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Abstract
Although the expression of TRPA1 (also known as ANKTM1) 

proteins has been demonstrated in hair cells of the inner ear, 

the role of this Ca2+-permeable cation channel is unclear 

because TRPA1 knock-out mice have normal transduction 

currents in hair cells and do not show hearing impairment or 

vestibular problems. To test whether TRPA1 expression leads to 

the formation of intact ion channels in the plasma membrane 

of vestibular type II hair cells in the guinea pig, we measured 

whole-cell currents before and after stimulation with the specific 

agonists of TRPA1, allylisothiocyanate (AITC, 200 – 400 µM) 

and 3’-carbamoylbiphenyl-3-yl cyclohexylcarbamate (URB597, 

100 µM). AITC induced currents with the typical current-voltage 

relation of TRPA1, as found in heterologous expression models. 

Currents densities reached maxima 168 ± 22 pA/pF (n = 41) 

at a holding potential of +60 mV and -62 ± 16 pA/pF at -60 

mV. Current kinetics were characterized by an initial increase 

in amplitude over about 60 s, a subsequent plateau, and a 

complete current decline after wash-out of the drug. Repeated 

stimulations were possible. In the presence of URB597, similar 

currents developed but showed rapid desensitization under 

ongoing stimulation. We conclude that there is functional 

expression of TRPA1 in vestibular hair cells, at a current density 

relatively small in comparison to voltage gated currents. Thus, 

TRPA1 currents may modulate the electrical responses of hair 

cells. This may be relevant as potential side effects of many 

drugs and substances known to be activators of the polymodal 

channels TRPA1.

Keywords 
TRPA1, vestibular hair cells, patch-clamp
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Introduction
The cation channel TRPA1 is widely expressed in 

sensory neurons and can be activated by a large number 

of different stimuli, including varios pungent agents, 

cold temperature, alkaline pH and possibly mechanical 

membrane deflection (Jordt et al., 2004; Bandell et al., 

2004; Bautista et al., 2005; Niforatos et al., 2007; Zurborg 

et., 2007). Thereby, TRPA1 enables the integrative 

transduction of a wide range of noxious stimuli. Moreover, 

it may mediate cellular responses to oxidative stress and 

membrane damage (Macpherson et al., 2007). Since it is 

expressed in hair cells of the cochlea or the vestibulum, 

it has been speculated that TRPA1 may contribute to the 

function of the inner ear. It has even been speculated 

that it may have a role in the transduction process of hair 

cells that involves an electrical response to a mechanical 

stimulus, i.e. the deflection of the stereocilia (Corey et al. 

2004; Nagata et al., 2005). Such speculations, however, 

have not been supported by experiments on mice in which 

the gene for TRPA1 had been deleted. These TRPA1 knock-

out mice do not show any sign of hearing impairment, in 

spite of extensive investigation. There was no indication 

of gross vestibular disorders (Kwan et al., 2006), either, 

although more subtle tests of vestibular functions are 

not easily possible in mice and have not been performed. 

Moreover, the transduction current in utricular hair cells 

induced by deflection of hairs was virtually identical in 

wild-type and knock-out mice (Kwan et al., 2006). Taken 

together, the role of TRPA1 in the inner ear seems unclear 

so far and is not likely to be prominent.

Evidence for TRPA1 expression in hair cells has 

been mostly provided with methods including in situ 

hybridization and antibody labelling (Corey et al. 2004; 

Takumida et al., 2008). These methods provide evidence 

for the presence of TRPA1 proteins but do not demonstrate 

that they form functional ion channels. In the light of the 

results on knock-out mice, it may be taken into doubt that 

operational TRPA1 channels exist in sensory cells of the 

inner ear that would provide ion currents in response to 

the established stimuli of TRPA1.

Therefore, the aim of the present study was an 

investigation of functional expression of TRPA1 in 

vestibular hair cells. We set up an electrophysiological 

study to measure whole-cell currents which might have the 

characteristic properties of TRPA1, as elsewhere reported 

either in overexpression models (Patil et al., 2010) or in 

cells endogenously expressing the channel (Vilceanu et al., 

2010). We report functional evidence for TRPA1 expression 

in vestibular type II hair cells of the guinea pig even though 

the current density is comparably small.

Material and methods 
Preparation of vestibular type II hair cells
Vestibular hair cells were prepared from young adult 

albino guinea pigs (weight 280–400 g) as described 

in detail previously (Düwel et al., 2005). In short, 

utricles were excised under microscopic control and 

dissected mechanically as well as enzymatically with 

the aid of collagenase IV and protease II. The procedure 

yielded 10–15 single cells, with visible hair bundles 

identified as vestibular type-II hair cells according to the 

morphological criteria proposed by (Ricci et al. 1997). 

Cells were transferred with an Eppendorf pipette into a 

bath chamber and allowed to settle and adhere to glass 

coverslips coated with Cell-Tak (Collaborative Biomedical 

Products, Meylan, France). All experiments were carried 

out in accordance with the German law on the protection 

of animals and international ethical guidelines for animal 

experiments.

Measurements of currents and membrane 
potentials with the patch-clamp technique

Patch clamp recordings were performed in the 

conventional whole-cell mode (Hamill et al., 1981) using 

a HEKA EPC-9 patch-clamp amplifier and a HEKA Pulse 

software (HEKA Elektronik, Lambrecht/Pfalz, Germany). 

For details see Haasler et al., 2009.

Cells had an average membrane capacitance of 

4.25±1.03 pF and a series resistance of 18.83±4.3 MΩ 

(n=41). Cells were continuously superfused at a rate of 2.0 

ml/min; the height of the bath was controlled and kept 

constant as described (Duong Dinh et al., 2006). The 

standard holding potential was -60 mV. Voltage ramps 

(from –80 to +80 mV and back, over 0.1 s) were applied  

every 20 s. For analysis, currents are given as current 

densities, calculated by dividing the current amplitude by 

the cell capacitance. All experiments were carried out at 

room temperature (21–23°C).

Solutions
The intracellular (pipette) solution contained: 

glutamic acid, 145 mM; NaCl, 8 mM; MgCl2, 2 mM; ethylene 

glycol-bis (β-amino-ethylether)-N,N,N’,N’-tetraacetic 

acid (EGTA), 10 mM; ATP, 0.3 mM; HEPES, 10 mM; pH 7.25 

(CsOH). The extracellular (superfusate) solution contained 

tetraethylammonium chloride (TEA-Cl), 136  mM; MgCl2, 

1.8 mM; CaCl2, 1.8 mM; N-2-hydroxyethylpiperazine- N’-2-

ethanesulfonic acid (HEPES), 10 mM; pH 7.25.

For the stimulation of TRPA1 currents, the superfusate 

was changed to a solution supplemented with either 

allyl isothiocyanate (AITC, 200-400 µM) or the fatty 

      TRPA1 currents in hair cells
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acid amide hydrolase inhibitor 3’-carbamoylbiphenyl-

3-yl cyclohexylcarbamate (URB597, 100 µM, Cayman 

Chemical, Ann Arbor, USA). 

All chemicals were from Sigma (Deisenhofen, 

Germany) if not indicated otherwise. 

Statistics
Statistical evaluation was performed with the SPSS 

12 software (SPSS Inc., Chicago, IL, USA). The effects of 

current changes were tested for statistical significance 

with the Wilcoxon nonparametric test for paired data. An 

error probability of p<0.05 was considered significant. 

Data are given as mean ± standard deviation (SD). 

Results
Vestibular type II hair cells were tested for currents 

through TRPA1  in the conventional whole-cell mode of 

the patch-clamp technique. Voltage-gated K+ currents 

were avoided by the composition of the intracellular and 

extracellular solutions, whereas voltage gated Ca2+ currents 

were minuscule  in these solutions and did not occur at 

either -60 or +60 mV. Base-line currents were recorded 

during repeated voltage ramps from -80 mV to +80 mV 

until a stable plateau had been developed after about  20 

seconds. Then, TRPA1 was stimulated, either with AITC in 

two concentrations (200 and 400 µM) or the synthetic 

TRPA1 agonist URB597 (100µm), usually for 200 s.

A representative experiment (out of n = 29) is 

documented in Figure 1, showing the characteristic 

response to 200 µM AITC that induced inward and 

outward currents with the typical current-voltage response 

frequently reported for TRPA1 (Macpherson et al., 2005). 

In particular, there was a marked outward rectification 

of whole-cell currents. Currents developed quickly and 

reached a plateau within 40-60 s which was maintained 

until AITC was washed out again after 200 s (Figure 1). In 

two further experiments, a constant current level was kept 

over a stimulation time of 400 s before a wash-out brought 

the current amplitude back to baseline levels. Repeated 

stimulations separated by a recovery of a few minutes 

resulted in a response virtually identical with the first one.

At a higher concentration (400 µM), AITC induced 

larger current amplitudes in the outward as well as in 

the inward direction (Figure 2). The rectification was still 

present but less prominent than at the lower concentration 

of the agonist. 

URB597 was comparably effective as AITC on TRPA1 

with respect to the current amplitudes in the outward 

direction. However, the rectification was less pronounced, 

resulting in fairly large inward currents. Moreover, the 

kinetics of the currents showed a different behavior. A 

current decline was consistently observed after about 

65 ±10 s. At the end of the stimulation which was usually 

applied for 200 s, a complete current desensitization had 

developed (Figure 3).

For each experiment, the ramp with the largest 

deviation from base-line values was taken as maximal 

response and used to calculate the average of all 

Figure 1. TRPA1 currents in vestibular type 2 hair cells under 

stimulation with AITC (200 µM, representative traces from one 

whole-cell patch-clamp experiments). Voltage ramps from -80 

mV to +80 mV were regularly applied every 20 s. Current values 

are shown for -60 and +60 mV as determined from the ramps, 

before, during, and after superfusion of the cells with a solution 

containing 200 µM AITC. The holding potential between the 

ramps was -60 mV. The inset shows 2 ramps, obtained at time 

points 1 and 2 during the experiment. 

Figure 2. TRPA1 currents induced by AITC (400 µM). For details 

see legend of Figure 1. Note the larger inward current component 

in comparison to the experiment of Figure 1 with a lower 

concentration of the stimulus.

Sparrer et al       
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experiments, which is presented in Figure 4. All three 

stimuli induced significant (p < 0.05) currents at either 

holding potential but more prominently in the outward 

direction. In particular, the mean current densitiy in the 

presence of AITC (200 µM) was 112 ±8 pA/pF (± SD) at 

+60 mV but -22 ±5 pA/pF at -60 mV. The corresponding 

values in the presence of the higher concentration of AITC 

(400 µM) were 168 ±22 pA/pF (+60 mV) and -62 ±16 pA/

pF (-60 mV), demonstrating that the effects of AITC were 

dependent on the agonist concentration. Currents with 

the least rectification were induced by URB597: 132 ±10 

pA/pF (+60 mV) and -64 ±12 pA/pF (-60 mV).

Discussion
As main finding, we report evidence for functional 

expression of TRPA1 in vestibular type II hair cells 

because whole-cell currents characteristic for TRPA1 

were stimulated by AITC and URB597 Thus, the reported 

absence of vestibular alterations in TRPA1 knock-out mice 

should not be attributed to the absence of functional 

TRPA1 channels the wild-type.

TRPA1 is the only channel known to respond to 

AITC, an important ingredient of garlic. This alone would 

indicate the currents observed in vestibular hair cells are 

attributable to TRPA1. Moreover, the currents induced 

by AITC were characteristic for TRPA1, as extensively 

studied in experiments using heterologous expression. In 

particular, they showed the typical outward rectification 

in the current-voltage-relation (Bautista et al., 2005). In 

addition, they were induced as well by URB597, again 

considered specific for TRPA1, although not as widely used 

(Niforatos et al., 2007). As a minor difference to previous 

results in overexpression models, no desensitization of 

the current took place under ongoing stimulation with 

AITC, whereas a moderate and slow desensitization was 

observed when the stimulation was performed with 

URB597. It is likely that the lack of desensitization is 

caused by the relatively low current density in hair cells 

because processes such as PIP2 depletion and Ca2+ influx 

are considered a factor of the desensitization of TRPA1 at 

high expression (Kim et al., 2008).

It has been demonstrated that knock-out mice display 

the same transduction current in hair cells as wild-type 

animals. Hence, any significant contribution of TRPA1 to the 

transduction process under normal conditions seems to be 

excluded (Kwan et al., 2006). On the other hand, TRPA1 is 

a channel with little constitutive activity and needs to be 

stimulated for biological effects, even though the spectrum 

Figure 3. TRPA1 currents induced by the fatty acid amide hydrolase 

inhibitor 3’-carbamoylbiphenyl-3-yl cyclohexylcarbamate 

(URB597). For details see legend of Figure 1. Note the current 

decline starting already before the end of the superfusion with 

the stimulus.

Figure 4. Summary of the effects of AITC and URB597 on inward 

and outward TRPA1 currents in vestibular hair cells. For each 

experiment, the maximal current density at -60 and +60 mV was 

determined at baseline as well as during stimulation and used 

for a calculation of the arithmetic mean (indicated by an asteric) 

and the median (horizontal line within each box), along with the 

the 90 % confidence interval (error bars) and the interquartile 

range (i.e. the range that contains the middle 50% of the data) 

shown as box.

      TRPA1 currents in hair cells
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of possible stimuli is rather wide. Therefore, the findings on 

knock-out mice do not rule out that TRPA1 may be used 

as a modifier of vestibular function when it is stimulated, 

either chemically such as by drugs or under pathological 

conditions. 

The current density found in the present study under 

maximal stimulation and at -60 mV was about  -80  pA/

pF, whereas a current of 18 pA/pF was present already 

at baseline conditions. This baseline current may contain 

traces of TRPA1 but should mostly represent leak and non-

specific currents through other cation channels; a stimulated 

TRPA1 activity is therefore in the range of 60 pA/pF. This 

value may be related to that of the transduction current; 

under similar conditions with respect to ion concentrations 

and transmembrane potential, a value of about 100 pA/pF 

has been reported in cochlear hair cells (Fettiplace, 2009). 

Therefore, a major change in vestibular transduction may 

take place when TRPA1 is maximally stimulated. However, 

an intermediate level of TRPA1 activation was mostly 

demonstrated by outward currents that occur at strongly 

positive holding potentials. Such potentials are unlikely to 

occur in situ and do not have direct physiological relevance. 

Inward currents at physiologically relevant membrane 

potentials were small in the presence of submaximal 

concentrations of AITC. Therefore, if situations exist when 

TRPA1 assumes a functional relevance, a requirement for a 

quite strong stimulation is expected.

As potential stimuli relevant in the inner ear in some 

conditions, various substances may be considered such 

as nicotine (Talavera et al., 2009) and propofol (Lee et al., 

2008; Fischer et al.,2010). For both of these, an association 

with an increased incidence of vestibular vertigo has 

been implicated (Knox and McPherson, 1997; Lin and 

Young, 2001), although a direct link to TRPA1 is far from 

being established. Furthermore, TRPA1 may be a sensor 

for oxidative stress and reactive oxygen species (Hill and 

Schaefer, 2008; Bessac et al., 2008; Taylor-Clark et al., 

2008). These findings may have major implications for the 

vestibular organ because oxidative stress is considered an 

important contributing pathological factor for vestibular 

diseases characterized by endolymphatic hydrops and 

attacks of vestibular vertigo (Labbé et al., 2005; Hayashi 

et al., 2010).

In conclusion, while TRPA1 does most likely not 

contribute to the function of the inner ear under normal 

conditions, especially not to the normal transduction 

process, the present study demonstrates the functional 

expression of the channel protein in vestibular hair cells 

and that currents may be induced by typical and specific 

stimuli of TRPA1. Therefore, a role of TRPA1 under some 

pathological conditions may be prevalent in the vestibulum. 

In particular, if a drug that potentially interferes with the 

multi-modal channel TRPA1 causes vestibular side effects, 

the action on TRPA1 may be considered as the molecular 

link.
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