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Abstract:The search of bearing geometry and performance which satisfies at best design objective along with design criteria is not
so easy task. Design optimization of hydrodynamic bearings is very complex in nature. The complexity and time consuming nature
of the design process of hydrodynamic bearings warranted the development of a new methodology. The purpose of this study is to
use of the genetic algorithm in the optimal design of a three-lobe preloaded fluid film bearing in essence developing the bearing
configurations that optimize power loss along with other design criteria namely fluid film thickness, stability parameter, film
temperature, and film pressure. The results obtained and presented in this study are compared to results from numerical optimization
methods such as gradient-based method, and show the potential of the genetic algorithm in optimization of three-lobe preloaded
hydrodynamic bearings. This robust method has been designed to search for most feasible solutions to problems and has gained
recognition in many fields.
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Genetik Algoritma Kullanilarak Hidrodinamik Yataklarin Tasariminda Gig
Kaybi Minimizasyonu

Ozet:Hidrodinamik yataklar tasarmmnda énemli olan geometri ve performansin tasarim kriterlerini saglamasi kolay bir is
degildir. Hidrodinamik yataklarin tasarim optimizasyonu dogal olarak ¢ok karmasiktir. Bu karmagik ve zaman gerektiren
hidrodinamik yataklarin tasarimi yeni bir tasarim yontemini gerekli kilmaktadir. Bu ¢alismanin amaci genetik algoritma metotunu
kullanarak hidrodinamik yataklarin tasariminda onemli olan gli¢ kaybini en aza indirmek ayni zamanda yag filmi kalinhigi,
stabilizasyon parametresi, yag filmi sicaklifi ve yag basinci i¢in en uygun degerleri bulmada 6nemli rol oynayan yataklarin
konfigurasyonunu en iyi sekilde tasarlamaktir. Bu ¢aligmada elde edilen sonuglar klasik olan numerik metotla elde edilen sonuglarla
karsilastirilarak genetik algoritmanin potansiyeli ve kabiliyeti gosterilmistir. Genetik algoritma tabii seleksiyon (se¢im) teknigini
kullanarak tanimlanan simnirlar iginde tarama yapan ve genetik fikrine dayali uygun arastirma teknigidir. Giin gectikge genetik
algoritma daha iyi taninmakta ve bir ¢ok alanda uygulanmaktadir.

Anahtar Kelimeler: gii¢ kayb1, genetik algoritma, optimizasyon, hidrodinamik yataklar

Introduction

Many numerical optimization methods have been
developed and wused for design optimization of

Successful operation with increased efficiency and higher
power requirement in modern high-speed rotor-bearing

systems is very much dependent upon behavior of the
bearings which support the rotor. The bearings provide
damping [1], which is adequate for many rotating system
designs, and their stiffness properties affect the stability
of the rotor-bearing system [2]. The power loss
performance objective is an important element in the
design and optimization of hydrodynamic bearings. For
this study, power loss reduction is a primary goal in the
design of three-lobe preloaded bearings.

for more robust and efficient optimization methods. One
of these methods is the genetic algorithm, which has

random search technique. It is parameter search procedure
based on the idea of natural selection and genetics [3]. It
uses objective function information instead of derivatives
as in numerical method such as gradient-based method.

hydrodynamic bearings. Most of these methods are based
on gradient techniques. These methods are reasonably
effective for well-behaved objective functions. This is
because the gradient of the function helps to guide the
direction of the search. However, when the continuity and
existence of derivatives of the function are not assured,
gradient methods lack robustness and may trap in local
optima. To overcome these problems, many different
approaches exist in the literature.

The development of faster computer has allowed
gained recognition as a general problem solving technique
in many applications. The genetic algorithm is guided

Numerical search methods are good at "exploitation but
not exploration" of the parameter space [4]. They focus
on areas around the current design point, using local
gradient calculations to move to a better design. Since



there may not be exploration for all regions of the
parameter space, they can more easily be trapped in local
optima [4]. The genetic algorithm is a class of general
purposes algorithm that can provide a remarkable balance
between exploration and exploitation of the search space
[5]. From this point of view, this study provides use of the
genetic algorithm to seek the most feasible solution to this
problem. The genetic algorithm is new to the field of
bearing system analysis, and in current literature there is
limited work in the area of rotor-bearing systems using
the genetic algorithm. Interested reader can refer to the
studies by Saruhan et al. [6] and Saruhan et al. [7].

The Genetic Algorithm

The genetic algorithm is an efficient search technique
which applies the rules of natural genetics to explore a
given search space [8]. It is being applied successfully to
find solutions to problems in engineering and science [9].
This robust adaptive searching technique has gained
recognition as a general problem solving technique in
many optimization problems. The genetic algorithm is
well behaved for problems with combination of complex,
discontinuous, and discrete functions. The genetic
algorithm maintains a population of encoded solutions,
and guides the population towards the most feasible
solution [3]. Thus, it searches the space of possible
individuals and seeks to find the best fitness strings.
Rather than starting from a single point solution within
the search space as in traditional methods, the genetic
algorithm begins with an initial set of random solutions of
population. The solutions are represented by strings
(chromosomes), which are coded as a series of zeros and
ones. The genetic algorithm is non-deterministic search
optimization method and does not require differential.
Viewing the genetic algorithm as an optimization
technique, it belongs to the class of zero-order
optimization methods [10] and [11], which requires only
function evaluations.

The description of the genetic algorithm is outlined in
Figure 1. An initial population is chosen randomly in the
beginning and the fitness of each individual in initial
population members is evaluated. Then an iterative
process starts until the termination criteria have been
satisfied. There are many different ways to determine
when to stop running the genetic algorithm. One method
is to stop after a preset number of generations which is
used in this study or a time limit. Another is to stop after
the genetic algorithm has converged. Convergence is the
progression towards uniformity. A string is said to have
converged when 95 % of the population share the same
value [24]. After the evaluation of each individual fitness
in the population, the genetic operators -- selection,
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crossover, and mutation -- are applied to produce a new
generation. Other genetic operators are applied as needed.
The newly created individuals replace the existing
generation, and re-evaluation is started for fitness of new
individuals. In each succeeding generation, the genetic
algorithm creates a new set of "chromosomes" using
information of the previous generation. The loop is
repeated until an acceptable solution is found.
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Figure I Flow Chart for the Genetic Algorithm

Problem Statement

The effort here is the use of the genetic algorithm in the
optimal design of a three-lobe preloaded fluid film
bearing in essence of developing the bearing
configurations that optimize minimum power loss
objective.



Figure 2 A typical symmétric three-lobe bearing

Design Variables

There is a strong relationship among the design objective
and design criteria functions. There are common design
variables that influence these, the objective function and
the design criteria functions. These variables are the main
factor in determining the design problem. The design
vector of variables included pad axial length to journal
diameter ratio, pad (lobe) arc length, bearing radial
clearance, pad offset factor, pad preload factor, and
bearing orientation with respect to load expressed as:

Pad axial length / Journal diameter
Pad arc length
Bearing radial clearance

)= Pad offset factor O

Design Using the Genetic Algorithm
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where i =1,......... NDV  (number of design variables ).

Orbital displacement constraint,
Geometric inequality,
gr(x)<0

Bearing temperature is an important criteria that should be
met because it can be dangerous enough to give a failure
in journal bearings and thus the whole system. The limit
of acceptable high temperature assumed in this study is

200 F° (93.33 ), to avoid oxidation and standing with

Film temperature constraint,  f/°"" < f, < f"PP¢"

Film pressure constraint, [ Iiower <Sp <SP

k =12,......,NIC (number of inequality constraint)

Pad axial length to journal diameter ratio has effect on
fluid induced instability. A key parameter used in
describing fixed pad (lobe) bearings is the fraction of
converging pad to full pad length. This ratio is called pad
offset factor and defined as:

ap=Lply ()

where Lp and y are length of pad (lobe) with converging

film thickness and full pad arc length respectively.
Preload is referred to static loads, which are forces
applied to the rotor system. Because the preload can affect
the shaft centerline position, stability of rotor system is
considered. Preload factor can be expressed as [12]:

Pad preload factor = (c »—Cp )/ c, 3)

Bearing pad clearance, ¢ ,, and bearing radial clearance,

p b
¢p , can be computed as:

p=Trp~Vs 5 Cp=10p T (4)

where Ty

journal, and radius of bearing at minimum bore,
respectively.

re, and r, are radius of bearing pad, radius of

State Variables

State variables are the physical quantities, which is
describing the bearing configuration, operating
conditions, and loading of the rotor-bearing system. These
parameters are journal rotational speed, rotor mass,
journal external load, journal unbalance, lubricant
properties, lubricant pressure, and lubricant temperature.

Constraints
Constraints considered for optimum design of the three-

lobe journal bearing in rotor-bearing system include the
followings:

Lubrication flow constraint, fqlower < Sy <SP 5)

fulower < fu < fuupper

a good condition. Minimum temperature occurs beyond
the inlet groove in the direction of shaft rotation [13],
while the maximum temperature occurs in the vicinity of
the minimum film thickness [14].

The effect of pressure in fluid film is reflected by the
density and viscosity of the lubricant [15]. It is a common



knowledge that in almost all fluid film bearings, as the
film thickness decreases the pressure increases. The
amount of fluid that needs to be supplied for the bearing
is also a factor in bearing performance.

Rouch [16] and Abdul-Wahed [17] suggested that the
dynamic response of the system at bearing location should
be less than 30 percent of the clearance or less than film
thickness otherwise the properties of bearing are not
valid. Beside the constraints outlined so far the geometric
inequality constraints also are conducted such as bearing
pad length, bearing orientation, and attitude angle
constraints.

Objective Function

The objective function for power loss is:

Fopjective = power loss objective (6)
Fitness Function = Fpjpcqive — P (7)
NCON 5
P= zrj(max[O, g; D ®)
J=1

where  Fpecrive 18 power loss function and NCON is

number of constraints.

One of most important aspects of the genetic algorithm is
fitness function. Fitness function measures and rates the
coded variable vectors in order to select the fittest strings
that lead the solution. Constraint optimization problem
have been transformed into an unconstrained optimization
problem and handled by penalizing the objective function
value by quadratic penalty function, P, which is used to
ensure that the bearing system meets any imposed
constraints. In case of any violation of a constraint
boundary, the fitness function of corresponding solution
is penalized and kept within feasible regions of design

algorithm. The six design vectors of variables are coded
into binary digits {0, 1} as shown in Table 1. The binary
string representation for the vector of design

variables, x(7) , can be placed head-to-tail to form one

long string, referred to as a chromosome. This
chromosome represents a solution to the design problem.
Table 2 shows string of 40 binary digits denotes the
concatenated design variables vector. A randomly
selected set, for this study a 150-string, of potential
solutions is initialized to form the starting population as
can be seen in Table 2. Population size influences the
number of search points in each generation. A guideline
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space. The penalty coefficients, 7;

constraint have to judiciously selected because the good
solutions importantly depends on these values of penalty
coefficients.

for the j-th

Construction of Design Variables and the Genetic
Algorithm

The first step for applying the genetic algorithm to the
assigned design problem is encoding of the design
variables as a string. This string typically refers to a
solution to the problem. Rather from starting from a
single point solution within the search space as in
traditional methods, the genetic algorithm is initialized
with a population of solutions, which specify the number
of strings in each generation. The genetic algorithm uses a
selection scheme to select best individuals, strings, from
the population to insert into a mating pool by using the
fitness function. Individuals from the mating pool are
used by selection operators to generate new candidates for
forming the basis of the next generation of solution.

Each design variable vector has a specified range so that
X(D) jower S X)) Sx(1)ypper-  The  continuous  design

variables vector are represented and discretized to a
precision of & (&=0.01). The number of digits in the

binary string,/, is estimated from the following
relationship [18]:
21 2 [(x(i)upper - x(i) lawer) ‘9]+ 1 )

where x(i) pyer and X(7),pe, are the lower and upper

bound for design variable vector respectively. Suitable
representation, coding, of the design vectors is a success
key in the genetic

for an appropriate population size is suggested by
Goldberg [19].

The real value of the design variable vectors can be
transformed from binary string by following relationship
[20]:

50 = [ Oapper — 3D wer )/ = 1)) + X0 ioger
(10)

where a(i) represents the decimal value of string for

design variable vectors which is obtained by using base-2
form.
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Table 1 Coding of design variable vectors into binary digits.

Design Variables Vectors Binary String String Lenth (bits)
x(@) /

Pad axial length / journal diameter 010100 6

Pad arc length 010100 6

Bearing radial clearance 10100 5

Pad offset factor 0010001 7

Pad preload factor 00101010 8

Bearing orientation wrt. load 10001001 8

Table 2 A set of starting population.

Initial Population
Concatenated variables vectors head-to-tail

x(1) x(2) x(3) x(4) x(5) x(6)

010100 010100 10100 0010001 00101010 10001001
1 0101000101001010000100010010101010001001

100111 100010 01001 1100011 10101010 01110110
2 1001111000100100111000111010101001110110

001101 0111000 10011 0011100 00011001 10001010
150 00110101110001001100111000001100110001010

he selection scheme used in the algorithm code is a
tournament selection with a shuffling technique for
choosing random pairs for mating. Shuffling technique
rearrange the population in random order for selection.
Tournament selection approach works as follows: a pair
of individuals from mating pool is randomly picked and
the best-fit two individuals from this pair will be chosen
as a parent. Each pair of parent creates two Child as
described in the method of uniform crossover shown in
Figure 3. A specialized mechanism, elitism, is added to
the genetic algorithm. Elitism forces the genetic algorithm
to retain the best individual in a given generation to
proceed unchanged into the following generation [21].
This ensures the genetic algorithm that converges to
appropriate solution. In other words, elitism is a safeguard
against operation of crossover and mutation operators that
may jeopardize the current best solution.

A uniform crossover operator is used in this study.
Crossover is very important in the success of the genetic

algorithm. This operator is primary source of new
candidate solutions and provides the search mechanism
that efficiently guides the evolution through the solution
space towards the optimum. In uniform crossover, every
bit of each parent string has chance of being exchanged
with corresponding bit of the other parent string.
Procedure is to obtain any combination of two parent
strings (chromosomes) from the mating pool at random
and generate new Child strings from these parent strings
by performing bit-by-bit crossover chosen according to a
randomly generated crossover mask [22]. Where there is a
1 in the crossover mask, the child bit is copied from the
first parent string, and where there is a 0 in the mask, the
Child bit is copied from the second parent string. The
second Child string uses the opposite rule to the previous
one as shown in Figure 3. For each pair of parent strings a
new crossover mask is randomly generated.

Crossover mask 1001011100100101110010010111001001011100

Parent 1 1010001110101000111010100011101010001110
Parent 2 0101010011010101001101010100110101010011
Child 1 1100001111110000111111000011111100001111
Child 2 0011010010001101001000110100100011010010

Figure 3 Uniform crossover



Crossover operator with different probability, (0.5, 0.7,
and 0.9), were tested for genetic algorithm performance.
The results showed that the crossover probability, 0.7,
performs better than the 0.5 and 0.9.

Preventing the genetic algorithm from premature
convergence to a non-optimal solution, which may
diversity lost by repeated application of selection and
crossover operators, mutation operator is used. Mutation
is basically a process of random altering a part of
individual to produce a new individual by switching the
bit position from a 0 to a 1 or vice versa. Mutation
probabilities of 0.001, 0.01, and 0.1 were tested for the
genetic algorithm performance. For this study, the results
showed that the mutation probability of 0.001 gives
preferable results compared to 0.1 and 0.01. It should be
noted that if a mutation rate 0.1 is selected, many good
strings are never evaluated. In other words many random
perturbations are happened with mutation rate 0.1. This
causes the losing of parent resemblance and is disastrous
for obtaining the optimum point.

In summary, the setting parameters of genetic algorithm
for this study are chosen as follows: Chromosome length
= 40, population size = 150, number of generation = 150,
crossover probability = 0.7, and mutation probability =
0.001.

Results

The computation was performed on a personel computer
equipped with an Intel (R) Pentium (R) 4 CPU 3.00 GHz
512 MB RAM and registered an execution approximately
for 92 minutes for total of 22500 functions evaluation.

The distribution of normalized fitness function values for
generation number one, fifty, and one hundred and fifty is
given in Figure 4. Figure 5 provides average and best
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fitness function values in each generation as optimization
proceeds. From the plot, it can be seen that the fitness
function has converged to a uniform solutions with
similar values throughout generations. The genetic
algorithm found the optimal power loss at generation
number 25. Comparison of the best overall solution found
with numerical optimization by Roso [23] and this genetic
algorithm technique is given in Table 3. The results of
objective function for both methods are presented. As can
be seen from these results, the genetic algorithm was able
to obtain in some respect better results than those
obtained by numerical optimization. The result from
optimization by the genetic algorithm showed that power
loss ended with 2.52 hp while numerical method with
2.65 hp. It should be noted that the selected rotor
assembly operating at a rotational speed of 28155 rpm is
absorbing 450 hp.

The result from optimization showed that logarithmic
decrement ended with 1.20 while numerical method with
0.7393. This significant outcome allows the rotor to
maintain stability. Also it can be seen that the genetic
algorithm method produced a higher bearing radial
clearance. Increasing bearing radial clearance provides a
relatively higher film thickness and lower film pressure.
The power loss natuarlly increased by increasing the axial
length of the insert and the length of pad arc. The design
variables represented by length and diameter, along with
the effect produced by them on the power loss, bounded
by the temperature and pressure allowed limits. Design
variables are all systematically vary to identify the effects
of each combination such as: the length of diameter ratio
and radial clearance increase as the minimum film
thickness increases. The instability treshold increases with
larger preloads while tends to decreases as the offset
factor increases.

Pad (lobe) clearance, in.

Table 3 Comparison of the best overall solution 0.00294 0.00341
found for optimized geometry of bearing, design (0.0866mm)
criteria, Pad (lobe) offset factor
and objective function by numerical and 0.7551 1.0000
the genetic algorithm optimization methods Pad (lobe) preload factor
0.4392 0.4824
Bearing orientation, deg.
Optimization Method . 1 1.2.1 89.3
Bearing Optimized Geometry and Performance Logarithmic decrement
Numerical Genetic 0.7393 1.20
Film thickness, in.
Optimization Algorithm 0.00077 0.00088
(0.0223mm)
Radius at minimum bore, in. Power Loss, hp
0.8141 0.8142 2.65 2.52
(20.68mm) Film temperature, degF.
Pad axial length, in. 0199.9 183.940
0.8125 0.8125 (84.41C%)
(20.63mm) Film pressure, psi.
Pad (lobe) arc length, deg. 102§.0 967.0
90.00 89.95 (67.98kg/cm”)
Radial clearance at minimum bore, in.
0.00165 0.00177

(0.0449mm)
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Figure 4 Distribution of normalized fitness function values for generation
number one, fifty, and one hundred and fifty

Conclusions

This study shows the implementation of the genetic
algorithm and the feasibility of this technique considering
a three-lobe preloaded fluid film bearing in essence of
developing the bearing configurations that optimize
minimum power loss objective.

The overall results obtained in this study are superior to
those from a gradient-based optimization method. Instead
of using a starting point from which progress is made
toward the identification of the values of the design
variables that optimize the objective as in the numerical
optimization method, the genetic algorithm uses an entire
population of points, moves the population in the
direction of the optimum, and

tries continuously to refine a population of solutions.

The genetic algorithm has been shown to be capable of
solving complex problems where numerical methods have
experienced difficulties. Thus, the genetic algorithm
provides the designer an alternative design optimization
approach to bearings design and, it could be used for an

initial search followed by traditional methods to locate the
optimum.
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