UJMA

Universal Journal of Mathematics and Applications, 4 (3) (2021) 88-93 Research paper

Universal Journal of Mathematics and Applications

Journal Homepage: www.dergipark.gov.tr/ujma ISSN 2619-9653 DOI: https://doi.org/10.32323/ujma.984001

Sesqui-Harmonic Curves in LP-Sasakian Manifolds

Müslüm Aykut Akgün^{1*} and Bilal Eftal Acet²

¹Department of Mathematics, Technical Sciences Vocational High School, Adıyaman University, Adıyaman, Turkey ²Department of Mathematics, Faculty of Science and Arts, Adıyaman University, Adıyaman, Turkey *Corresponding author

Article Info

Abstract

Keywords: Frenet curves, LP-Sasakian manifolds, Sesqui-harmonic Map 2010 AMS: 53C25, 53C42, 53C50. Received: 17 August 2021 Accepted: 29 September 2021 Available online: 1 October 2021 In this article, we characterize interpolating sesqui-harmonic spacelike curves in a fourdimensional conformally and quasi-conformally flat and conformally symmetric Lorentzian Para-Sasakian manifold. We give some theorems for these curves.

1. Introduction

Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds and $\sigma: (M_1, g_1) \to (M_2, g_2)$ be a smooth map. The equation

$$\mathbb{L}(\sigma) = \frac{1}{2} \int_{M_1} |d\sigma|^2 \,\vartheta_{g_1}$$

gives the critical points of energy functional The Euler-Lagrange equation of the energy functional gives the harmonic equation defined by vanishing of

$$\tau(\boldsymbol{\sigma}) = trace \nabla d\boldsymbol{\sigma},$$

where $\tau(\sigma)$ is called the tension field of the map σ .

Biharmonic maps between Riemannian manifolds were studied in [1]. Biharmonic maps between Riemannian manifolds $\psi: (M_1, g_1) \rightarrow (M_2, g_2)$ are the critical points of the bienergy functional

$$\mathbb{L}_2(\sigma) = \frac{1}{2} \int_{M_1} |\tau(\sigma)|^2 \vartheta_{g_1}.$$

In [2], G.Y. Jiang derived the variations of bienergy formulas and showed that

$$\begin{aligned} \tau_2(\sigma) &= -J^{\sigma}(\tau(\sigma)) \\ &= - \bigtriangleup \tau(\Psi) - trace R^N(d\sigma, \tau(\sigma)) d\sigma, \end{aligned}$$

where J^{σ} is the Jacobi operator of σ . The equation $\tau_2(\sigma) = 0$ is called biharmonic equation. Interpolating sesqui-harmonic maps were studied by Branding [3]. The author defined an action functional for maps between Riemannian manifolds that interpolated between the actions for harmonic and biharmonic maps. Ψ is interpolating sesqui-harmonic if it is critical point of $\delta_{1,\delta_{\tau}}(\Psi)$,

$$\mathbb{L}_{\delta_1,\delta_2}(\Psi) = \delta_1 \int_{M_1} |d\Psi|^2 v_{g_1} + \delta_2 \int_{M_1} |\tau(\Psi)|^2 v_{g_1},$$
(1.1)

where $\delta_1, \delta_2 \in \mathbb{R}$ [3].

Email addresses and ORCID numbers: muslumakgun@adiyaman.edu.tr, 0000-0002-8414-5228 (M. Aykut Akgün), eacet@adiyaman.edu.tr, (E. Bilal Acet),

For $\delta_1, \delta_2 \in \mathbb{R}$ the equation

$$\tau_{\delta_1,\delta_2}(\Psi) = \delta_2 \tau_2(\Psi) - \delta_1 \tau(\Psi) = 0, \tag{1.2}$$

is the interpolating sesqui-harmonic map equation [3].

An interpolating sesqui-harmonic map is biminimal if variations of (1.1) that are normal to the image $\Psi(M_1) \subset M_2$ and $\delta_2 = 1$, $\delta_1 > 0$ [4]. In a 3-dimensional sphere, interpolating sesqui-harmonic curves were studied in [3]. Interpolating sesqui-harmonic Legendre curves in Sasakian space forms were characterized in [5]. Recently, Yüksel Perktaş et all. introduced biharmonic and biminimal Legendre curves in 3-dimensional *f*-Kenmotsu manifold [6]. Moreover, spacelike and timelike curves characterized in a four dimensional manifold to be proper biharmonic in [7]. Motivated by the above studies, in this paper, we examine interpolating sesqui-harmonic curves in 4-dimensional LP-Sasakian manifold.

2. Preliminaries

2.1. Lorentzian almost paracontact manifolds

Let *M* be an *n*-dimensional differentiable manifold equipped with a structure (ϕ, ζ, η) , where ϕ is a (1, 1)-tensor field, ξ is a vector field, η is a 1-form on *M* such that [8]

$$\phi^2 = Id + \eta \otimes \zeta \tag{2.1}$$

$$\eta(\zeta) = -1. \tag{2.2}$$

Also, we have

 $\eta \circ \phi = 0$, $\phi \zeta = 0$, $rank(\phi) = n - 1$.

If M admits a Lorentzian metric g, such that

$$g(\phi V, \phi W) = g(V, W) + \eta(V)\eta(W), \qquad (2.3)$$

then *M* is said to admit a *Lorentzian almost paracontact structure* (ϕ, ζ, η, g) .

The manifold *M* endowed with a Lorentzian almost paracontact structure (ϕ, ζ, η, g) is called a Lorentzian almost paracontact manifold [8,9]. In equations (2.1) and (2.2) if we replace ζ by $-\zeta$, we obtain an almost paracontact structure on *M* defined by I. Sato [10]. A Lorentzian almost paracontact manifold $(M, \phi, \zeta, \eta, g)$ is called a *Lorentzian para-Sasakian manifold* [8] if

$$(\nabla_V \phi)W = g(V,W)\zeta + \eta(W)V + 2\eta(V)\eta(W)\zeta.$$
(2.4)

It is well konown that, conformal curvature tensor \tilde{C} is given by

$$\tilde{C}(V,W)Z = R(V,W)Z - \frac{1}{n-2} \left\{ S(W,Z)V - S(V,Z)W + g(W,Z)V - g(V,Z)QW \right\} + \left(\frac{r}{(n-1)(n-2)}\right) \left\{ g(W,Z)V - g(V,Z)W \right\},$$

where *S* is the Ricci tensor and *r* is the scalar curvature. If C = 0, then Lorentzian para-Sasakian manifold is called *conformally flat*. Also, quasi conformal curvature tensor \hat{C} is defined by

$$\hat{C}(V,W)Z = \alpha R(V,W)Z - \beta \left\{ S(W,Z)V - S(V,Z)W + g(W,Z)QV - g(V,Z)QW \right\} - \left(\frac{r}{n}\left(\frac{\alpha}{(n-1)} + 2\beta\right)\right) \left\{g(W,Z)V - g(V,Z)W\right\},$$

where α, β constants such that $\alpha\beta \neq 0$. If $\hat{C} = 0$, then Lorentzian para-Sasakian manifold is called quasi conformally flat.

A conformally flat and quasi conformally flat LP-Sasakian manifold M^n (n > 3) is of constant curvature 1 and also a LP-Sasakian manifold is locally isometric to a Lorentzian unit sphere if the relation $R(V,W) \cdot C = 0$ holds [11]. For a conformally symmetric Riemannian manifold [12], we have $\nabla C = 0$. So, for a conformally symmetric space $R(V,W) \cdot C = 0$ satisfies. Therefore a conformally symmetric LP-Sasakian manifold is locally isometric to a Lorentzian unit sphere [11].

In this case, for conformally flat, quasi conformally flat and conformally symmetric LP-Sasakian manifold M, for every $V, W, Z \in TM$ [11], we have

$$R(V,W)Z = g(W,Z)V - g(V,Z)W.$$
(2.5)

3. Main results

In this section, we give our main results about interpolating sesqui-harmonic curves in a conformally flat, quasi conformally flat and conformally symmetric LP-Sasakian manifold \tilde{M} . From now on, we will consider such a manifold as \tilde{M} .

Theorem 3.1. Let \tilde{M} be a 4-dimensional LP-Sasakian manifold and $\gamma: I \to \tilde{M}$ be a curve parametrized by arclength s with $\{t, n, b_1, b_2\}$ orthonormal Frenet frame such that first binormal vector b_1 is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either i) γ is a circle with $o_1 = \sqrt{1 - \frac{\delta_1}{2}}$

i)
$$\gamma$$
 is a circle with $p_1 = \sqrt{1 - \frac{\delta_1}{\delta_2}}$,
or
ii) γ *is a helix with* $p_1^2 - p_2^2 = 1 - \frac{\delta_1}{\delta_2}$
where $\frac{\delta_1}{\delta_2} < 1$.

Proof. Let \tilde{M} be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on \tilde{M} . If the first binormal vector b_1 of $\{t, n, b_1, b_2\}$ orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

$$\begin{bmatrix} \nabla_t t \\ \nabla_t n \\ \nabla_t b_1 \\ \nabla_t b_2 \end{bmatrix} = \begin{bmatrix} 0 & \rho_1 & 0 & 0 \\ -\rho_1 & 0 & \rho_2 & 0 \\ 0 & \rho_2 & 0 & \rho_3 \\ 0 & 0 & \rho_3 & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b_1 \\ b_2 \end{bmatrix}$$
(3.1)

where ρ_1 , ρ_2 , ρ_3 are respectively the first, the second and the third curvature of the curve γ [13]. By using (3.1) and equation (2.5), we obtain

ĥ

$$\nabla_t t = \rho_1 n,$$

 $\nabla_t \nabla_t t = -\rho_1^2 t + \rho_1' n + \rho_1 \rho_2 b_1,$

$$\nabla_t \nabla_t \nabla_t t = -(3\rho_1 \rho_1')t + (\rho_1'' - \rho_1^3 + \rho_1 \rho_2^2)n + (2\rho_1' \rho_2 + \rho_1 \rho_2')b_1 + (\rho_1 \rho_2 \rho_3)b_2,$$

and

$$R(t, \nabla_t t)t = -\rho_1 n.$$

Considering above equations in (1.2), we have

$$\tau_{\delta_{1},\delta_{2}}(\Psi) = -(3\rho_{1}\rho_{1}')\delta_{2}t + \left\{ \begin{array}{c} (\rho_{1}''-\rho_{1}^{3}+\rho_{1}\rho_{2}^{2}+\rho_{1})\delta_{2} \\ -\rho_{1}\delta_{1} \end{array} \right\} n + (2\rho_{1}'\rho_{2}+\rho_{1}\rho_{2}')\delta_{2}b_{1} + (\rho_{1}\rho_{2}\rho_{3})\delta_{2}b_{2}.$$

Thus, γ is a interpolating sesqui-harmonic curve if and only if

$$\rho_1 = const. > 0 \qquad \rho_2 = const.$$

$$\rho_1^2 - \rho_2^2 = 1 - \frac{\delta_1}{\delta_2},$$

$$\rho_2 \rho_3 = 0.$$

So, we get the proof.

Theorem 3.2. Let \tilde{M} be a 4-dimensional LP-Sasakian manifold and $\gamma: I \to \tilde{M}$ be a curve parametrized by arclength s with $\{t, n, b_1, b_2\}$ orthonormal Frenet frame such that second binormal vector b_2 is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either

i) γ is a circle with $\rho_1 = \sqrt{1 - \frac{\delta_1}{\delta_2}}$, or ii) γ is a helix with $\rho_1^2 + \rho_2^2 = 1 - \frac{\delta_1}{\delta_2}$ where $\frac{\delta_1}{\delta_2} < 1$.

Proof. Let \tilde{M} be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on \tilde{M} . If the vector b_2 of $\{t, n, b_1, b_2\}$ orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

$$\begin{bmatrix} \nabla_t t \\ \nabla_t n \\ \nabla_t b_1 \\ \nabla_t b_2 \end{bmatrix} = \begin{bmatrix} 0 & \rho_1 & 0 & 0 \\ -\rho_1 & 0 & \rho_2 & 0 \\ 0 & -\rho_2 & 0 & \rho_3 \\ 0 & 0 & \rho_3 & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b_1 \\ b_2 \end{bmatrix}$$
(3.2)

where ρ_1 , ρ_2 , ρ_3 are respectively the first, the second and the third curvature of the curve [13]. From (3.2) and (2.5), we get

$$\nabla_t \nabla_t t = -\rho_1^2 t + \rho_1' n + \rho_1 \rho_2 b_1,$$

 $\nabla_t t = \rho_1 n$,

$$\nabla_t \nabla_t \nabla_t t = -(3\rho_1 \rho_1')t + (\rho_1'' - \rho_1^3 - \rho_1 \rho_2^2)n + (2\rho_1' \rho_2 + \rho_1 \rho_2')b_1 + (\rho_1 \rho_2 \rho_3)b_2,$$

and

$$R(t, \nabla_t t)t = -\rho_1 n.$$

Considering above equations in (1.2), we have

$$\tau_{\delta_{1},\delta_{2}}(\Psi) = -(3\rho_{1}\rho_{1}')\delta_{2}t + \begin{cases} (\rho_{1}'' - \rho_{1}^{3} - \rho_{1}\rho_{2}^{2} + \rho_{1})\delta_{2} \\ -\rho_{1}\delta_{1} \end{cases} \\ B + (2\rho_{1}'\rho_{2} + \rho_{1}\rho_{2}')\delta_{2}b_{1} + (\rho_{1}\rho_{2}\rho_{3})\delta_{2}b_{2}.$$

In this case, γ is a interpolating sesqui-harmonic curve if and only if

$$\rho_1 = const. > 0 \qquad \rho_2 = const.$$
$$\rho_1^2 + \rho_2^2 = 1 - \frac{\delta_1}{\delta_2},$$
$$\rho_2 \rho_3 = 0.$$

This equation proves our assertion.

Theorem 3.3. Let \tilde{M} be a 4-dimensional LP-Sasakian manifold and $\gamma: I \to \tilde{M}$ be a curve parametrized by arclength s with $\{t, n, b_1, b_2\}$ orthonormal Frenet frame such that binormal vector b_1 is null. Then γ is a interpolating sesqui-harmonic curve if and only if either i) $\rho_1 = \sqrt{1 - \frac{\delta_1}{\delta_2}}$ and and

ii) $\rho_2 = 0$ or $|ln|\rho_2(s) = -\int \rho_3(s)ds$.

Proof. Let \tilde{M} be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on \tilde{M} . If the first binormal vector b_1 of $\{t, n, b_1, b_2\}$ orthonormal Frenet frame is a null(lightlike) vector, then the Frenet equations of the curve γ given as

$$\begin{bmatrix} \nabla_t t \\ \nabla_t n \\ \nabla_t b_1 \\ \nabla_t b_2 \end{bmatrix} = \begin{bmatrix} 0 & \rho_1 & 0 & 0 \\ -\rho_1 & 0 & \rho_2 & 0 \\ 0 & 0 & \rho_3 & 0 \\ 0 & \rho_2 & 0 & -\rho_3 \end{bmatrix} \begin{bmatrix} t \\ n \\ b_1 \\ b_2 \end{bmatrix}$$
(3.3)

where ρ_1 , ρ_2 , ρ_3 are respectively the first, the second and the third curvature of the curve [13]. By use of (3.3) and equation (2.5), we have

$$\nabla_t \nabla_t t = -\rho_1^2 t + \rho_1' n + \rho_1 \rho_2 b_1,$$

$$\nabla_t \nabla_t \nabla_t t = -(3\rho_1 \rho_1')t + (\rho_1'' - \rho_1^3 + \rho_1)n + (2\rho_1' \rho_2 + \rho_1 \rho_2')b_1 + (\rho_1 \rho_2 \rho_3)b_2$$

 $\nabla_t t = \rho_1 n,$

and

$$R(t,\nabla_t t)t = -\rho_1 n$$

In view of (1.2), we arrive at

$$\tau_{\delta_{1},\delta_{2}}(\Psi) = -(3\rho_{1}\rho_{1}')\delta_{2}t + \left\{ \begin{array}{c} (\rho_{1}''-\rho_{1}^{3}+\rho_{1})\delta_{2} \\ -\rho_{1}\delta_{1} \end{array} \right\} n + (2\rho_{1}'\rho_{2}+\rho_{1}\rho_{2}')\delta_{2}b_{1} + (\rho_{1}\rho_{2}\rho_{3})\delta_{2}b_{2}.$$

Thus, γ is a interpolating sesqui-harmonic curve if and only if

$$\begin{split} \rho_1 \rho_1' &= 0 \\ (\rho_1'' - \rho_1^3 + \rho_1) \delta_2 - \rho_1 \delta_1 &= 0, \\ 2\rho_1' \rho_2 + \rho_1 \rho_2' + \rho_1 \rho_2 \rho_3 &= 0. \end{split}$$

If we consider non-geodesic solution, we obtain

$$ho_1 = \sqrt{1 - rac{\delta_1}{\delta_2}},$$

 $ho_2' +
ho_2
ho_3 = 0,$

where $\frac{\delta_1}{\delta_2} < 1$.

Theorem 3.4. Let \tilde{M} be a 4-dimensional LP-Sasakian manifold and $\gamma: I \to \tilde{M}$ be a curve parametrized by arclength s with $\{t, n, b_1, b_2\}$ orthonormal Frenet frame such that normal vector n is timelike. Then γ is a interpolating sesqui-harmonic curve if and only if either i) γ is a circle with $\rho_1 = \sqrt{\frac{\delta_1}{\delta_2} - 1}$, or ii) γ is a helix with $\rho_1^2 + \rho_2^2 = \frac{\delta_1}{\delta_2} - 1$

ii) γ is a helix with $\rho_1^2 + \rho_2^2 = \frac{\delta_1}{\delta_2} - 1$ where $\frac{\delta_1}{\delta_2} > 1$. *Proof.* Let \tilde{M} be a four-dimensional LP-Sasakian manifold and γ be a parametrized curve on \tilde{M} . If the normal vector *n* of $\{t, n, b_1, b_2\}$ orthonormal Frenet frame is a timelike vector, then the Frenet equations of the curve γ given as

$$\begin{bmatrix} \nabla_t t \\ \nabla_t n \\ \nabla_t b_1 \\ \nabla_t b_2 \end{bmatrix} = \begin{bmatrix} 0 & \rho_1 & 0 & 0 \\ \rho_1 & 0 & \rho_2 & 0 \\ 0 & \rho_2 & 0 & \rho_3 \\ 0 & 0 & -\rho_3 & 0 \end{bmatrix} \begin{bmatrix} t \\ n \\ b_1 \\ b_2 \end{bmatrix}$$
(3.4)

where ρ_1 , ρ_2 , ρ_3 are respectively the first, the second and the third curvature of the curve [13]. By using (3.4) and equation (2.5), we obtain

$$\nabla_t t = \rho_1 n,$$

$$\nabla_t \nabla_t t = -\rho_1^2 t + \rho_1' n + \rho_1 \rho_2 b_1,$$

$$\nabla_t \nabla_t \nabla_t t = -(3\rho_1\rho_1')t + (\rho_1'' + \rho_1^3 + \rho_1\rho_2^2 + \rho_1)n + (2\rho_1'\rho_2 + \rho_1\rho_2')b_1 + (\rho_1\rho_2\rho_3)b_2$$

and

$$R(t,\nabla_t t)t=-\rho_1 n.$$

Considering above equations in (1.2), we have

$$\tau_{\delta_{1},\delta_{2}}(\Psi) = -(3\rho_{1}\rho_{1}')\delta_{2}t + \begin{cases} (\rho_{1}''-\rho_{1}^{3}+\rho_{1}k_{2}^{2}+\rho_{1})\delta_{2} \\ -\rho_{1}\delta_{1} \end{cases} \\ B + (2\rho_{1}'\rho_{2}+\rho_{1}\rho_{2}')\delta_{2}b_{1} + (\rho_{1}\rho_{2}\rho_{3})\delta_{2}b_{2}.$$

Thus, γ is a interpolating sesqui-harmonic curve if and only if

$$\rho_1 = const. > 0 \qquad \rho_2 = const.$$

$$\rho_1^2 + \rho_2^2 = \frac{\delta_1}{\delta_2} - 1,$$

$$\rho_2 \rho_3 = 0.$$

So, we get the proof.

4. Conclusion

In this paper we characeterized spacelike curves to be Sesqui-harmonic curves in LP-Sasakian manifolds. We gave four theorems about these curves. These theorems showed that if we change the vector fields of the Frenet frame $\{t, n, b_1, b_2\}$, then the equation of Sesqui-harmonic curves change. So, we introduced four different spacelike Sesqui-harmonic curves in this manner.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] J. Eells, J.H. Sampson, Harmonic mapping of the Riemannian manifold, American J. Math., 86(1964), 109-160.
- [2] G.Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A., 7(1986), 130-144.
- [3] V. Branding, On interpolating sesqui-harmonic maps between Riemannian manifolds, J. Geom. Anal., **30**(2020), 278-273.
- [4] L. Loubeau, S. Montaldo, Biminimal immersions, Proc. Edinb. Math. Soc., 51(2008), 421-437.
- [5] F. Karaca, C. Özgür, C., De, U. C., On interpolating sesqui-harmonic Legendre curves in Sasakian space forms, Int. J. Geom. Meth. Mod. Phys., 17(1)(2020), 13 pages
- [6] S. Yüksel Perktaş, B.E. Acet, S. Ouakkas, On biharmonic and biminimal curves in 3-dimensional f-Kenmotsu manifolds, Fund. Cont. Math. Sci. 1(1) (2020), 14-22.
 [7] S. Keleş, S. Yüksel Perktaş, E. Kılıç,, Biharmonic Curves in LP-Sasakian Manifolds, Bull. Malays. Math. Sci. Soc., 33 (2010), 325-344.
 [8] K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagota Univ. Natur. Sci., 12(1989), 151-156.
 [9] K. Matsumoto, I. Mihai, R. Rosca, ξ-null geodesic gradient vector fields on a Lorentzian para-Sasakian manifold, J. Korean Math. Soc., 32(1995), 17 31.

- 17-31. [10] I. Sato, On a structure similar to the almost contact structure, Tensor (N.S.)., 30(1976), 219-224.
- [11] M. Tarafdar, A. Bhattacharyya, On Lorentzian para-Sasakian manifolds, in Steps in Differential Geometry (Debrecen). Inst. Math. Infor. (2000), 343-348.
 [12] M.C. Chaki, B. Gupta, On conformally symmetric spaces, Indian J. Math., 5(1963), 113-122.
 [13] J. Walrave, Curves and surfaces in Minkowski spaces, Doctoral Thesis, K. U. Leuven, Fac. of Science, 1995.