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Abstract: In this paper, we extend the result due to Liu Qihou and prove some
sufficient and necessary conditions for modified Ishikawa iterative sequences of
asymptotically quasi-nonexpansive mappings with error member to converge to
fixed points.

2000 AMS Subject Classification: 47H05, 47H10.

Key Words: Asymptotically quasi-nonexpansive mapping, Modified Ishikawa it-
erative sequence, Banach space.

1. Introduction

Let E be a subset of normed space X, and let T be a self-map of E.T is said to be
an asymptotically quasi-nonexpansive map, if there is un ∈ [0,+∞), limn→∞ un =
0,such that ‖Tnx− p‖ ≤ (1 + un)‖x− p‖,∀x ∈ E,∀p ∈ F (T ) (F (T ) denotes the set
of fixed points).

T is an asymptotically nonexpansive map if ‖Tnx − Tny‖ ≤ (1 + un)‖x −
y‖,∀x, y ∈ E.
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Petryshyn and Williamson [1], in 1973, proved a sufficient and necessary condition
for Picard iterative sequences and Mann iterative sequences to converge to fixed
points for quasi-nonexpansive mappings. In 1997, Ghosh and Debnath [2]extend
the result of [1] and gave the sufficient and necessary condition for Ishikawa iterative
sequences to converge to fixed points for quasi-nonexpansive mappings. In 2001,
Liu [3] extend the above result and obtained some sufficient and necessary condition
for Ishikawa iterative sequence of asymptotically quasi-nonexpansive mappings with
error member to converge to fixed points. In this manuscript, we will extend the
result of [3] to the modified Ishikawa iterative sequences with errors and will prove
some sufficient and necessary conditions for modified Ishikawa iterative sequences
of asymptotically quasi-nonexpansive mappings with error member to converge to
fixed points.

2. Main Results

Theorem 2.1. Let E be a nonempty closed convex subset of Banach space, and
T : E → E an asymptotically quasi-nonexpansive mapping of E (T need not be
continuous), and F (T ) nonempty. ∀x1 ∈ E, let

xn+1 = anxn + bnTmnyn + cnvn

yn = ānxn + b̄nT knxn + c̄nwn,∀n ∈ N,

where vn, wn ∈ E and (‖vn‖)∞n=1,(‖wn‖)∞n=1 are bounded,mn, kn are two any positive
integer sequences; 0 ≤ an, ān, bn, b̄n, cn, c̄n ≤ 1, an +bn +cn = ān + b̄n + c̄n = 1,∀n ∈
N ,

∑∞
n=1 bnumn

< +∞,
∑∞

n=1 bnukn
< +∞,

∑∞
n=1 cn < +∞,

∑∞
n=1 c̄n < +∞.

Then (xn)∞n=1 converges to a fixed point if and only if limn→∞ infd(xn, F (T )) =
0,where d(y, C) denotes the distance of y to set C;i.e., d(y, C) = inf∀x∈Cd(y, x).

Theorem 2.2. Let E be a nonempty closed convex subset of Banach space,
and T : E → E an asymptotically nonexpansive mapping of E (T need not be
continuous), and F (T ) nonempty. ∀x1 ∈ E, let

xn+1 = anxn + bnTmnyn + cnvn

yn = ānxn + b̄nT knxn + c̄nwn,∀n ∈ N,

where vn, wn ∈ E and (‖vn‖)∞n=1, (‖wn‖)∞n=1 are bounded, mn, kn are two any pos-
itive integer sequences;0 ≤ an, ān, bn, b̄n, cn, c̄n ≤ 1,an + bn + cn = ān + b̄n + c̄n =
1,∀n ∈ N .

∑∞
n=1 bnumn

< +∞,
∑∞

n=1 bnukn
< +∞,

∑∞
n=1 cn < +∞,

∑∞
n=1 c̄n <

+∞.Then (xn)∞n=1 converges to a fixed point if and only if limn→∞ infd(xn, F (T )) =
0, where d(y, C) denotes the distance of y to set C;i.e., d(y, C) = inf∀x∈Cd(y, x).
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Theorem 2.3. Let E be a nonempty closed convex subset of Banach space, and
T : E → E an asymptotically quasi-nonexpansive mapping of E (T need not be
continuous),and F (T ) nonempty. ∀x1 ∈ E, let

xn+1 = anxn + bnTmnyn + cnvn

yn = ānxn + b̄nT knxn + c̄nwn,∀n ∈ N.

where vn, wn ∈ E and (‖vn‖)∞n=1, (‖wn‖)∞n=1 are bounded, mn, kn are two any posi-
tive integer sequences; 0 ≤ an, ān, bn, b̄n, cn, c̄n ≤ 1, an + bn + cn = ān + b̄n + c̄n =
1,∀n ∈ N ,

∑∞
n=1 bnumn < +∞,

∑∞
n=1 bnukn < +∞,

∑∞
n=1 cn < +∞,

∑∞
n=1 c̄n <

+∞. Then (xn)∞n=1 converges to a fixed point p of T if and only if there exists some
infinite subsequence of (xn)∞n=1 which converges to p.

In order to prove the above theorem, we will first prove the following lemmas.

Lemma 1. Let E be a nonempty convex subset of linear normed space, T an
asymptotically quasi-nonexpansive mapping of E, and F (T ) nonempty.∀x1 ∈ E,let

xn+1 = anxn + bnTmnyn + cnvn

yn = ānxn + b̄nT knxn + c̄nwn,∀n ∈ N,

where vn, wn ∈ E and (‖vn‖)∞n=1, (‖wn‖)∞n=1 are bounded,mn, kn are two any posi-
tive integer sequences with

∑∞
n=1 bnumn

< +∞,
∑∞

n=1 bnukn
< +∞; an + bn + cn =

ān + b̄n + c̄n = 1, 0 ≤ an, ān, bn, b̄n, cn, c̄n ≤ 1,∀n ∈ E. Then
(a)‖xn+1 − p‖ ≤ (1 + rn)‖xn − p‖+ tn,∀n ∈ N,∀p ∈ F (T ),
where rn = bn(umn

+ukn
+Lumn

), L = supn≥0un, tn = bn(1+umn
)c̄n‖wn−p‖+

cn‖vn − p‖.
(b)There exists a constant M > 0, such that ‖xn+m − p‖ ≤ M‖xn − p‖ +

M
∑∞

k=n tk,∀n, m ∈ N,∀p ∈ F (T ),where M = e
∑∞

i=n bi(umi
+uki

+Lumi
).

Proof of (a). For all p ∈ F (T ),

(1)

‖xn+1 − p‖ = ‖anxn + bnTmnyn + cnvn − p‖
≤ an‖xn − p‖+ bn‖Tmnyn − p‖+ cn‖vn − p‖
≤ an‖xn − p‖+ bn(1 + umn)‖yn − p‖+ cn‖vn − p‖,

and

(2)

‖yn − p‖ ≤ ān‖xn − p‖+ b̄n‖T knxn − p‖+ c̄n‖wn − p‖
≤ ān‖xn − p‖+ b̄n(1 + ukn

)‖xn − p‖+ c̄n‖wn − p‖
≤ (1 + b̄nukn

)‖xn − p‖+ c̄n‖wn − p‖.
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substituting (2) into (1),it can be obtain that

‖xn+1 − p‖ ≤ an‖xn − p‖+ bn(1 + umn
)(1 + b̄nukn

)‖xn − p‖
+ bn(1 + umn)c̄n‖wn − p‖+ cn‖vn − p‖

≤ [1 + bn(umn
+ ukn

+ umn
ukn

)]‖xn − p‖
+ bn(1 + umn)c̄n‖wn − p‖+ cn‖vn − p‖

≤ (1 + rn)‖xn − p‖+ tn,

where rn = bn(umn
+ ukn

+ Lumn
), L = supn≥0un, tn = bn(1 + umn

)c̄n‖wn − p‖+
cn‖vn − p‖. This completes the proof of (a).

Proof of (b).From (a) it can be obtained that

‖xn+m − p‖ ≤ (1 + rn+m−1)‖xn+m−1 − p‖+ tn+m−1

≤ ern+m−1‖xn+m−1 − p‖+ tn+m−1

≤ e(rn+m−1+rn+m−2)‖xn+m−2 − p‖+ ern+m−1tn+m−2 + tn+m−1

≤ · · ·

≤ e
∑n+m−1

i=n ri‖xn − p‖+ e
∑n+m−1

i=n ri

n+m−1∑
i=n

ti

≤ M‖xn − p‖+ M
n+m−1∑

i=n

ti, whereM = e
∑∞

i=n bi(umi
+uki

+Lumi
).

This completes the proof of (b).

Lemma 2[3]. Let the number of sequences (an)∞n=1, (bn)∞n=1,and(rn)∞n=1 satisfy
that an ≥ 0, bn ≥ 0, rn ≥ 0,

∑∞
n=1 bn < +∞,

∑∞
n=1 rn < +∞ andan+1 ≤ (1 +

rn)an + bn,∀n ∈ N .Then
(a)limn→∞ an exist.
(b)If limn→∞ infan = 0, then limn→∞ an = 0.

Proof of the Theorem 2.1. From Lemma 1,we have

(3) ‖xn+1 − p‖ ≤ (1 + rn)‖xn − p‖+ tn,∀p ∈ F (T ),∀n ∈ N,

Since
∑∞

n=1 bnumn
< +∞,

∑∞
n=1 bnukn

< +∞,
∑∞

n=1 cn < +∞,
∑∞

n=1 c̄n < +∞,
(‖vn‖)∞n=1, (‖wn‖)∞n=1 are bounded; thus we know

∑∞
n=1 rn < +∞,

∑∞
n=1 tn <

+∞.From (3),we obtain

d(xn+1, F (T )) ≤ (1 + rn)d(xn, F (T )) + tn,
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Since limn→∞ infd(xn, F (T )) = 0 and from Lemma 2,we have

lim
n→∞

d(xn, F (T )) = 0.

It will be proven that (xn)∞n=1 is a Cause sequence.
For all ε1 > 0, from Lemma 1,it can be known there must exist a constant

M > 1,such that

(4) ‖xn+m − p‖ ≤ M‖xn − p‖+ M
n+m−1∑

k=n

tk,∀p ∈ F (T ),∀n, m ∈ N.

Because limn→∞ d(xn, F (T )) = 0 and
∑∞

k=1 tk < +∞,there must exist a constant
N1, such that when n ≥ N1,

d(xn, F (T )) ≤ ε1
3M

and
∞∑

k=n

tk ≤
ε1

6M
,

so there must exist p1 ∈ F (T ), such that d(xN1 , p1) ≤ ε1
3M .

From (4),it can be obtained that when n ≥ N1,

‖xn+m − xn‖ ≤ ‖xn+m − p1‖+ ‖xn − p1‖

≤ M‖xN1 − p1‖+ M‖xN1 − p1‖+ 2M
∞∑

k=N1

tk

≤ ε1.

This implies (xn)∞n=1 is a Cause sequence. The space is complete; thus limn→∞ xn

exists.
Let limn→∞ xn = p. It will be prove that p is a fixed point.
For all ε2 > 0, limn→∞ xn = p; thus, there exist a natural number N2 such that

when n ≥ N2,

(5) ‖xn − p‖ ≤ ε2
4 + 2u1

.

limn→∞ d(xn, F (T )) = 0 implies that there exists a natural number N3 ≥ N2, such
that

d(xN3 , F (T )) ≤ ε2
4 + 2u1

.



6 Y. H. YAO, R.D. CHEN, AND H.Y. ZHOU

Thus, there exists a p2 ∈ F (T ), such that

(6) ‖xN3 − p2‖ = d(xN3 , p2) ≤
ε2

4 + 2u1
.

From (5) and (6),

‖Tp− p‖ = ‖Tp− p2 + p2 − xN3 + xN3 − p‖
≤ ‖Tp− p2‖+ ‖xN3 − p2‖+ ‖xN3 − p‖
≤ (1 + u1)‖p− p2‖+ ‖xN3 − p2‖+ ‖xN3 − p‖
≤ (1 + u1)‖xN3 − p2‖+ (1 + u1)‖xN3 − p‖+ ‖xN3 − p2‖+ ‖xN3 − p‖
= (2 + u1)‖xN3 − p‖+ (2 + u1)‖xN3 − p2‖
≤ ε2.

ε2 is an arbitrary positive number. Thus Tp = p; i.e., p is a fixed point of T . This
completes the proof of Theorem 2.1. Using the same method, Theorem 2.2 can be
proven. Theorem 2.3 can be proven by Theorem 2.1.

Remark. Theorem 2.1-2.3 extend the result of [3] to the modified Ishikawa
iterative sequences with errors.
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