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Abstract

In the present paper, we discuss the singular minimal surfaces in Euclidean 3−space R3

which are minimal. Such a surface is nothing but a plane, a trivial outcome. However, a
non-trivial outcome is obtained when we modify the usual condition of singular minimality
by using a special semi-symmetric metric connection instead of the Levi-Civita connection
on R3. With this new connection, we prove that, besides planes, the singular minimal
surfaces which are minimal are the generalized cylinders, providing their explicit equations.
A trivial outcome is observed when we use a special semi-symmetric non-metric connection.
Furthermore, our discussion is adapted to the Lorentz-Minkowski 3-space.

1. Introduction

Let
(
R3,⟨·, ·⟩

)
be a Euclidean 3−space and v a fixed unit vector in R3. Let r : M2 → R3

+ (v) be a smooth immersion of an oriented compact
surface M2 into the halfspace

R3
+ (v) :

{
p ∈ R3 : ⟨p,v⟩> 0

}
.

Denote H and n the mean curvature and unit normal vector field on M2. Let α ∈ R. The potential α−energy of r in the direction of v is
defined by [32]

E (r) =
∫
M2

⟨p,v⟩α dM2,

where dM2 is the measure on M2 with respect to the induced metric tensor from the Euclidean metric ⟨·, ·⟩ and p = r(p̃) , p̃ ∈ M2.
Let Σ : M2 × (−θ ,θ)→ R3

+ (v) be a compactly supported variation of r with variaton vector field ξ . The first variation of E becomes

E ′ (0) =−
∫
M2

(2H ⟨r,v⟩−α ⟨n,v⟩)⟨ξ ,n⟩α−1 dM2.

For all compactly supported variations, the immersion r is a critical point of E if and only if

2H (p̃) = α
⟨n(p̃) ,v⟩
⟨r(p̃) ,v⟩

, (1.1)

for some point p̃ ∈ M2.
A surface M2 is referred to as a singular minimal surface or α−minimal surface with respect to the vector v, if holds Eq. (1.1) (see [11, 12]).
In the particular case α = 1 and v = (0,0,1) , the surface M2 represents two-dimensional analogue of the catenary which is known as a
model for the surfaces with the lowest gravity center, in other words, one has minimal potential energy under gravitational forces [6, 13, 18].
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A translation surface M2 in R3 is a surface that can be written as the sum of two so-called translating curves [9]. When the translating
curves lie in orthogonal planes, up to a change of coordinates, the surface M2 can be locally given in the explicit form z = p(x)+q(y),
where (x,y,z) is the rectangular coordinates and p,q smooth functions. In such case, if M2 is minimal (H vanishes identically [27, p. 17]), it
describes a plane or the Scherk surface [43]

z(x,y) =
1
λ

log
∣∣∣∣cosλx
cosλy

∣∣∣∣ , λ ∈ R, λ ̸= 0.

If the translating curves lie in non-orthogonal planes, the translation surface M2 is locally given by z = p(x)+q(y+µx) , µ ∈ R, µ ̸= 0,
and so-called an affine translation surface or a translation graph [26, 45]. A minimal affine translation surface is so-called affine Scherk
surface and is given in the explicit form

z(x,y) =
1
λ

log

∣∣∣∣∣cosλ
√

1+µ2x
cosλ (y+µx)

∣∣∣∣∣ .
López [32] obtained the singular minimal translation surfaces in R3 of type z = p(x)+q(y) with respect to horizontal and vertical directions.
This result was generalized to higher dimensions in [5]. For further study of singular minimal surfaces, we refer to the López’s series of
interesting papers on the solutions of the Dirichlet problem for the α−singular minimal surface equation [33], the Lorentz-Minkowski
counterpart of the condition of singular minimality [34], the compact singular minimal surfaces [35] and the singular minimal surfaces with
density [36].
In this paper, we approach a singular minimal surface M2 in R3 which is minimal. We hereinafter assume that α ̸= 0 in Eq. (1.1), otherwise
any minimal surface obeys our approach, which is trivial. Under this circumstance, Eq. (1.1) gives ⟨n(p̃) ,v⟩= 0, that is, the tangent plane of
M2 at any point p̃ is parallel to v. In such case, the surface M2 belongs to the class of so-called constant angle surfaces and has to be a plane
parallel to v (see [37, Proposition 9]), yielding the following outcome.

Proposition 1.1. Let M2 be a singular minimal surface in R3 with respect to an arbitrary vector v. If M2 is minimal, then it is a plane
parallel to v.

This result is changed when we modify Eq. (1.1) by using a special semi-symmetric metric connection ∇ (see Eq. (3.1)) on R3. In Section 3,
we prove that, besides planes, the singular minimal surfaces which are minimal with respect to ∇ are the generalized cylinders, providing
their explicit equations. It is also observed, in Section 3, that this approach produces only trivial example when a special semi-symmetric
non-metric connection D (see Eq. (3.19)) is used.
We find the motivation in Wang’s paper [44] whose minimal translation surfaces were obtained with respect to the connections ∇ and D. The
notion of a semi-symmetric metric (resp. non-metric) connection on a Riemannian manifold were defined by Hayden [22] (resp. Agashe [1])
and since then has been studied by many authors. Without giving a complete list, we may refer to [2–4, 7, 10, 14, 15, 19, 25, 38–42, 47–50].
The present authors also obtained singular minimal translation surfaces in R3 with respect to the connections ∇ and D [16].
Let R3

1 be a Lorentz-Minkowski 3−space endowed with the canonical Lorentzian metric ⟨·, ·⟩L = dx2 + dy2 − dz2. Then we have [34,
Definition 1.1]

Definition 1.1. Let r be a smooth immersion of a spacelike surface M2 in the halfspace z > 0 of R3
1 and n unit normal vector field on M2

and H the mean curvature. M2 is called α−singular maximal surface if satisfies

H =−α
⟨n,(0,0,1)⟩L

z
, α ̸= 0. (1.2)

Due to the fact that the z−coordinate represents the time coordinate, the concept of gravity has no meaning. Therefore, unlike the Riemannian
case, Eq. (1.2) describes only spacelike surfaces with prescribed angle between n and the z−axis. Point out that H is non-vanishing in
Eq. (1.2) if α ̸= 0 because ⟨n,(0,0,1)⟩L ̸= 0 for timelike vectors n and (0,0,1) and so we can not adapt Eq. (1.2) to our study as is. For this
reason, we modify the concept as follows:

Definition 1.2. Let r be a smooth immersion of an oriented timelike surface M2 in R3
1 and n unit normal vector field on M2 and H the mean

curvature. Let v ∈ R3
1, v ̸= 0, a spacelike vector non-parallel to n such that n and v span a spacelike 2-space. Then M2 is called singular

minimal surface with respect to v if satisfies

2H = α
⟨n,v⟩L
⟨r,v⟩L

, α ∈ R, α ̸= 0. (1.3)

With Definition 1.2, we may view the singular minimal surface M2 as a timelike surface in R3
1 with prescribed Lorentz spacelike angle

between n and v. If M2 is minimal, it follows from Eq. (1.3) that ⟨n,v⟩L = 0, namely the angle is π

2 , and, as in Riemannian case, M2

becomes a timelike constant angle surface which has to be a plane (see [21, Theorem 3.1]), yielding the following trivial outcome.

Proposition 1.2. Let M2 be a singular minimal surface in R3
1 with respect to a spacelike vector v. If M2 is minimal, then it is a plane

parallel to v.

In Section 4, we also state non-trivial results in R3
1 for singular minimal surfaces which are minimal with respect to the connections ∇ and D

given by Eqs. (4.1) and (4.19), respectively.
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2. Preliminaries

Most of following notions can be found [8, 40, 46].
Let (M̄, ḡ) be a semi-Riemannian manifold and ∇̄ a linear connection on M̄. The torsion tensor field T of ∇̄ is defined by

T (x̄, ȳ) = ∇̄x̄ȳ− ∇̄x̄ȳ− [x̄, ȳ] ,

where x̄ and ȳ are vector fields on M̄. A linear connection is called a semi-symmetric (resp. non-) metric connection if there exist a 1−form
π such that

T (x̄, ȳ) = π (ȳ) x̄−π (x̄) ȳ, ∇̄ḡ = 0 (resp. ∇̄ḡ ̸= 0).

The linear connection ∇̄ is called Levi-Civita connection if T = 0 and ∇̄ḡ = 0. We denote the Levi-Civita connection by ∇̄L.
Let M be a semi-Riemannian submanifold of M̄ and ∇L and g the induced Levi-Civita connection and metric tensor, respectively. Then the
Gauss formula follows

∇̄
L
xy =∇

L
xy+h(x,y) ,

where h is so-called second fundamental form of M and x and y tangent vector fields to M. Let {f1, ..., fn} be an orthonormal frame on M at
any point p ∈ M. Then the mean curvature vector H(p) at p is defined by

H(p) =
1
n

n

∑
i=1

εih(fi, fi) ,

where εi = g(fi, fi) and n = dimM. The length of mean curvature vector is called mean curvature. A semi-Riemannian submanifold is called
minimal if its mean curvature vanishes identically.
Let M̄ = R3

1 be the Lorentz-Minkowski 3−space and ḡ = ⟨·, ·⟩L = dx2 + dy2 − dz2. A vector field x on R3
1 is said to be spacelike (resp.

timelike) if x = 0 or ⟨x,x⟩L > 0 (resp. ⟨x,x⟩L < 0). A vector field x is said to be null if ⟨x,x⟩L = 0 and x ̸= 0. A timelike vector x = (a,b,c)
is said to be future pointing (resp. past pointing) if c > 0 (resp. c < 0). A Lorentz timelike angle θ between two future (past) pointing
timelike vectors x and y is associated with [17]

|⟨x,y⟩L|=
√

|⟨x,x⟩L|
√

|⟨y,y⟩L|coshθ .

A Lorentz spacelike angle θ between two spacelike vectors x and y spanning a spacelike vector subspace (R3
1 induces a Riemannian metric

on it) is associated with [17]

|⟨x,y⟩L|=
√

|⟨x,x⟩L|
√

|⟨y,y⟩L|cosθ .

Let M2 be an immersed surface into R3
1. The surface M2 is said to be spacelike (resp. timelike) if all tangent planes of M2 are spacelike (resp.

timelike). For such a spacelike (resp. timelike) surface, we have the decomposition R3
1 = TpM2 ⊕

(
TpM2)⊥ , where TpM2 is the tangent

plane of M2 at the point p. Notice that
(
TpM2)⊥ is a timelike (resp. spacelike) 1−space of R3

1. A Gauss map n of M2 is a smooth map
n : M2 → R3

1, |⟨n,n⟩L|= 1.
We finish this section remarking that a spacelike (resp. timelike) surface in R3

1 is locally a graph of a smooth function u(x,y) (resp. u(x,z) or
u(y,z)) [28, Proposition 3.3].

3. Singular minimal surfaces in R3

3.1. ∇−Singular minimal surfaces

Let ∇L be the Levi-Civita connection on R3 and {e1,e2,e3} the standard basis on R3 and x,y tangent vector fields to R3. Consider the
following semi-symmetric metric connection on R3 [44]

∇xy = ∇
L
xy+ ⟨y,e3⟩x−⟨x,y⟩e3. (3.1)

The nonzero derivatives are

∇e1 e1 =−e3, ∇e1 e3 = e1, ∇e2 e2 =−e3, ∇e2 e3 = e2.

Definition 3.1. Let r be a smooth immersion of an oriented surface M2 into R3 and n unit normal vector field on M2 and H∇ the mean
curvature with respect to ∇. Let v ∈ R3, v ̸= 0, a unit fixed vector non-parallel to n. The surface M2 is called ∇−singular minimal surface
with respect to v if holds

2H∇ = α
⟨n,v⟩
⟨r,v⟩

, α ∈ R, α ̸= 0. (3.2)

In particular, the surface M2 is said to be ∇−minimal if H∇ = 0. With Definition 3.1, we first observe the ∇−singular minimal surfaces of
type z = u(x,y) which are ∇−minimal.

Theorem 3.1. Let M2 be a ∇−singular minimal surface in R3 of type z = u(x,y) with respect to a unit vector v = (a,b,c) , a2 +b2 ̸= 0. If
M2 is ∇−minimal, then one of the following happens
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1. v = (0,b ̸= 0,c) and

u(x,y) =
c
b

y+
1

2b2 ln [cos(2bx+λ1)]+λ2;

2. v = (a ̸= 0,0,c) and

u(x,y) =
c
a

x+
1

2a2 ln [cos(2ay+λ3)]+λ4;

3. v = (a,b,c) , ab ̸= 0, and

u(x,y) =
c
a

x− 1
2
(
a2 +b2

) ln
[

cos
(
−2 |a|

(
y− b

a
x
)
+λ5

)]
+

bc
a2 +b2

(
y− b

a
x
)
+λ6,

where λ1, ...,λ6 ∈ R.

Proof. The unit normal vector field on M2 is

n =
−uxe1 −uye2 + e3√

1+(ux)
2 +

(
uy
)2

,

where ux =
∂u
∂x and so. Suppose that M2 is ∇−minimal. Due to α ̸= 0, Eq. (3.2) gives ⟨n,v⟩= 0 and

aux +buy = c. (3.3)

The condition of ∇−minimality yields[
1+

(
uy
)2
]

uxx −2uxuyuxy +
[
1+(ux)

2
]

uyy −2
[
1+(ux)

2 +
(
uy
)2
]
= 0. (3.4)

We distinguish several cases: the first case is that a = 0. Then Eq. (3.3) follows u(x,y) = f (x)+ c
b y, for an arbitrary smooth function f .

Considering this into Eq. (3.4) leads to

b f ′′

1+(b f ′)2 = 2b, (3.5)

where f ′ = d f
dx and so. The first statement of the theorem is obtained by integrating Eq. (3.5). The roles of x and y in Eq. (3.4) are symmetric

and hence we may conclude the second statement of the theorem by similar steps when a ̸= 0 and b = 0. The last case is that ab ̸= 0. Then
the solution to Eq. (3.3) is given by

u(x,y) =
c
a

x+g
(

y− b
a

x
)
, (3.6)

for a smooth function g. Substituting Eq. (3.6) into Eq. (3.4) follows

g′′−2
[
a2 +

(
c−bg′

)2
+
(
ag′

)2
]
= 0, (3.7)

for g′ = dg
dỹ , g′′ = d2g

dỹ2 , ỹ = y− b
a x. Eq. (3.7) can be rewritten as(

a2 +b2)g′′

a2 +
(
bc−

(
a2 +b2

)
g′
)2 = 2. (3.8)

The proof is completed by integrating Eq. (3.8).

Remark 3.1. The surface given in the first statement of Theorem 3.1 is a generalized cylinder (see [20, p. 439]) and may be written
parametrically

r(x,y) =
(

x,0,
1

2b2 ln [cos(2bx+λ1)]+λ2

)
+ y

(
0,1,

c
b

)
.

This is a ∇−minimal translation surface of type z = p(x)+q(y) which was already found by Wang [44]. The same may be concluded for the
above second statement. However, the surface described in the last statement of Theorem 3.1 is the generalized cylinder parametrically
written by

r(x, ỹ) = x
(

1,
b
a
,

c
a

)
+(0, ỹ,g(ỹ)) ,

where ỹ = y− b
a x. Due to b ̸= 0, it belongs to the class of affine translation surfaces and a new example of ∇−minimal surfaces.

In the following we classify ∇−singular minimal surfaces in R3 of type y = u(x,z) which are ∇−minimal.

Theorem 3.2. Let M2 be a ∇−singular minimal surface in R3 of type y = u(x,z) with respect to a unit vector v = (a,b,c) , a2 + c2 ̸= 0. If
M2 is ∇−minimal, then one of the following happens
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1. M2 is a plane parallel to the vector (0,0,1);
2. v = (0,b,c) , bc ̸= 0, and

u(x,z) =
b
c

z+
1

2bc
ln [cos(2bx+λ1)]+λ2;

3. v = (a,b,0) , a ̸= 0, and

u(x,z) =
b
a

x± 1
2 |a|

arctan
(

1
|aλ2|

√
e4z −a2

)
+λ3;

4. v = (a,0,c) , ac ̸= 0, and

u(x,z) =± 1
2 |a|

arctan
(

1
|λ4|

√
e4a2(z− c

a x)−λ 2
4

)
+λ5, λ4 ̸= 0;

5. v = (a,b,c) , ac ̸= 0, and

u(x,z) =
b
a

x+h
(

z− c
a

x
)
,

where h is a smooth function satisfying

z− c
a x = 1

2|a|(a2+c2)(a2+b2c2)
{bc(2 |a|h+λ6)−

−|a| ln [bccos(2 |a|h+λ6)−|a|sin(2 |a|h+λ6)]}+λ7,

for λ1, ...,λ7 ∈ R.

Proof. Let M2 be locally given by

(x,z) 7−→ r(x,z) = (x,u(x,z) ,z) ,

for a smooth function u = u(x,z). The normal vector field on M2 is

n =
uxe1 − e2 +uze3√
1+(ux)

2 +(uz)
2
. (3.9)

Because M2 is ∇−singular minimal, we get Eq. (3.2). Assume that M2 is ∇−minimal. Due to α ̸= 0, Eqs. (3.2) and (3.9) follow ⟨n,v⟩= 0
and

aux + cuz = b. (3.10)

Remark also that we may write v = arx + crz, which means that the tangent plane of M at any point is parallel to v. The condition of
∇−minimality leads to[

1+(uz)
2
]

uxx −2uxuzuxz +
[
1+(ux)

2
]

uzz +2
[
1+(ux)

2 +(uz)
2
]

uz = 0. (3.11)

We distinguish several cases:

1. a = 0, c ̸= 0. Then Eq. (3.10) gives uz =
b
c and so Eq. (3.11) turns M2 to a plane parallel to v if b = 0. Otherwise, b ̸= 0, the solution

to Eq. (3.10) is given by u(x,z) = b
c z+ f (x) , for an arbitrary smooth function f . Hence Eq. (3.11) reduces to

c f ′′

1+(c f ′)2 =−2b, (3.12)

where f ′ = d f
dx , etc. The second statement of the theorem is obtained by integrating Eq. (3.12).

2. a ̸= 0, c = 0. Then Eq. (3.10) gives u(x,z) = b
a x+g(z) for an arbitrary smooth function g and so Eq. (3.11) may be written as

g′′

g′
− a2g′g′′

1+(ag′)2 =−2, (3.13)

where g′ = dg
dz , etc. Integrating Eq. (3.13), we obtain the third statement of the theorem.

3. ac ̸= 0. The solution to Eq. (3.10) is

u(x,z) =
b
a

x+h
(

z− c
a

x
)
, (3.14)

for an arbitrary smooth function h. By plugging the partial derivatives of Eq. (3.14) into Eq. (3.11), we write

h′′+2
[
a2 +

(
b− ch′

)2
+
(
ah′

)2
]

h′ = 0, (3.15)

where h′ = dh
dz̃ , h′′ = d2h

dz̃2 , z̃ = z− c
a x. We have two subcases: the first subcase is that b = 0. Then Eq. (3.15) may be rewritten as

h′′

h′
− h′h′′

a2 +(h′)2 =−2a2. (3.16)



Universal Journal of Mathematics and Applications 141

The fourth statement of the theorem is proved by integrating Eq. (3.16). The second subcase is b ̸= 0. Hence, we may write Eq. (3.15)
as

−
(
a2 + c2)h′′

a2 +
(
bc−

(
a2 + c2

)
h′
)2 = 2h′. (3.17)

A first integration of Eq. (3.17) yields(
a2 + c2)dh

−|a| tan(2 |a|h+λ )+bc
= dz̃, (3.18)

for λ ∈ R. By a first integration of Eq. (3.18), we finish the proof.

Remark 3.2. The surfaces given in the second and third statements of Theorem 3.2 are ∇−minimal generalized cylinders and are examples
of ∇−minimal translation surfaces of type y = p(x)+q(z) , which was found by Wang [44]. However, the surfaces given in the last two
statements of Theorem 3.2 are a ∇−minimal affine translation surface.

Lastly, we deal with a surface M2 of type x = u(y,z). The unit normal vector field on M2 is

n =
e1 −uye2 −uze3√
1+

(
uy
)2

+(uz)
2
.

Suppose that M2 is ∇−singular minimal with respect to the vector v = (a,b,c). The mean curvature is same as that of the surface of type
y = u(x,z) . If M2 is also ∇−minimal, then Eq. (1.3) gives

buy + cuz = a,

where b2 + c2 ̸= 0. Therefore, without giving a proof, we may state a similar result for those surfaces of type x = u(y,z) to Theorem 3.2 by
replacing x with y and a with b.

3.2. D−Singular minimal surfaces

Let D be the semi-symmetric non-metric connection on R3 given by [44]

Dxy = ∇
L
xy+ ⟨y,e3⟩x, (3.19)

where x,y are tangent vector fields to R3. The nonzero derivatives are

De1 e3 = e1, De2 e3 = e2, De3 e3 = e3.

Definition 3.2. Let r be a smooth immersion of an oriented surface M2 into R3 and n unit normal vector field on M2 and HD denote the
mean curvature with respect to D. Let v ∈ R3, v ̸= 0, a unit fixed vector non-parallel to n. The surface M2 is called D−singular minimal
surface with respect to v if holds

2HD = α
⟨n,v⟩
⟨r,v⟩

, α ∈ R, α ̸= 0. (3.20)

In particular, the surface M2 is said to be D−minimal if HD = 0. We first consider the D−singular minimal surfaces of type z = u(x,y)
which are D−minimal. Hence Eq. (3.20) gives ⟨n,v⟩= 0 and

aux +buy = c, (3.21)

where v = (a,b,c) and a2 +b2 ̸= 0. Morever the condition of D−minimality yields[
1+

(
uy
)2
]

uxx −2uxuyuxy +
[
1+(ux)

2
]

uyy = 0, (3.22)

where the roles of x and y are symmetric. If a = 0, then Eq. (3.21) follows u(x,y) = f (x)+ c
b y, for an arbitrary smooth function f .

Considering this into Eq. (3.22) yields 1
b2

d2 f
dx2 = 0, which leads M2 to be a plane parallel to v. By symmetry, we may obtain same obtain

when a ̸= 0 and b = 0. Let ab ̸= 0. Then the solution to Eq. (3.21) is u(x,y) = c
a x+g

(
y− b

a x
)
, for an arbitrary smooth function f . After

substituting its partial derivatives into Eq. (3.22), we conclude 1
a2

d2g
dỹ2 = 0, ỹ = y− b

a x, yielding that M is a plane parallel to v.
Therefore we state the following

Theorem 3.3. Let M2 be a D−singular minimal surface in R3 of type z = u(x,y) with respect to a unit vector v = (a,b,c) , a2 +b2 ̸= 0. If
M2 is D−minimal, then it is a plane parallel to v.

When we take surfaces of type y = u(x,z) and x = u(y,z) , we get similar equations to Eqs. (3.21) and (3.22) and thus the above result
remains true for those surfaces as well.
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4. Singular minimal surfaces in R3
1

4.1. ∇−Singular minimal surfaces

Let ∇L be the Levi-Civita connection R3
1 and x,y tangent vector fields to R3

1. Consider the following semi-symmetric metric connection on
R3

1 [44]

∇xy = ∇
L
xy+ ⟨y,e3⟩L x−⟨x,y⟩L e3. (4.1)

The nonzero derivatives are

∇e1 e1 =−e3, ∇e1 e3 =−e1, ∇e2 e2 =−e3, ∇e2 e3 =−e2.

Definition 4.1. Let r be a smooth immersion of an oriented timelike surface M2 in R3
1 and n unit normal vector field on M2 and H∇ the

mean curvature of M2 with respect to ∇. Let v ̸= 0 ∈ R3
1 a unit fixed spacelike vector non-parallel to n such that n and v span a spacelike

2-space. M2 is called ∇−singular minimal surface with respect to v if satisfies

2H∇ = α
⟨n,v⟩L
⟨r,v⟩L

, α ∈ R, α ̸= 0. (4.2)

The surface M2 is called ∇−minimal if H∇ = 0. With Definition 4.1, we classify the ∇−singular minimal surfaces of type z = u(x,y) ,
which are ∇−minimal.

Theorem 4.1. Let M2 be a ∇−singular minimal surface in R3
1 of type z = u(x,y) with respect to a unit spacelike vector v = (a,b,c). If M2

is ∇−minimal, then one of the following happens

1. v = (0,b ̸= 0,c) and

u(x,y) =
c
b

y+
1

2b2 ln [cosh(2bx+λ1)]+λ2;

2. v = (a ̸= 0,0,c) and

u(x,y) =
c
a

x+
1

2a2 ln [cosh(2ay+λ3)]+λ4;

3. v = (a,b,c) , ab ̸= 0, and

u(x,y) =
c
a

x+
bc

a2 +b2

(
y− b

a
x
)
+

1
2
(
a2 +b2

) ln
[

cosh
(
−2 |a|

{
y− b

a
x
}
+λ5

)]
+λ6,

where λ1, ...,λ6 ∈ R, λ5 ̸= 0.

Proof. The unit spacelike normal vector field on M2 is

n =
−uxe1 −uye2 − e3√
−1+(ux)

2 +
(
uy
)2

,

Suppose that M2 is ∇−minimal. Due to α ̸= 0, Eq. (4.2) gives ⟨n,v⟩= 0 and

aux +buy = c. (4.3)

The condition of ∇−minimality yields[
1−

(
uy
)2
]

uxx +2uxuyuxy +
[
1− (ux)

2
]

uyy +2
[
−1+(ux)

2 +
(
uy
)2
]
= 0. (4.4)

We distinguish several cases: the first case is that a = 0. Then Eq. (4.3) follows u(x,y) = f (x)+ c
b y, for an arbitrary smooth function f .

Considering this into Eq. (4.4) yields

b f ′′

1− (b f ′)2 = 2b, (4.5)

where f ′ = d f
dx and so. The first statement of the theorem is derived by integrating Eq. (4.5). The roles of x and y in Eq. (4.4) are symmetric

and hence we may conclude the second statement of the theorem by similar steps when a ̸= 0 and b = 0. The last case is that ab ̸= 0. Then
the solution to Eq. (4.3) is given by

u(x,y) =
c
a

x+g
(

y− b
a

x
)
, (4.6)

for a smooth function g. Substituting Eq. (4.6) into Eq. (4.4) follows

g′′+2
[
−a2 +

(
c−bg′

)2
+
(
ag′

)2
]
= 0, (4.7)

where g′ = dg
dỹ , g′′ = d2g

dỹ2 , ỹ = y− b
a x. Eq. (4.7) may be rewritten as

−
(
a2 +b2)g′′

a2 −
[
bc−

(
a2 +b2

)
g′
]2 =−2. (4.8)

The proof is completed by integrating Eq. (4.8).
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Remark 4.1. The last statement of Theorem 4.1 is a new example in R3
1 of ∇−minimal surfaces while the first two statements are ∇−minimal

translation surfaces, introduced by Wang [44].

In the following we classify ∇−singular minimal surfaces in R3
1 of type y = u(x,z) which are ∇−minimal.

Theorem 4.2. Let M2 be a ∇−singular minimal surface in R3
1 of type y = u(x,z) with respect to a unit spacelike vector v = (a,b,c) ,

a2 + c2 ̸= 0. If M2 is ∇−minimal, then one of the following happens

1. M2 is a plane parallel to v = (a,b,0) , a ̸= 0;
2. v = (0,b,c) , bc ̸= 0 and

u(x,y) =
b
c

z+
1

2bc
ln [cosh(2bx+λ1)]+λ2;

3. v = (a,b,0) , a ̸= 0, and

u(x,z) =
b
a

x± 1
2 |a|

sinh−1
(

λ3e2z
)
+λ4, λ3 ̸= 0;

4. v = (a,0,c) , ac ̸= 0, and

u(x,z) =± 1
2 |a|

sinh−1
[
|λ5|e2a2(z− c

a x)
]
+λ6, λ5 ̸= 0;

5. v = (a,±1,c) , a =±c, c ̸= 0, and

u(x,z) =
±1
c

x± 1
4c

ln
[
1±2λ7e2(1+c2)(z±x)

]
+λ8, λ7 ̸= 0;

6. v = (a,b,c) , abc ̸= 0, and

u(x,z) =
b
a

x+h
(

z− c
a

x
)
,

where h is a smooth function satisfying

z− c
a

x =
−bc

(
c2 −a2)

2 |a|
(
a2 −b2c2

) (2 |a|h+λ9)−

− c2 −a2

2
(
a2 −b2c2

) ln [bccosh(2 |a|h+λ9)−|a|sinh(2 |a|h+λ9)]+λ10,

for λ1, ...,λ10 ∈ R.

Proof. Let M2 be locally given by

(x,z) 7−→ r(x,z) = (x,u(x,z) ,z) ,

for a smooth function u = u(x,z). The normal vector field on M2 is

n =
uxe1 − e2 −uze3√
1+(ux)

2 − (uz)
2
.

Because M2 is ∇−singular minimal, we get Eq. (4.1). Assume that M2 is ∇−minimal. Due to α ̸= 0, Eq. (4.1) gives ⟨n,v⟩= 0 and

aux + cuz = b. (4.9)

Remark also that we may write v = arx + crz, implying the tangent plane of M at any point is parallel to v. The condition of ∇−minimality
yields [

(uz)
2 −1

]
uxx −2uxuzuxz +

[
1+(ux)

2
]

uzz −2
[
1+(ux)

2 − (uz)
2
]

uz = 0. (4.10)

We distinguish several cases:

1. a = 0, c ̸= 0. Then b ̸= 0 because v is spacelike. The solution to Eq. (4.9) is given by u(x,z) = b
c z+ f (x) , for an arbitrary smooth

function f . Hence Eq. (4.10) turns to

c f ′′

1− (c f ′)2 =−2b, (4.11)

where f ′ = d f
dx , etc. Because M2 is non-degenerate, 1− (c f ′)2 ̸= 0. Therefore the second statement of the theorem is proved by

integrating Eq. (4.11).
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2. a ̸= 0, c = 0. Then Eq. (4.9) gives u(x,z) = b
a x+g(z) for an arbitrary smooth function g and so Eq. (4.10) leads to

g′′−2
[
1−

(
ag′

)2
]

g′ = 0, (4.12)

where g′ = dg
dz , etc. That g′ = 0 is a trivial solution to Eq. (4.12), implying the first statement of the theorem. Otherwise, g′ ̸= 0,

Eq. (4.12) may be rewritten as

g′′

g′
+

a
2

(
g′′

1−ag′
− g′′

1+ag′

)
= 2. (4.13)

The third statement of the theorem is obtained by integrating Eq. (4.13).
3. ac ̸= 0. The solution to Eq. (4.9) is

u(x,z) =
b
a

x+h
(

z− c
a

x
)
,

for an arbitrary smooth function h. Therefore Eq. (4.10) reduces to

h′′−2
[
a2 +

(
b− ch′

)2 −
(
ah′

)2
]

h′ = 0, (4.14)

where h′ = dh
dz̃ , h′ = d2h

dz̃2 , z̃ = z− c
a x. We have three subcases: the first one is that b = 0. Then Eq. (4.14) may be rewritten as

h′′

h′
+

h′′

2(a−h′)
− h′′

2(a+h′)
= 2a2. (4.15)

Integrating Eq. (4.15) gives the fourth statement of the theorem. The second subcase is that a2 = c2 and b =±1. Then Eq. (4.14) may
be rewritten as

±2ch′′

1+ c2 ∓2ch′
+

h′′

h′
= 2

(
1+ c2

)
. (4.16)

After integrating Eq. (4.16), we obtain the fifth statement of the theorem. The third subcase is that a2 ̸= c2. Then Eq. (4.14) may be
rewritten as

−
(
c2 −a2)h′′

a2 −
[
bc−

(
c2 −a2

)
h′
]2 = 2h′. (4.17)

A first integration of Eq. (4.17) yields

(
c2 −a2)dh

−|a| tanh(2 |a|h+λ )+bc
= dz̃, (4.18)

for λ ∈ R. The proof is completed by a first integration of Eq. (4.18).

Remark 4.2. The last three statements of Theorem 4.1 are new examples in R3
1 of ∇−minimal surfaces while the second and third statements

are ∇−minimal translation surfaces, introduced by Wang [44].

Let M2 be a timelike surface R3
1 of type x = u(y,z). The spacelike unit normal vector field on M2 is

n =
e1 −uye2 +uze3√
1+

(
uy
)2 − (uz)

2
.

Suppose that M2 is ∇−singular minimal with respect to the vector v = (a,b,c). If M2 is also ∇−minimal, then Eq. (4.2) gives

buy + cuz = a,

where b2 + c2 ̸= 0. Notice that the mean curvature is same as that of the surface of type y = u(x,z) . Therefore, without giving a proof, we
may state a similar result for those surfaces of type x = u(y,z) to Theorem 4.1 by replacing x with y and a with b.
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4.2. D−Singular minimal surfaces

Consider the following semi-symmetric non-metric connection on R3
1 [44]

Dxy = ∇
L
xy+ ⟨y,e3⟩x, (4.19)

where x,y are tangent vector fields to R3. The nonzero derivatives are

De1 e3 = e1, De2 e3 = e2, De3 e3 = e3.

Definition 4.2. Let r be a smooth immersion of an oriented timelike surface M2 in R3
1 and n unit normal vector field on M2 and HD the

mean curvature of M2 with respect to D. Let v ̸= 0 ∈ R3
1 a unit fixed spacelike vector non-parallel to n such that n and v span a spacelike

2-space. M2 is called D−singular minimal surface with respect to v if satisfies

2HD = α
⟨n,v⟩L
⟨r,v⟩L

, α ∈ R, α ̸= 0. (4.20)

The surface M2 is called D−minimal if HD = 0. With Definition 4.2, we first observe the D−singular minimal surfaces of type z = u(x,y)
which are D−minimal. Hence Eq. (4.20) gives ⟨n,v⟩= 0 and

aux +buy = c, (4.21)

where v = (a,b,c). The condition of D−minimality yields[
1−

(
uy
)2
]

uxx +2uxuyuxy +
[
1− (ux)

2
]

uyy = 0, (4.22)

where the roles of x and y are symmetric. If a = 0, then Eq. (4.21) follows u(x,y) = f (x)+ c
b y, for an arbitrary smooth function f .

Considering this into Eq. (4.22) yields 1
b2

d2 f
dx2 = 0, which leads M2 to be a plane parallel to v. By symmetry, we can obtain same result when

a ̸= 0 and b = 0. Let ab ̸= 0. Then the solution to Eq. (4.21) is u(x,y) = c
a x+g

(
y− b

a x
)
, for a smooth function g. After substituting its

partial derivatives into Eq. (4.22), we conclude 1
a2

d2g
dỹ2 = 0, ỹ = y− c

a x, yielding that M is a plane parallel to v.
Therefore, we state the following

Theorem 4.3. Let M2 be a D−singular minimal surface in R3
1 of type z = u(x,y) with respect to a unit spacelike vector v. If M2 is

D−minimal, then it is a plane parallel to v.

When we take the surfaces of type y = u(x,z) or x = u(y,z) , we may state a similar result to Theorem 4.3.

5. Conclusions and further remarks

In this study, we discussed the singular minimal surfaces in R3 (resp. R3
1) which are minimal and expressed a trivial outcome, Proposition 1.1

(resp. Proposition 1.2). Nevertheless, the non-trivial outcomes, Theorems 3.1 and 3.2 (resp. Theorems 4.1 and 4.2), were obtained by
using the modified version, Definition 3.1 (resp. Definition 4.1), of singular minimality. With this definition, we observed that the singular
minimal surfaces which are minimal are a generalized cylinder. Since the generalized cylinders belong to a subcase of translation surfaces,
the ∇−minimal translation surfaces introduced by Wang [44] were presented by some of our results. Still, we also exhibited new examples
of ∇−minimal surfaces, as explained in Remarks 3.1 and 3.2 (resp. Remarks 4.1 and 4.2). Morever, a trivial outcome, Theorem 3.3 (resp.
Theorem 4.3), was found by using the semi-symmetric non-metric connection D given by Eq. (3.19) (resp. Eq. (4.19)).
On the other hand, let M2 be locally a graph surface in R3 of a smooth function u(x,y) and H and H∇ denote the mean curvatures with
respect to the Levi-Civita connection and the semi-symmetric metric connection ∇ given by Eq. (3.1), respectively. Then, the following
relation occurs

H∇ = H −⟨n,(0,0,1)⟩ , (5.1)

where n is the unit normal vector field on M2. Notice also that Eq. (5.1) remains true for a graph of the forms u(x,z) or u(y,z) up to a sign.
Therefore, ∇−minimal graph surfaces turn to the translating solitons whose the mean curvature satisfies

H = ⟨n,(0,0,1)⟩ (5.2)

Eq. (5.2) appears in the theories of mean curvature flow and manifolds with density, for details see ( [23, 24, 29–31]). Eventually, the
above discussion imply that ∇−singular minimal surfaces which are ∇−minimal are a cylindrical translating soliton. Such surfaces were
considered in [23, 31]. Nevertheless, this paper provides a novel approach.
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