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Introduction

The TRP ion channel superfamily is comprised of 
three major sub-families: TRPC, TRPM and TRPV (for 
review, and discussion of smaller TRP subfamilies, see 
(Ramsey et al., 2006)). Of all the TRPs, the TRPCs 
bear the closest structural and functional similarity 
to the founding Drosophila TRP. They are thus des-
ignated TRPC, the “C” indicating “canonical.” Like 
Drosophila TRP, they are clearly activated down-
stream of phospholipase C, and like Drosophila TRP, 
the precise mechanism by which phospholipase regu-
lates them is not in all cases clear. Nonetheless, it is 
known that this ion channel family subtends numerous 
important physiological processes, including activa-
tion of vascular and other smooth muscles (Dietrich 
et al., 2005), exocrine gland secretion (Liu et al., 
2007), neuronal migration (Hui et al., 2006; Greka 
et al., 2003) to name a few. The TRPCs have also 
been shown to be sensitive targets for oxidative stress 
(Thyagarajan et al., 2001; Poteser et al., 2006; Mill-
er, 2006), and thus could underlie or contribute to 
any number of pathological outcomes from oxidative 
stress exposure. It is thus important to understand how 
the TRPC channels function at a cellular and molecu-
lar level and how cellular signaling pathways regulate 
the actions of this important channel family. 

Like their close relative Drosophila TRP, TRPCs ap-
pear to be activated downstream of phospholipase C. 
There are some reports that they can, under certain 
conditions, act as store operated channels, but this 
is controversial (Parekh & Putney, 2005). In this re-
view, we will discuss TRPC activation and regulation 
by phospholipase C-dependent pathways, focussing 
mainly on findings from this laboratory; for a discus-
sion of the issue of store-operated TRPCs, the reader 
is referred to (Parekh & Putney, 2005) and references 
therein. For a more comprehensive review of TRPs 
and their regulation, the reader is directed to any of a 
number of recent reviews (Abramowitz & Birnbaumer, 
2008; Nilius et al., 2007; Voets & Nilius, 2007; Ven-
katachalam & Montell, 2007; Trebak et al., 2007; 
Miller, 2006; Michel, 2006; Nilius & Voets, 2005).

Activation of TRPCs

Activation of phospholipase Cßs by receptors coupled 
to Gq/11 involves a number of players and potential 
signals (Rhee, 2001; Exton, 1996), several of which 
have been implicated in activating or regulating TRPC 

channels. Phosphatidylinositol 4,5-bisphosphate 
(PIP2) is cleaved to diacylglycerol (DAG) and inositol 
1,4,5-trisphosphate (IP3). DAG activates downstream 
effectors, the most extensively documented and in-
vestigated being protein kinase C. IP3 binds to and 
activates IP3 receptors on the endoplasmic reticulum 
(ER) resulting in release of Ca2+. The depletion of 
ER Ca2+ leads to the activation of the Ca2+ sensor, 
STIM1 which in an unclear manner activates plasma 
membrane store-operated Orai Ca2+ channels (Fri-
schauf et al., 2008).

Perhaps the most solidly established activator of TRPC 
channels is diacylglycerol, which has been shown to 
activate TRPC3, 6 and 7 (and possibly TRPC2 (Lucas 
et al., 2003)) by a mechanism that is independent of 
protein kinase C (Hofmann et al., 1999); protein ki-
nase C in fact is a strong negative regulator of TRPCs, 
as discussed in a subsequent section. The simplest ex-
perimental demonstration of  DAG activation comes 
from application of synthetic, membrane permeant 
diacylglycerols (Hofmann et al., 1999), the most 
common being oleyl acetyl glycerol (OAG). Activa-
tion by endogenous DAG can also be demonstrated 
by use of inhibitors of DAG metabolism, specifically 
by inhibiting DAG lipase or DAG kinase (Hofmann 
et al., 1999; Venkatachalam et al., 2003; Trebak 
et al., 2003a). There is considerable evidence that 
the activation by DAG does not, however, involve a 
direct action of DAG on the channels. First, regula-
tion by DAG is lost in excised patches (Lemonnier et 
al., 2008) (but see (Hofmann et al., 1999)). Second, 
DAG activation of TRPC3 is lost in the absence of 
the tyrosine kinase, src (Vazquez et al., 2004b). Third, 
TRPC3 channels newly trafficked to the plasma mem-
brane appear to have constitutive activity, but not the 
ability to be activated by DAG (Smyth et al., 2005).

The mechanism for activation of a structurally similar 
subgroup of TRPCs, specifically TRPC1, 4 and 5, is 
less clear. Unlike other TRPC channels, neither syn-
thetic DAG nor DAG metabolism inhibitors activate 
this group (Schaefer et al., 2000; Venkatachalam et 
al., 2003). The other signaling product of phospholi-
pase C, IP3, also does not seem to activate members 
of this group (Schaefer et al., 2000). There is evi-
dence that Ca2+, acting through myosin light chain 
kinase, can activate TRPC5 (Shimizu et al., 2006), but 
this is not  likely the sole activator since TRPC5 can be 
activated in a sustained manner with strong intracel-
lular Ca2+ buffering (10 mM BAPTA, (Trebak et al., 
2009)). Trebak et al. noted that in addition to the for-
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mation of DAG and IP3, phospholipase C activation 
also induces a decrease in membrane PIP2 (Trebak 
et al., 2009). Accordingly, three different drugs that 
cause PIP2 depletion by inhibiting PIP kinase all acti-
vated TRPC5 channels in TRPC5-transfected HEK293 
cells. These same drugs inhibited TRPC3 activity. 
However, when TRPC channel activity was investi-
gated at the single channel level in excised patches, 
TRPC3, 5, 6 and 7 were all strongly activated by PIP2 
(Trebak et al., 2009; Lemonnier et al., 2008). This 
led to an hypothesis according to which PIP2 regu-
lates certain TRPC channels by a dual mechanism. 
For TRPC5, it was proposed that PIP2 is required for 
channel activity probably through a direct interaction 
with the channel, but also acts as a negative regulator 
through interaction with another protein. This latter 
protein may be lost in the excised patch, such that 
only the activating function of PIP2 is observed.

Regulation of TRPCs

Trafficking. Both TRPC5 (Bezzerides et al., 2004) and 
TRPC3 (Smyth et al., 2005) show regulated trafficking 
into and out of the plasma membrane, and this may 
be a general phenomenon for other TRPCs as well. 
For TRPC3, OAG or activators of phospholipase C 
do not affect trafficking; rather, only tyrosine kinase-
linked growth factors, such as EGF activate traffick-
ing. TRPC3 appears to undergo rapid reversible con-
stitutive trafficking, and it may be that EGF causes 
stabilization of the channel in the plasma membrane. 
Interestingly, newly translocated TRPC3s showed con-
stitutive activity but apparently could not be activated 
by OAG (Smyth et al., 2005).

IP3 Receptor. There is considerable biochemical evi-
dence for interaction between IP3 receptors and the 
C-terminus of TRPCs (Kiselyov et al., 1998; Kisely-
ov et al., 1999; Tang et al., 2001). This was inter-
preted as a mechanism through which intracellular 
stores could communicate with plasma membrane 
TRPC channels, i.e., a mechanism for store-operated 
Ca2+ entry. However, a number of studies, examin-
ing the activation of expressed TRPC channels, have 
failed to find any functional requirement for IP3 or 
for the IP3 receptor (Trebak et al., 2003a; Hofmann 
et al., 1999). A study by Vazquez et al. (Vazquez et 
al., 2006) examined the activation and regulation of 
native TRPC7 channels in DT40 cells, an avian B-
lymphocyte line. The activity of these channels was 
lost following knockout of the TRPC7 gene, and also 
in a line lacking IP3 receptors. TRPC7 activity could 
be restored by transfecting either cell type with cDNA 
encoding human TRPC7. However, when a low con-
centration of plasmid was used, successful restoration 
of TRPC7 activity was only observed in the TRPC7 
knockout cells, not in the IP3 knockout cells. This 
result, and other findings in the study, indicate that 
at physiological levels of expression, TRPC7 activity 

depends in some manner on IP3 receptors. At higher 
levels of expression, this dependence is lost. None-
theless, it was clear from the study of Vazquez et al. 
(Vazquez et al., 2006) that even when TRPC7 activ-
ity did depend upon IP3 receptors, the mechanism of 
its activation did not require depletion of intracellular 
stores. The function of IP3 receptors in TRPC channel 
activation is not known, but given the well document-
ed direct interaction of the receptors and channels it 
may be that IP3 receptors play a role in organizing 
channels in the proximity of receptor-regulated phos-
pholipase C.

Protein Kinase C. It appears that all TRPCs are 
negatively regulated by protein kinase C (Trebak et 
al., 2003a; Venkatachalam et al., 2003; Trebak et 
al., 2005; Kwan et al., 2005) (but see (Saleh et al., 
2008)). This likely provides a negative feedback when 
activation occurs through the phospholipase C path-
way. The phosphorylation site was identified by Tre-
bak et al. (Trebak et al., 2005) as a serine at position 
712 in the human sequence. This is a highly con-
served site among TRPCs, and lies just downstream of 
the last transmembrane domain in a region thought 
to be responsible for interacting with PIP2.

src. TRPC3 activation by DAG absolutely depends 
upon the tyrosine kinase, src (Vazquez et al., 2004b). 
Pharmacological inhibitors of src blocked TRPC3 ac-
tivation by OAG, as did transfection with a dominant-
negative mutant of src. When TRPC3 was expressed 
in a src-deficient cell line, it could not be activated 
by OAG unless co-expressed with src. Kawasaki et 
al. (Kawasaki et al., 2006) presented evidence that 
src phosphorylates tyrosine in position 226 in the N-
terminus of TRPC3, and that this phosphorylation if 
essential for activity. How this action of src relates to 
regulation of TRPC3 activity under physiological con-
ditions is not known.

Calcium. There is considerable evidence for Ca2+ 
regulation of TRPC channels (Obukhov et al., 1998; 
Trebak et al., 2003b). Calcium is thought to bind to 
calmodulin which in turn interacts with the C-terminus 
of TRPCs in an inhibitory manner (Zhang et al., 2001; 
Tang et al., 2001; Singh et al., 2002); however, there 
is evidence for calmodulin-independent inhibition of 
the related channel, Drosophila TRPL (Obukhov et 
al., 1998). Interestingly, Boulay et al. presented evi-
dence that Ca2+/calmodulin can activate TRPC6 
(Boulay, 2003), raising the possibility that different 
TRPCs may be regulated by Ca2+ in distinct ways. 
Shi et al. (Shi et al., 2004) found that TRPC6 was 
bimodally regulated. Low concentrations of Ca2+, 
acting on calmodulin, were required for channel ac-
tivity, while higher concentrations were inhibitory. In 
experiments examining single channel activity, they 
demonstrated that TRPC6 channels were activated 
by Ca2+-calmodulin, while the highly structurally re-
lated TRPC7 channels were inhibited.
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It would not be surprising for intracellular Ca2+ to 
negatively regulate TRPC channels, given the gen-
eral consensus that they function as Ca2+ perme-
ant channels, and that Ca2+ entering cells through 
TRPCs acts to activate important downstream process-
es (Birnbaumer et al., 1996; Vazquez et al., 2004a; Li 
et al., 2005). As a non-selective cation channel, how-
ever, a TRPC channel is at best an inefficient means 
of introducing Ca2+ into cells. Thus, physiologically 
the more important consequence of TRPC activation 
may be the ensuing depolarization which in turn may 
activated voltage-dependent conductances (Sobol-
off et al., 2005). In fact, much of the Ca2+ signal 
measured after activation of expressed TRPCs may 
arise secondarily from activation of a Na+-Ca2+ ex-
changer (Rosker et al., 2004). However, there is clear 
evidence that Ca2+ entering through TRPC channels 
exerts close proximity regulation of the channels them-
selves. Lemonnier et al. in studies of TRPC7 channels 
expressed in HEK293 cells observed that treatment 
of the cells with the sarcoplasmic-endoplasmic reticu-
lum Ca2+ ATPase (SERCA) inhibitor, thapsigargin, 
substantially inhibited the OAG-activated currents 
(Lemonnier et al., 2006). Thapsigargin also inhibited  
OAG-activated currents in TRPC3-expressing cells, 
suggesting that this may be a general phenomenon 
for TRPC channels (or perhaps OAG-activated TRPC 
channels). Inhibition of TRPC7 by thapsigargin was 
not seen when Ca2+ was omitted from the bathing 
solution, or when cell membrane potential was held 
at positive potentials, reducing the driving force for 
Ca2+ entry. Inhibition of calmodulin by calmidazoli-
um, or disruption of the actin cytoskeleton by cytocha-
lasin B prevented the inhibition by thapsigargin. This 
indicates that Ca2+ entering the cell through TRPC7 
channels has the capacity to inhibit the channels 
through a mechanism dependent on calmodulin and 
on cellular substructure, but this inhibition is usually 
attenuated by the Ca2+ buffering activity of SERCA 
pumps. Two observations indicate that the domain 
of this Ca2+ regulation must be exceedingly small. 
First, reducing the apparent single channel currents 
by submaximal concentrations of low affinity inhibitors 
reduced the dependency on SERCA. Second, the ef-
fects of thapsigargin were observed in the presence of 
10 mM BAPTA Ca2+ buffer (Lemonnier et al., 2006).

Conclusion

This brief review has attempted to summarize work, 
primarily from the authors’ laboratory, on diverse 
mechanisms for activation and regulation of TRPC 
channels. These channels are expressed in a wide 
variety of tissues; yet, with the possible exception of 
smooth muscles, little is known of their physiological 
functions in humans. Mouse models for some of the 
TRPCs have been described with interesting pheno-
types (Freichel et al., 2004; Freichel et al., 2005; Liu 

et al., 2007; Dietrich et al., 2005). Information from 
single knockout models can be misleading because 
each TRPC apparently has one or more homolog that 
can substitute functionally (for example, (Dietrich et 
al., 2005)). We can look forward in the future to new 
and useful information on the roles of these interest-
ing channels, and to a better understanding of how 
their complex modes of regulation can be exploited to 
manipulate their function to clinical advantage.
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Figure Legend

Figure 1: Activation and regulation mechanisms for 
calcium-permeable TRPC cation  channels. TRPC 
channels can be activated by DAG, or possibly as a 
result of loss of PIP2  following agonist (Ag) activation 
of phospholipase C (PLC) by a G-protein-coupled (G) 
pathway. In some instances, this activation mode re-
quires the tyrosine kinase, Src (Vazquez et al., 2004b), 
and is negatively regulated by protein kinase C (PKC) 
(Trebak et al., 2005; Okada et al., 1999; Ahmmed 
et al., 2004; Trebak et al., 2003a; Venkatachalam et 
al., 2003). Regulation of TRPCs by Ca2+, entering 
through the channels, is complex, but generally high 
cytoplasmic Ca2+ inhibits TRPC function (Lemonnier 
et al., 2006). The activation of PLC leads to the pro-
duction of IP3 which activates the IP3 receptor (IP3R) 
causing release of Ca2+ from a critical component of 
the endoplasmic reticulum. As to whether this release 
of Ca2+ activates TRPC channels is controversial 
(Parekh & Putney, 2005); however, there is evidence 
that some mode of interaction between the IP3 recep-
tor and TRPC channels is involved in their activation 
(Vazquez et al., 2006). Left: Channels sequestered in 
a vesicular compartment can be translocated to the 
plasma membrane in response to growth factor (EGF) 
whence the expression of their constitutive activity 
may contribute to membrane signaling and electrical 
properties (Smyth et al., 2005).
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