Some New Sequence Spaces Defined by A Sequence of Orlicz Functions T.Böyük, M.Başarır

SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, 3.Sayı (Eylül 2002)

SOME NEW SEQUENCE SPACES DEFINED BY A SEQUENCE OF ORLICZ FUNCTIONS

Tuncay BÖYÜK, Metin BAŞARIR

Özet-Bu çalışmada, regüler bir matris ve bir Orlicz fonksiyon dizisi yardımıyla üç yeni dizi uzayı tanımlayıp bazı özellikleri incelendi.

Anahtar Xelimeler- Dizi uzayları, Orlicz fonksiyonu.

Abstract-In this paper, we introduce and examine imme properties of three sequence spaces defined by using a regular matrix and a sequence of Orlicz functions. $M(x) = \int_{0}^{x} q(t) dt$ where q, known as the kernel of M, is

right-differentiable for $t \ge 0$, q(0)=0, q(t)>0 for t>0, q is nondecreasing, and $q(t) \rightarrow \infty$ as $t \rightarrow \infty$. The space l_M is closely related to the space l_p , which is an Orlicz sequence space with $M(x)=x^p$; $1 \le p < \infty$.

Recently, Parashar and Choudhary[5] introduced and

Key words-Sequence spaces, Orlicz function.

I.INTRODUCTION

Let l_{∞} and c denote the Banach spaces of real bounded and convergent sequences $x=(x_n)$ normed by $||x|| = \sup_n |x_n|$ respectively.

An Orlicz function is a function M: $[0,\infty) \rightarrow [0,\infty)$, which is continuous, non-decreasing and convex with M(0)=0, M(x)>0 for x>0 and M(x) $\rightarrow\infty$ as $x\rightarrow\infty$. If convexity of Orlicz function M is replaced by M(x+y) \leq M(x)+M(y) then this function is called modulus function defined and discussed by Ruckle[1] and Maddox[2].

Lindenstrauss and Tzafriri[3] used the idea of Orlicz function to construct sequence space

$$l_{M} = \left\{ x \in \omega : \sum_{k=1}^{\infty} \left(M\left(\frac{|x_{k}|}{\rho}\right) \right) < \infty , \text{ for some } \rho > 0 \right\}$$

examined some properties of following four sequence spaces defined by Orlicz function M:

Let
$$p=(p_k)$$
 be any sequence of positive real numbers.
 $M(p)=$

$$\begin{cases}
x \in \omega: \sum_{k=1}^{\infty} \left(M\left(\frac{|x_k|}{\rho}\right) \right)^{p_k} < \infty , \text{ for some } \rho > 0 \\
W(M,p)= \begin{cases}
x \in \omega: \frac{1}{n} \sum_{k=1}^{n} \left(M\left(\frac{|x_k-\ell|}{\rho}\right) \right)^{p_k} \to 0 \text{ as } n \to \infty , \\
\text{for some } \rho > 0 \text{ and } \ell > 0
\end{cases}$$
 $W_0(M,p)=$

$$\begin{cases}
x \in \omega: \frac{1}{n} \sum_{k=1}^{n} \left(M\left(\frac{|x_k|}{\rho}\right) \right)^{p_k} \to 0 \text{ as } n \to \infty , \\
\text{for some } \rho > 0
\end{cases}$$
 $W_{\infty}(M,p)=$

$$\begin{cases}
x \in \omega: \sup_{n} \sum_{k=1}^{n} \left(M\left(\frac{|x_k|}{\rho}\right) \right)^{p_k} \to 0 \text{ as } n \to \infty , \\
\text{for some } \rho > 0
\end{cases}$$

When $p_k=1$, for all k, then $l_M(p)$ becomes l_M . If M(x)=x then the family of sequences defined above become l(p), [c, 1, p],

The space l_M with norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} \left(M\left(\frac{|x_k|}{\rho}\right)\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz sequence space, where ω be the family of real or complex sequences.

An Orlicz function M can always be represented (see Krasnoselskii and Rutitsky[4],p.5) in the integral form

T. Böyük; Kuzuluk M.Soykan Elementary School, Akyazı-Sakarya M. Başarır; Department of Mathematics, Sakarya University $[c,1,p]_0$ and $[c,1,p]_{\infty}$ respectively. We denote W(M,p), W₀(M,p) and W_∞(M,p) as W(M), W₀(M) and W_∞(M) when $p_k=1$, for each k.

Let $M=(M_k)$ be a sequence of Orlicz functions and suppose that $A=(a_{nk})$ be a regular matrix. We define $W_0(A,M,p)=$

$$\begin{cases} x \in \omega: \sum_{k} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} \to 0 \text{ as } n \to \infty \\ \text{for some } \rho > 0 \end{cases}$$
$$W(A, M, p) =$$

SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, 3.Sayı (Eylül 2002)

$$\begin{cases} x \in \omega: \sum_{k} a_{nk} \left(M_k \left(\frac{|x_k - \ell|}{\rho} \right) \right)^{p_k} \to 0 \text{ as } n \to \infty \end{cases}$$

for some $\rho > 0$ and $\ell > 0$

 $W_{\infty}(A,M,p) =$

$$\begin{cases} x \in \omega: \sup_{n \neq k} \sum_{k \neq k} \alpha_{nk} \left(M_k \left(\frac{|x_k - \ell|}{\rho} \right) \right)^{p_k} < \infty \\ \text{for some } \rho > 0 \end{cases}$$

When $M_k(x)=x$ for all k, then the family of sequences defined above becomes $[A,p]_0$, [A,p] and $[A,p]_\infty$, respectively.

When $M_k(x)=x$ for all k and A=(C,1) Cesaro matrix, we have the sequence spaces $W_0(M,p)$, W(M,p) and $W_{cc}(M,p)$ that are defined by S.D. Parashar and C .oudhary. Some New Sequence Spaces Defined by A Sequence of Orlicz Functions T.Böyük, M.Başarır

$$\leq \sum_{k} \frac{1}{2^{p_{k}}} a_{nk} \left(M_{k} \left(\frac{|x_{k}|}{p_{1}} \right) + M_{k} \left(\frac{|y_{k}|}{p_{2}} \right) \right)^{p_{k}} \leq C \sum_{k} a_{nk} \left(M_{k} \left(\frac{|x_{k}|}{p_{1}} \right) \right)^{p_{k}} + C \sum_{k} a_{nk} \left(M_{k} \left(\frac{|y_{k}|}{p_{2}} \right) \right)^{p_{k}} \rightarrow 0 \text{ as}$$
$$n \rightarrow \infty,$$
where C=max(1,2^{H-1}). This proves that W₀(A,M,p) is linear.

Theorem 2: Let $H=max(1, \sup p_k)$. Then $W_0(A, M, p)$ is a linear topological space paranormed by

$$G(\mathbf{x}) = \inf \left\{ \rho^{p_n/H} \left\{ \sum_{k=1}^{p_n/H} \left(\sum_{k=1}^{p_{n/H}} M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} \right\} \xrightarrow{H} \leq 1, \\ n = 1, 2, 3, \dots$$

II.MAIN RESULTS

Theorem 1:Let $p=(p_k)$ be bounded. Then $W_0(A,M,p)$, W(A,M,p) and $W_{\infty}(A,M,p)$ are linear spaces over the set of complex numbers C.

Proof: We shall only prove for $W_0(A,M,p)$. The others can be treated similarly. Let $x,y \in W_0(A,M,p)$ and $\alpha,\beta \in C$. In order to prove the result we need to find some ρ_3 such that

$$\sum_{k} a_{nk} \left(M_k \left(\frac{\left| \alpha x_k + \beta y_k \right|}{\rho_3} \right) \right)^{p_k} \to 0, \text{ as } n \to \infty.$$

Since $x,y \in W_0(A,M,p)$, therefore there exist some ρ_1 and ρ_2 such that

$$\sum_{k} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho_1} \right) \right)^{p_k} \to 0, \text{ as } n \to \infty$$

and

$$\sum_{k} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho_2} \right) \right)^{p_k} \to 0, \text{ as } n \to \infty.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non decreasing and convex,

Proof: Clearly G(x)=G(-x). By using Theorem 1 for $\alpha=\beta=1$, we get $G(x+y)\leq G(x)+G(y)$. Since M(0)=0, we get inf $\{\rho^{n}/H\}=0$ for x=0. Conversely, suppose G(x)=0, then

$$\inf\left\{ \rho^{\mathbf{p}_n} / H: \left\{ \sum_{k} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho} \right) \right)^{\mathbf{p}_k} \right)^{\mathbf{H}} \leq 1 \right\} = 0.$$

This implies that for a given $\mathcal{E} > 0$, there exists some $\rho_{\varepsilon}(0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\left(\sum_{k} a_{nk} \left(M_{k} \left(\frac{|x_{k}|}{\rho_{\varepsilon}} \right) \right)^{p_{k}} \right)^{H} \leq 1.$$

Thus

$$\begin{pmatrix} \sum_{k} a_{nk} \left(M_{k} \left(\frac{|x_{k}|}{\varepsilon} \right) \right)^{p_{k}} \end{pmatrix}^{\frac{1}{H}} \leq \\ \begin{pmatrix} \sum_{k} a_{nk} \left(M_{k} \left(\frac{|x_{k}|}{\rho_{\varepsilon}} \right) \right)^{p_{k}} \end{pmatrix}^{\frac{1}{H}} \leq 1 \\ \text{Suppose } x_{n_{m}} \neq 0 \text{ for some m. Let } \varepsilon \rightarrow 0 \\ \text{Then } \left(\frac{|x_{n_{m}}|}{\rho} \right) \rightarrow \infty \text{ it follows that} \end{cases}$$

SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, 3.Sayı (Eylül 2002)

$$\left(\sum_{m} a_{nk} \left(M_k \left(\frac{|x_{n_m}|}{\rho} \right) \right)^{p_m} \right)^{H} \to \infty \text{ which is a}$$

contradiction. Therefore $x_{n_m} = 0$ for each m.

Finally, we prove scalar multiplication is continuous. Let λ be any number. By definition,

$$G(\lambda x) = \inf \left\{ \rho^{p_n} / H : \left(\sum_{k} a_{nk} \left(M_k \left(\frac{|\lambda x_k|}{\rho} \right) \right)^{p_k} \right)^{\frac{1}{H}} \le 1, \\ n = 1, 2, 3, \dots \right\}$$

Then

 $(\lambda x) = \inf$

Some New Sequence Spaces Defined by A Sequence of Orlicz Functions T.Böyük, M.Başarır

$$\sum_{k=N+1}^{\infty} a_{nk} \left(|\lambda| M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} < \sum_{k=N+1}^{\infty} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} < \left(\frac{\varepsilon}{2} \right)^{\text{H}}.$$

Since M is continuous every where in $[0,\infty)$, then $f(t) = \sum_{k=1}^{N} a_{nk} \left(\frac{|t x_k|}{\rho} \right) \text{ is continuous at } 0. \text{ So there}$ is 1> δ >0 such that $|f(t)| < \frac{\varepsilon}{2}$ for 0<t< δ . Let K be such that $|\lambda_n| < \delta$ for n>K, then for n>K, $\left(\sum_{k=1}^{N} a_{nk} \left(\frac{M_k}{\rho} \right)^{p_k} \right)^{1/H} < \frac{\varepsilon}{2}$

Thus

$$\begin{cases} \left| \lambda \mathbf{r} \right|^{p_n/H} \left\{ \sum_{k} a_{nk} \left(M_k \left(\frac{|\lambda x_k|}{\rho} \right) \right)^{p_k} \right)^{H} \leq 1, \\ n = 1, 2, 3, \dots \end{cases}$$

where $r=\rho/\lambda$.

Since
$$|\lambda|^{p_k} \leq \max(1, |\lambda|^{H})$$
 therefore
 $|\lambda|^{\frac{p_k}{H}} \leq \max(1, |\lambda|^{H})^{1/H}$.

Hence $G(\lambda x) \leq \max(1, |\lambda|^{H})^{1/H}$ $\inf \left\{ (r)^{p_{n}} / H : \left[\sum_{k} a_{nk} \left(M_{k} \left(\frac{|\lambda x_{k}|}{\rho} \right) \right)^{p_{k}} \right]^{H} \leq 1, \right\}$ n=1,2,3,...

Which converges to zero as G(x) converges to zero in $W_0(A,M,p)$ where $W_0(A,M,p)=$

$$\begin{cases} x \in \omega: \sum_{k} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} \to 0, \text{ as } n \to \infty \text{ for some } \rho > 0 \end{cases}$$

For arbitrary $\mathcal{E} > 0$, let N be a pozitive integer such that $\sum_{k=N+1}^{\infty} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} < \frac{\varepsilon}{2}$ for some $\rho > 0$. This

$$\left(\sum_{k=1}^{\infty} a_{nk} \left(M_k \left(\frac{|\lambda_n x_k|}{\rho} \right) \right)^{p_k} \right)^{r_k} < \varepsilon \quad \text{for n>K.}$$

Remark: It can be easily verified that when $M_k(x)=x$, then the paranorm defined in $W_0(A,M,p)$ and paranorm defined in $[A,p]_0$ are same.

Definition(Krasnoselskii and Rutitsky[4],25):An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists, constant K>0, such that M(2u) $\leq KM(u)$ (u ≥ 0).

The Δ_2 -condition is equivalent to the satisfaction of inequality $M(l_u) \leq K.lM(u)$ for all values of u and for $l \geq 1$.

Theorem3:Let A be a nonnegative regular matrix, and $M=(M_k)$ be a sequence of Orlicz functions which satisfies Δ_2 -condition for all k. Then

i) $[A,p]_0 \subset W_0(A,M,p)$ ii) $[A,p] \subset W(A,M,p)$ iii) $[A,p]_\infty \subset W_\infty(A,M,p)$ Where

$$[A,p] = \left\{ x \in \omega : \sum_{k=1}^{\infty} a_{nk} |x_k|^{p_k} \to 0, as n \to \infty \right\}$$

implies that

$$\left(\sum_{k=N+1}^{\infty} a_{nk} \left(M_k \left(\frac{|x_k|}{\rho} \right) \right)^{p_k} \right)^{l} H < \frac{\varepsilon}{2}$$

Let $0 < |\lambda| < 1$, using convexity of M we get

$$[A,p] = \left\{ x \in \omega : \sum_{k} a_{nk} |x_{k} - l|^{p_{k}} \to 0, \text{ as } n \to \infty \right\},$$

$$[A,p]_{\infty} = \left\{ x \in \omega : \sup_{n} \sum_{k} a_{nk} |x_{k}|^{p_{k}} < \infty \right\}$$

Proof: (ii) Let $x \in [A,p]$, then

$$S_{n} = \sum_{k} a_{nk} |x_{k} - l|^{p_{k}} \to 0, \text{ as } n \to \infty.$$

Let $\mathcal{E} > 0$ and choose δ with $\mathbf{0} < \delta < 1$ such that $M_{k}(t) < \varepsilon$ for
 $0 \le t \le \delta$ and for all k.

158

SAU Fen Bilimleri Enstitüsü Dergisi 6.Cilt, 3.Sayı (Eylül 2002)

Write $y_k = |x_k - l|$ and consider

$$\sum_{k} a_{nk} \left(M_k \left(|y_k| \right) \right)^{p_k} = \sum_{1} + \sum_{1}$$

where the first summation is over $y_k \leq \delta$ and the second summation over $y_k > \delta$. Since M_k is continuous for all k

$$\sum_{k=1}^{N} < \varepsilon^{\frac{1}{k}} \sum_{k=1}^{N} a_{nk} \text{ and for } y_k > \delta \text{ we use the fact that}$$
$$y_k < \frac{y_k}{\delta} < 1 + \left(\frac{y_k}{\delta}\right).$$

Since M_k is non decreasing and convex for all k, it follows that

$$M_{k}(y_{k}) < M_{k} \left[1 + \left(\frac{y_{k}}{\delta}\right)\right]$$

$$< \frac{1}{2} M_{k}(2) + \frac{1}{2} M_{k} \left[2\left(\frac{y_{k}}{\delta}\right)\right]$$

Since M_k satisfies Δ_2 -condition for all k, therefore $M_k(y_k) < \frac{1}{2} k \frac{y_k}{\delta} M_k(2) + \frac{1}{2} k \frac{y_k}{\delta} M_k(2) = k \frac{y_k}{\delta} M_k(2)$. Hence $\sum_{k=1}^{2} M_k(y_k) \le k\delta^{-1}M_k(2).n.S_n$, which together with $\sum_{k=1}^{2} < \varepsilon^{11} \sum_{k=1}^{2} a_{nk}$ yields [A,p] \subset W(A,M,p). Some New Sequence Spaces Defined by A Sequence of Orlicz Functions T.Böyük, M.Başarır

Write
$$t_k = a_{nk} \left(\frac{|x_k - l|}{\rho} \right)^{q_k}$$
 and $\lambda_k = \frac{p_k}{q_k}$. Since $p_k \le q_k$

therefore $0 < \lambda_{i_{\rm K}} \leq 1$.

Take
$$0 < \lambda < \lambda_k$$
. Define $u_k = t_k (t_k \ge 1)$, =0 $(t_k < 1)$ and $v_k = 0$
 $(t_k \ge 1)$, = $t_k (t_k < 1)$. So $t_k = u_k + v_k$ and
 $t_k^{\lambda} = u_k^{\lambda} + v_k^{\lambda} + v_k^{\lambda}$.

Now it follows that
$$u_k^{\lambda} \leq u_k \leq t_k$$
 and $v_k^{\lambda} \leq v_k^{\lambda}$.

Therefore

$$\sum_{k} t_{k} \lambda_{k} \leq \sum_{k} t_{k} + \left(\sum_{k} \nu_{k}\right)^{\lambda}$$

and hence $x \in W(A,M,p)$.

Corollary: Let A=(C,1) Cesaro matrix and $M=(M_k)$ a sequence of Orlicz functions. Then

Following similar arguments we can prove that $[A,p]_0 \subset W_0(A,M,p)$ and $[A,p]_{\infty} \subset W_{\infty}(A,M,p)$.

Theorem 4: i) Let $0 < \inf p_k \le p_k \le 1$, then $W(A,M,p) \subset W(A,M)$ ii) Let $1 \le p_k \le \sup p_k < \infty$, then $W(A,M) \subset W(A,M,p)$. iii) Let $0 < p_k < q_k$ and (q_k/p_k) be bounded. Then $W(A,M,q) \subset W(A,M,p)$.

Proof: (i) Let $x \in W(A, M, p)$. Since $0 < \inf p_k \le p_k \le 1$., we get

$$\sum_{k} a_{nk} \left(M_k \left(\frac{|x_k - l|}{\rho} \right) \right) \leq \sum_{k} a_{nk} \left(M_k \left(\frac{|x_k - l|}{\rho} \right) \right)^{p_k}$$

and hence $x \in W(A, M)$.

i) If $M=(M_k)$ satisfies Δ_2 -condition for all k, then $W_1 \subset W(M,p), W_0 \subset W_0(M,p), W_\infty \subset W_\infty(M,p)$ where

$$W_{1} = \left\{ x \in \omega : \frac{1}{n} \sum_{k=1}^{n} |x_{k}|^{p_{k}} \to 0, \text{ as } n \to \infty \right\}$$
$$W_{0} = \left\{ x \in \omega : \frac{1}{n} \sum_{k=1}^{n} |x_{k} - l|^{p_{k}} \to 0, \text{ as } n \to \infty \right\}$$
$$W_{\infty} = \left\{ x \in \omega : \sup_{n} \left(\frac{1}{n} \sum_{k=1}^{n} |x_{k}|^{p_{k}} \right) < \infty \right\}$$

ii) Let $0 < \inf p_k \le p_k \le 1$, then $W(M,p) \subset W(M)$ *iii)* Let $1 \le p_k \le \sup p_k < \infty$, then $W(M) \subset W(M,p)$. *iv)* Let $0 < p_k < q_k$ and (q_k/p_k) be bounded, then $W(M,q) \subset W(M,p)$.

Proof: It is trivial.

REFERENCES

[1] W.H. Ruckle, Canad. J. Math. 25 (1973), 973-78.
[2] I.J. Maddox, Math. Proc. Camb. phil. Soc. 100 (1986), 161-66.

(ii): Let $1 \le p_k \le \sup p_k < \infty$ for each k. Let $x \in W(A,M)$. Then for each $1 > \varepsilon > 0$ there exists a pozitive integer N such that

$$\sum_{k} a_{nk} \left(M_k \left(\frac{|x_k - l|}{\rho} \right) \right) \leq \varepsilon \leq 1$$

for all $n \ge N$. This implies that

$$\sum_{k} a_{nk} \left(M_{k} \left(\frac{|x_{k} - l|}{\rho} \right) \right)^{p_{k}} \leq \sum_{k} a_{nk} \left(M_{k} \left(\frac{|x_{k} - l|}{\rho} \right) \right)$$

Therefore $x \in W(A, M, p)$.

(iii): Let $x \in W(A, M, q)$.

[3] J. Lindenstrauss and L. Tzafriri, Isrel J. Math. 10 (1971), 379-90.

[4] M.A. Krasnoselskii and Y.B. Rutitsky, *Convex Function and Orlicz Spaces*, Groningen, Metherlands 1961.
[5] S. D. Parashar and B. Choudhary, *Indian J. pure appl. Math.* 25 (1994), 419-28.