAMA KULLANILARAK YAYGIN ÇATLAK 
TİPLERİNİN J-İNTEGRALİNİN BİRLEŞİK FORMÜLASYONU 

••• 

OZET 
Bu çalışmada, kırılma mekaniğinde açılma moduna göre J-integralin analiz ve forınülasyonu için yeni bir araç olarak 
Genetik Programlamadan (GP) faydalanılmıştır. Önerilen GP formülasyonu kapsamlı Sonlu Eleman (SE) sonuçlarına 
dayanmaktadır. Kırılma mekaniğinde yaygın kullanımı olan Uç farklı geometri için GP' ya  bağlı bir J-integral formülü 
elde edilmiştir. Çalışmanın sonuçları oldukça ümit vericidir. 

Anahtar kelimeler: J-integral; Deplasman Ekstrapelasyon Yöntemi; Açık Formülasyon, Genetik Programlama 

1. INTRODUCTION 

The fınite element method (FEM) is widely used for the 
evaluation of Stress Intensity Factor (SIF) for various 
type of crack confıgurations [1, 2]. Basically there are 
two groups of estimation methods. The fırst group' s 
methods are based on po int matching (or extrapolation 
methods) techniques with nodal displacements are widely 
used extrapolation techniques due to its simple 
applicability to various crack confıgurations [3, 4]. 

In addition, the second group's methods are based on 
energy-based methods like J .. Integral, energy release and 
the stiffness derivative methods are also used for the 
deteı ın ination of SIF. This group requires s ome special 
post-processing routines. Many reference books in 
fracture mechanics [5, 6] and commercial finite element 
codes (ABAQUS, ANSYS, and COSMOS) are 
recommend for the energy-based methods as the most 
efficient for computing Kı due to relatively coarse 
meshes. It can give satisfactorily results with these 
methods. 

However some parameters of both groups can be 
express ed in terms of each other. K can be stated as the J-
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Integral paraıneter and this makes it very easy to get the 
K values with a coarse mesh in Linear Elastic Fracture 
Mechanics (LEFM). It is possible to predict very 
accurate J-Integral values using a suitable representation 
of path. 

This study aims to propose a unifıed J-integral 
formulation valid for varying geometry us ing GP for the 
fırst time in literature. GP is a relatively new tool in 
engineering mechanics problems. Studies in this field 
are scarce. Cevik and Guzelbey have proposed a GP 
b as ed formulation for the prediction of ultima te strength 
of metal plates in compress i on [7]. On the other han d, 
Cevik has recently proposed GP formulations for web 
crippling strength of cold-formed steel sheeting [8] and 
rotation capacity of wide flange beams [9]. 

J-lntegral calculations have been done with an ANSYS 
macro. For this purpose, a Fortran subroutine has been 
developed for ANSYS vvhich reads the results from a 
stress analysis and computes the appropriate line 
integral along a path through the integration points. The 
obtained J-integral values using ANSYS have been used 
for GP training and formulation. The GP results are 
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con1pared with FE (ANSYS) results and are found to be 
accurate. 

II. J-INTEGRAL METHOD 

J-Integral was developed by Ri ce [1 O] and it represents 
the energy extracted through the crack tip singularity. The 
path independent J-Integral characterizes the stress strain 
field at the crack tip whose path is taken suffıcient1y far 
from the crack tip for the cracks to be analyzed 
elastically, where the singularities or the non-linear 
elasto-plastic behaviours are not encountered. 

It has been defined a number of contour integrals that are 
path independent by virtue of the theorem of energy 
conservation. The two-dimensional form of one of these 
integrals can be written as: 

\V ith 

1 au J = wdy-t df 
ax r 

& 

w= Ja . .  d& .. 1) l) 
o 

where; w is the strain energy density; 

(1) 

(2) 

r is a closed cantour followed counter-clockwise, as 
shown in Fig. 1; 
t is the outward traction veeter acting on the contour 
areund the crack; 
u is the displacement vector, and dr is the element of the 
are along the path r. 
S ince J-Integral is a path independent line integral [1. 0], it 
can be determined from a stress analysis where cr and e 
are established using fınite element analysis around the 
cantour enclosing the crack. 

r 

X 

Figure 1. J Integral defınition araund a crack 

The J-Integral can be interpreted as the potential energy 
difference between two identically loaded specimens 
having slightly different crack lengths. The main point of 
the J-lntegral approach can be formulized as follows: 
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(3) 
where; 

İ. Güzelbey 

K2 --0= -­

E' 

U is the potential energy difference; 
a is the crack length; 
G is the strain energy release rate; 
K is the elastic SlF parameter and 

• 
E = E for plane stress 

E E' 2 for plan e strain 
.1-v 

The Eq.(3) points out that the value of J-integral 
obtained under elastic-plastic conditions is numerically 
equal to the strain energy release rate obtained under 
elastic conditions. This situation has been demonstrated 
b y  sm all fully plastic regions of elements, critical mode 
I J-integral J,c values and large elastic regions of  
elements' critica! energy release rate G,c values 
respectively. These values must be satisfying the plane­
strain conditions of LEFM. 

III. MODELSFOR CO MM ON CRACK TYPES 

Nurnerical analysis (FEM) has been applied to 
determine the J-integral of the three well known 
geoınetries: the center cracked plate, the double cracked 
platc and the single cracked plate. The crack geometries 
are given in Fig. 2. 

a) TYPE b)TYPE2 c) TYPE3 

Figure 2. Type of the crack geometries 

All of the three models have dimensions with [20*20, 
40*40, 60*60 and 80*80] mm cross sections and 1 mm 
thickness. The J-integral values for a series of crack 
lengths are calculated (for a==2, 3, 4, 5 and 6 
millimeters ). 

Rectangular eight-node isopararnetric and six-node 
elements are used for the confıgurations with the 
following material properties and loading: E = 80000 
N/mn12, v = 0.3 and cr =60, 80, 100 and 120 N/mın2 
An example of standard and crack tip eight-node 
elements can be seen in Fig.3. Plane stress analysis and 
three-point gaussian nurnerical integration has been 
used for the analysis. 
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The center and double cracked geometries are shown in 
Fig. 4a and Sa respectively. Quarter syn1metries are used 
in modeling as shown in Fig. 4b and 5b. 

Figure 3. Standard and crack tip eight-node isoparametne elernents 
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F igure 4. Center cracked model geometry 
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a) Doub1e crack b) Quarter model c) FE Mesh 
for a'-2mm, 
1510 nodes & 
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Figure 5. Double cracked model geometry 

FE fine mesh confıguration of the center and double 
cracked cases are shown in Fig. 4c and 5c for 2mm crack 
length. In FE mesh confıgurations for 3mm crack length, 
14 77 no des and 4 72 elemen ts, for 4mm crack length, 
1516 nodes and 485 elements, for 5mm crack length, 
1530 nodes and 489 elements, and for 6mm crack length, 
14 70 nodes and 469 elemen ts have been us ed in both 
cases. 
Single cracked case's geometry and its half syınmetry for 
modeling are shown in Fig 6a and Fig.6b. 

FE fine mesh confıguration of the single cracked case is 
shown in Fig. 6c for 2mm crack length. In FE mesh 
confıgurations for 3mm crack length, 3384 nodes and 
1 093 elements, for 4mm crack length, 3465 nodes and 
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1124 elements, for 5mm crack length, 3247 nodes and 
1048 elements, and for 6mm crack length, 3253 nodes 
and 1052 elements have been u sed. 

2w 
a 

2w 
>1 1< 

a) Single Crack 
for 

cr=lOO 
,,.,,._,,.,.,,,..._. �,·.., .. �ı-.:� 'T ·� 

. ::.._ . 

Thickness= I . : :-

w==20 . 

40 >1 

b) HalfModel c) FE Mesh 

a=2, 3357 
nodes & 1082 
elemen ts 

Figure 6. S in gl e cracked model geometry 

The n1esh used in the analysis consists of triangular 
elements for crack region and 8-node quadrilateral 
elemen ts for the ren1aining region s (i .e.PLANE82 type 
element in ANSYS). 

The main disadvantage of the most nurnerical analysis is 
the time-consumption. The calculation time is directly 
proportional with the number of nodes, elements and 
loading conditions. 

An explicit formulation of J-integral using GP will 
decrease the computation time of the certain geometries. 
A GP program is developed for this purpose. 

IV. OVERVIEW OF GENETIC PROGRAMMING 

Genetic algorithm (GA) is an optimization and search 
technique based on the principles of geneti es and natural 
selection. A GA allows a population composed of many 
individuals to evolve under specifıed selection rules to a 
state that maximizes the "fitness" (i.e., minimizes the 
cost function). The method was developed by John 
Halland [ll] (1975) and fınally popularized by one of 
his students, David Goldberg [12], solved a difficult 
problem involving the c ontrol of gas-pipeline 
transmission for his dissertation [13]. The fitness of 
each individual in a genetic algorithm is the measure the 
individual has been adapted to the problem that is 
solved employing this individual. It means that fitness is 
the measure of optimality of the solution offered, as 
represented by an individual from the genetic algorithm. 
The basis of genetic algorithms is the selection of 
individuals in accordance with their fitness; thus, fitness 
is obviously a critica! eriterian for optimization [14]. 
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Genetic programıning (GP) is an extension to Genetic 
Algorithms proposed by Koza [15]. Koza defines GP as a 
domain-independent problem-solving approach in which 
computer programs are evolved to so lv e, or 
approximately solve, problems based on the Darwinian 
principle of reproduction and survival of the fıttest and 
analogs of naturally occurring genetic operations such as 
crossover (sexual recombination) and mutation. GP 
reproduces computer programs to solve problems by 
executing the following steps (Fig. 7.): 

1) Generate an initial population of ran d om compositions 
of the functions and tenninals of the problem (computer 
programs). 
2) Execute each program in the population and assign it a 
fitness value according to how well it solves the problem. 
3) Create a new population of computer programs. 

i) Copy the best existing programs 
(Reproduction) 

ii) Create new computer programs by mutation. 
iii) Create new computer programs by crossover 

(sexual reproduction). 
iv) Select an architecture-altering operation 

frorn the programs stored so far. 
4) The best computer program that appeared in any 
generation, the best-so-far solution, is designated as the 
result of genetic programıning [15]. 

üen ıs O 

+ 
Cre�t• lniti;ı 1 
Random Population 

+ Yu 
T tırmination Oesign<rte 

_._ 
Crittrion Satlsfi�? R�sult 

1 No ' lEnd ı Ev;ıluat� Fitntss of Eaclı 
lndlvid�l in Population . -· 

t 1 individuals = O 1 
V ts ' 

Otn • Gen + 1 : individuals r= M?} 
No 

reı:xoduction S.ltct O.nttio 0pPr4tion fllJta'lion 
Prob.ıbalistica 1� 

cıossow 

Selt?ct One 1ndlvktua1 Stltct T-.ro Individuals s�ll'ct One lndividu�l 
Based on Fitntss B.ınd on Fitnns Baıstd on Fitnus 

' 
Perform Reproduction 1 Ptrionn Crossoyer PPrform Mut�tion 

t 
lnstrt Two 

Copy into N�'ıı' Offspring lnserl Mutant lnto Popul;ıtion into Ntow NPw Population 
Population t 1 individuAls a: individuals + 1 1 t pndividu;ıls = individuals+ ı 1 

l individuals= individuals + 2 

Figure 7. Genetic programıning flowchart (15] 

IV.l Brief overview of GEP 

Gene expressian prograınming (GEP) software which is 
used in this study is an extension to GP that evolves 
computer programs of different sizes and shapes encoded 
in linear chromosomes of fıxed length. The chroınosoınes 
are composed of multiple genes, each gene encoding a 
sınaller sub-program. Furthem1ore, the structural and 
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functional organization of the linear chromoso.mes 
allows the unconstrained operation of important genetic 
operaters such as mutation, transposition, and 
recombinati on. One strength of the GEP approach is 
that the creation of genetic diversity is extremely 
simplified as genetic operaters work at the chromosome 
level. Anather strength of GEP consists of its unique, 
multigenic nature which allows the evolution of more 
complex programs composed of  several sub-programs. 
As a result GEP surpasses the old GP system in 100-
10,000 times. [16-18]. APS 3.0 [19], a GEP software 
developed by Candida Ferreira is used in this study. 

The fundamenta] difference between GA, GP and GEP 
is due to the nature of the individuals: in GAs the 
individuals are 1inear strings of fıxed length 
( chromosomes); in GP the individuals are nonlinear 
entities of different sizes and shapes (parse trees); and in 
GEP the individuals are encoded as linear strings of 
fixed length (the genome or chromosomes) which are 
afterwards expressed as nonlinear entities of different 
sizes and shapes (i.e., simple diagram representations or 
expressian trees ). Thus the two main parameters GEP 
are the chromosomes and express i on trees (ET s). The 
process of information decoding (from the 
chromosomes to the ET s) is ca] I ed translation w hi ch is 
based on a set of rules. The genetic code is very simple 
where there exist one-to-one relationships between the 
symbols of the chromosome and the functions or 
terminals they represent. The rules which are also very 
simple determine the spatial organization of the 
functions and terminals in the ETs and the type of 
interaction between sub-ETs. [16-17-18] 

That's why two languages are utilized in GEP: the 
language of the genes and the language of ETs. A 
signifıcant advantage of GEP is that it enables to infer 
exactly the phenotype given the sequence of a gene, and 
vice versa which is termed as Karva language. 
,Consider, for example, the algebraic express i on 

(d4* �(d3-dO+ dl *d 4) ) - d4 can be represented 

by a diagram (Fig 8) which is the expressian tree: 

scrrt. 

Figure 8 Expressian tree (ET) 
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IV.2 Solving a Simple Problem with GEP 

For each problem, the type of linking function, as well as 
the number of genes and the length of each gene, are a 
priori chosen for each problem. While attempting to 
solve a problem, one can always start by using a single­
gene chromosome and then proceed by increasing the 
length of the head. If it becomes very large, one can 
increase the number of genes and obviously choose a 
function to link the sub-ETs. One can start with addition 
for algebraic expressions or OR for Boolean expressions, 
but in some cases anather linking function might be more 
appropriate (lik e multiplication or IF, for instance ). The 
idea, of course, is to fınd a good solution, and GEP 
provides the means of finding one very effıciently. (17] 

As an illustrative example consider the following case 
where the objective is to show how GEP can be used to 
model complex realities with high accuracy. So, suppose 
one is given a sampling of the nurnerical values from the 
curve (renıember, however, that in real-world problems 
the function is obviously unknown): 

y = 3t? + 2a + 1 (4) 

over 10 randamly chosen points in the real interval [-10, 
+ 1 O] and the aim is to find a function fıtting those values 
within a certain error. In this case, a sample of data in the 
form of 1 O pairs (a;, Yi) is given where a; is the value of 
the independent variable in the given interval and Yi is the 
respective value of the dependent variable (a; values: -
4.2605, -2.0437, -9.8317, ... 8.6491, 0.7328, -3.6101, 
2.7429, -1.8999, -4.8852, 7.3998; the corresponding Yi 
values can· be easily evaluated). These 1 O pairs are the 
fitness cases (the input) that wiH be used as the adaptation 
environınent. The fitness of. a particular program will 
depend on how well it performs in this environment [17]. 

There are five major steps in preparing to use gene 
expressian programming. The fırst is to choose the fitness 
function. For this problem one could measure the fitness 
lt of an individual program i by the following expression: 

c, 
J; == � (M- C< . . ) - T.) L...J 1,) 1 

J=l 
(5) 

where M is the range of selection, C(ij) the value returned 
by the individual chromosome i for fitness case j (out of 
C, fitness cases) and 1j is the target value for fitness case 
j. If, for all j, 1 C(iJ) - 1}1 (the precision) less than or equal 
to 0.01, then the precision is equal to zero, and.fi =!max= 
C,* M. For this problem, use an M = I 00 and, tb erefor e, 

!max = 1000. The advantage of this kind of fitness function 
is that the system can find the optimal solution for itseJf. 
However there are other fitness functions available which 
can be appropriate for different problem types [17]. 
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The second step is choosing the set of terminals T and 
the set of functions F to create the chromosomes. In this 
problem, the tern1inal set consists obviously of the 
independent variable, i . e., T = { a}. The choice of the 
appropriate function set is not so obvious, but a good 
guess can always be done in order to include all the 
necessary functions. In this case, to make things simple, 
use the four basic arithmetic operators. Thus, F = { +, - , 
*, /}. lt should be noted that there many other functions 
that can be us ed. 

The third step is to choose the chromosomal 
. architecture, i. e., the length of the head and the number 

of genes. 
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The fourth major step in preparing to use gene 
expressian programıning is to choose the linking 
function. In this case we will link the sub .. ETs by 
addition. Other linking functions are also available such 
as subtraction, multiplication and division. 

And fınally, the fıfth step is to choose the set of genetic 
operaters that cause variation and their rates. In this case 
one can use a coınbination of all genetic operaters 
(mutation at Pm == 0.05 J.; lS and RIS transposition at 
rates of 0.1 and three transposes of tength 1, 2, and 3; 
one-point and two-point recombination at rates of 0.3; 
gene transposition and gene recombination both at rates 
ofO.l). 

To solve this problem, lets choose an evolutionary time 
of 50 generations and a small population of 20 
individuals in order to simplify the analysis of the 
evolutionary process and not fıll this text with pages of 
encoded individuals. However, one of the advantages of 
GEP is that it is capable of solving relatively complex 
problems using small population sizes and, thanks to the 
compact Karva notation; it is possible to fully analyze 
the evolutionary history of a run. A perfect solution can 
be found in generatian 3 which has the maximum value 
1 000 of fitness. The sub-E Ts codifıed by each gene are 
given in Fig. 9. N o te that it corresponds exactly to the 
same test function given above in Eqn. ( 4) [17]. 
Thus expressions for each corresponding Sub-ET can be 
given as follows: 

y = ( a2 + a )  + ( a + 1 ) + ( 2a2 ) = 3 a2 + 2a + 1 
(6) . 

Figure 9. ET for the problem ofEq. (4) 
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V. NUMERICAL APPLICATION 

The main purpose in this study is to predict and formuiate 
J-integral values for varying geometries using GP based 
on extensive FE (ANSYS) results. FE results are divided 
into train and test sets where patterns in test set are 
randomly selected aınong the experimental database. The 
FE train and test · and their randamly selected 
experimental patterns are not shown in the study. The · 

training patterns for GP formulation have been obtained 
using ANSYS FE software package. A wide range of 
variables are chosen to reprcsent a general model for NN 
with a data set of I 67 training patterns and 25 testing 
patterns. The statistical parameters and performance of 
training and test sets for the J-integral are given in Table 
1 and Fig.l l .  It has been seen that the errors are quite 
satisfactory for each case for test set and training sets. 

Explicit formulation of J-integral is obtained as. a 
function of stress, crack width, plate width and crack 
from Fig.l O which is the expression tree of GP 
formulation given as follows (in MATLAB CODE): 

J = ((d(2)+(d(O)-GlCO))/((d(2)*G1Cl 1)-(d(2)*d(l ))))* 
( exp(( ( ( d(3)A3)-d(2) )/( d(2)+d(2) )))*d( 1)) * 
(d( 1 )+In( ( ( G 3C 16+d(O) )/ d(3))) ); 

Where constants are 
Gl CO= 52.35; GlCl l = 50.15; G3C1 6;;;; -57.79; 
lt should be noted that paran1eters in the formulation 
stand for the following: 
d(O)= a 
d( I)= a 

d(2)= w 
d(3 )= Crack Type 
After putting the corresponding values, the final eq�ation 
becomes: 

J=( w+ a- 52.35 
)(a* /w;w-w )(a + In(a- 57.79)) (7) 

50.15w-a*w Type 

Table 1 Statistical parameters of the GP Model used for J-integral 

Training set Test set 

MAPE ( %) (Mean 

absolute % Error) 
. 

36.2 43.5 

Mean (Test/ FE) 
1.22 1.30 

R(%) 
0.961 0.96 

cov 
0.41 0.49 
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Figure 10. Expressian tree (ET) of the GP fonnulation 
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Figure 1 ı Perforrnance of GP results vs. FE results 

VI. CONCLUSIONS 

14 

ı 

This study proposes a novel unified formulation for the 
calculation of J-integral value us ing GP. The GP 
formulation is based on FE results for 3 different types 
of geometry narnely as single, double and center crack 
cases. The data obtained by FE for these 3 cases were 
combined together and formed the unifıed database for 
the training set of the GP ınodel. The GP results are 
compared with FE results and are found to be quite 
accurate. Thus parametric studies are later performed by 
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the use of the proposed GP formulation to investigate the 
effect of varying parameters on the J-integral value. The 
obtained GP formulation is shown to be valid for 
comman three cases of crack. Parametric studies are also 
performed to prove the generalizatian capability of the 
explicit formulation obtained by GP and the effects of 
each varying parameter on I-integral value is 
comprehensively investigated with corresponding 
response surface in 3D form. As a result, the proposed 
GP formulation is quite accurate, fast and practical for 
use compared to design codes and existing models. It 
should be noted that empirical formulations in fracture 
mechanics are mostly based on predefıned functions 
where regression analysis · of these functions are later 
performed. However in the case of GP approach there is 
no predefined function to be considered i.e. GP creates 
randamly formed functions and selects the one that best 
fits the experimental results. Moreover there is no 
restriction in the complexity and stıucture of the 
randomly formed functions as well. The outcom es of the 
study are very promising as it may open a new era for the 
accurate and effective explicit formulation of many 
fracture mechanics problems us ing GP. 
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