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Özet: Bu çalışmada sabit katsayılı genelleştirilmiş pantograph denklemlerinin Chebyshev polinomlarını baz alarak yaklaşık 
çözümlerini bulmak için polinom yaklaşımına dayalı bir numeric metod sunulmuştur. Bu metod Chebyshev matris metodunun 
geliştirimiş bir halidir. Başlangıç koşullarına dayalı bazı problemler metodun doğruluğu ve etkinliği için verilmiştir. Ayrıca bulunan 
sonuçlar bilinen problemlerle karşılaştırılmıç ve çözümlerin doğruluğu ve hata analizi üzerine çalışmalar yapılmışyır. 
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A Chebyshev Approximate Method for Solving Constant Coefficients 
Pantograph Equations 

 

Abstract: In this paper, a numerical method based on polynomial approximation, using Chebyshev polynomial basis, to obtain the 
approximate solution of generalized pantograph equations with constant coefficients is presented. The technique we have used is an 
improved Chebyshev matrix method. Some numerical examples, which consist of initial conditions, are given to illustrate the 
accuracy and efficiency of the method. Also, the results obtained are compared by the known results; the accuracy of solutions and 
the error analysis are performed. 
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Introduction 

 
Functional-differential equations with proportional delays 
are usually referred to as pantograph equations or 
generalized equations. The name pantograph originated 
from the work of J.R. Ockendon and A.B. Tayler 
(Ockendon and Taylor, 1971) on the collection of current 
by the pantograph head of an electric locomotive. These 
equations arise in many applications such as number 
theory, electrodynamics, astrophysics, nonlinear 
dynamical systems, probability theory on algebraic 
structures, quantum mechanics, cell growth, industrial 
applications and in studies based on biology, economy 
and electro-dynamics (Derfel and Iserles, 1997, Morris, 
Feldstein and Bowen, 1972, Ajello, Freedman and Wu, 
1992, Mayers, Ockendon and Tayler ,1971, Buhmann and 
Iserles, 1993) Properties of the analytic solution of these 
equations as well as numerical methods have been studied 
by several authors. For example, equations with variable 
coefficients are treated in (Derfel and Iserles, 1997, 
Morris, Feldstein and Bowen, 1972, Derfel and Iserles , 
1997, Feldstein and Liu , 1998). On the other hand, the 
Taylor matrix methods based on Taylor polynomials have 
been given to find approximate solutions of pantograph 
equations by Sezer et al (Sezer and Akyüz-Daşçıoğlu , 
2007, Sezer, Yalçınbaş and Şahin, 2008, Sezer, Yalçınbaş 
and Gülsu, 2008). 
In recent years, Chebyshev matrix and Chebyshev 
collocation methods have been given to find polynomial  

 
solutions of differential, integral and integro-differential 
equations by Sezer et al. (Sezer and Kaynak, 1996, Sezer 
and Doğan, 1996, Akyüz and Sezer, 1999) and Akyuz-
Dascioglu et al. (Akyüz-Daşçıoğlu, 2006, Akyüz-
Daşçıoğlu, 2004). Our purpose in this study is to develop 
and to apply the mentioned Chebyshev methods to the 
high-order pantograph equation with constant 
coefficients. 
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where  denotes the shifted Chebyshev polynomials 

of the first kind;  denotes a sum whose first term is 

halved; , , are unknown Chebyshev 

coefficients, and N is chosen any positive integer such 
that . 
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Fundamental Relations 
 
Let us consider the pantograph equation (1) and find the 
matrix forms of each term in the equation. First we can 
convert the solution defined by a truncated series (3) 

and its derivative 
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By using the expression (5) and taking  

we find the corresponding matrix relation as follows 
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Similarly, we have the matrix relations between 
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and, from (9) and (10), 
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Consequently, by substituting the matrix forms (7) and (8) 
into (4), we have the matrix relation 
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Matrix Representation of the Function g(t)  
The Taylor matrix representations of the non-homogenous 
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Method of Solution 
 
We now ready to construct the fundamental matrix 
equation corresponding to Eq. (1). For this purpose, 
substituting the matrix relations (12) , (13) and (14) into 
Eq. (1) and then simplifying, we obtain the fundamental 
matrix equation 
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Thus the matrix  (thereby the coefficients 

) is uniquely determined. Also the Eq.(1) 

with conditions (2) has a unique solution. This solution is 
given by truncated Chebyshev series (3).  
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Accuracy of Solution and Error Analysis 
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We can easily check the accuracy of the method. Since 
the truncated Chebyshev series (3) is an approximate 

solution of Eq.(1), when the solution ( )Ny t  and its 

derivatives are substituted in Eq. (1), the resulting 
equation must be satisfied approximately; that is, for  
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xample 2: Consider the multi pantograph equation with 
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If , when  is sufficiently large enough, 

then the error decreases. 
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2003)  
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Illustrations 
 
The method of this study is useful in finding the solutions 
of pantograph equation with constant coefficients in terms 
of Chebyshev polynomials. We illustrate it by the 
following examples. For all the calculation and graphics, 
we have used Maple 12 and Matlab 7.7 

 ( ) ty t ewhich has exact solution . In Table 1, it is 

 solution

xample 3: Let us now consider the pantograph equation 

compared the approximate s obtained by the 
present method for different values of q. In Table 2, the 
error analysis is performed and results are compared.  
 

 
Example 1: Consider the pantograph equation of second 
order (Evens and Raslan, 2005) E

of third order (Liu and Li, 2004) 
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After the ordinary operations for N=4, the fundamental 
matrix equation and augmented matrix for the problem 
are gained as, respectively, 

 
 Table 3, we make a comparison between Adomian 
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method (Evens and Raslan, 2005), Taylor series method 
and Chebyshev series method. It is seen from Table 3 that 
the Taylor and Chebyshev methods are not good as 
Adomian method for small N; but increasing N, the 
Taylor method and Chebyshev method are better than 
Adomian method. And also Chebyshev method is better 

than Taylor method throughout the interval  0,1 .  
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Table 1. Comparison error functio  for different values of Example 2 

 

 

Table 2. E  of Example 2 

Table 3. Comparison of the absolute errors for Example 3 
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ethod with

six terms [19] 
(Present Method) 

  5N   17N   5N   17N   
0 8.52 -14 0.00 0.00 0 0  E

0 8. 8.5 - 1.2 19
2.2 6 

.2 3.83 E-14 54 E-8 0.00 4 E 8  E-  
0.4 1.68 E-13 5.36 E-6 2 E-1 5.36 E-6 9.2 E-19 
0.6 6.00 E-14 5.95 E-5 1.11 E-16 5.95 E-5 3.19 E-18 
0.8 6.66 E-15 3.26 E-4 0.00 

5.5 7 
3.25 E-4 1.019 E-17 

1 4.57 E-14 1.21 E-3 5 E-1 1.21 E-3 1.6252 E-16 
 

 
 
 

Present Method N=7 

 
 

it  

 
0.2q    E( it ) 0.5q   

E( it ) 

0 0 
0 2.5 -9 3.0 -9 

3  

0 
.2  E  E

0.4 .251 E-7 3.25 E-7 
0.6 5.5543 E-6 5.553 E-6 
0.8 4.161 E-5 

1
4.1606 E-5 

1 .9841 E-4 1.9839 E-4 
   

i  t
0.8q   E( i ) t 0.9q   

E( it ) 

0.1 1.0 E-9 0 
0.3 4.4 E-8 4.3 -8 

1  1  
 E

0.5 .545 E-6 .532 E-6
0.7 1.625 E-5 1.6081 E-5 
0.9 9.4237 E-5 9.3003 E-5 

  10 ( 0.2)N q   

i  

 
Muro ] t ya [20
( 0.2)q   

Present 
Sezer-

Y ş-

M  
Method 

alçınba
Gülsu 

ethod [11]
12  0.219 E-4 0.27 E-9 0.200 E-9 
22  0.108 E-5 0 0.100 E-9 
32  0.381 E-7 0 0.100 E-9 
42  0.126 E-8 0 0.100 E-9 
52  0.409 E-10 0 0.100 E-9 

62  0.120 E-11 0 0 
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onclusions 

new Chebyshev method based on the truncated 
hebyshev series is developed to numerically solve 

ntograph equations with the initial 
method is modified of the technique in 

fs. [12-16]. Besides, the obtained results in this paper 

ore terms from the 

 exact 

 H. I., Wu J. 1992.  A model 
 of stage structured population growth with 

 depended time delay. SIAM Journal of 
d Mathematics, 52, 855-869. 

1-507. 

orm. Applied Mathematics and 
Computation, 181, 103-112. 

Buhman

athematics, 7, 511-518. 

 
vens D.J., Raslan K.R. 2005. The Adomian 

 
 
 4. 

. 

 in Ordinary 
Differential Equations, ? 513-540. 

Muroya

pplied 
Mathematics, 152  347-366. 

Ockendo

. 

 
 
 49-657. 

(4), 
607-618.  

Sezer M

athematics and Computation, 171, 
332-344. 

Sezer M
 
 pantograph equations with linear functional 

C
 
 A 
C
higher order pa
onditions. This c

re
are more better than results obtained by the other 
methods in the references throughout interval. 
Moreover, this method is applicable for the 
approximate solution of the pantograph-type Volterra 
functional integro-differential equations with variable 
delays, higher-order differential-difference and integro-
differential-difference equations. 

It is observed that the method has the best advantage 
when the known functions in equation can be expanded 
to Chebyshev series. In addition, generally throughout 
the interval [0,1], better results are obtained. To get the 
best approximation, we take m
Chebyshev expansion of functions; that is, the 
truncation limit N must be chosen large enough. 

Another considerable advantage of the method is that 
our N th order approximation gives the exact solution 
when the solution is polynomial of degree equal to or 
less than N. If the solution is not polynomial, 
Chebyshev series approximation converges to the
solution as N increases. 
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