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ABSTRACT 

The occurrence of flyrocks due to blasting has certainly gained tremendous attention by recent researchers as well 

as mine operators since time immemorial. With the increase in demand for the mineral and subsequent thrust on 

the surface mining operations, the mining projects are expanding their scale of operations. As such, not only the 

mines, but also the nearby inhabitants are endangered. So flyrock is one of the most hazardous side effects of 

blasting operation in surface mining. There are several empirical methods for predicting flying rocks. The poor 

performance of these different methods is due to the complexity and difficulty of rock analysis. The existence of 

various influential parameters and their unknown relationships are the main reasons for the inaccuracy of empirical 

models. In this light, the present paper gives an overview of state-of-art researches and their outcome in the area 

of control and prediction of flyrocks. The paper discusses the significant contribution of soft computing techniques 

in controlling and minimizing the flyrocks. Furthermore, it lays emphasis on scientific and categorical 

identification of most significant rock explosive and blasting design parameters in the prediction models to 

enhance their precision and universalization.  
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Yapay Zeka Teknikleri Kullanılarak Yerüstü Maden Patlatmasında Kaya 

Fırlamaları ve Tahminine Genel Bir Bakış 
 

ÖZET 

Patlatma nedeniyle kaya fırlamalarının oluşumu, çok eski zamanlardan beri maden operatörlerinin yanı sıra son 

araştırmacılar tarafından kesinlikle büyük ilgi görmüştür. Yüzey madencilik operasyonlarına yönelik mineral ve 

daha sonraki talep artışı madencilik projeleri operasyonlarının ölçeğini genişletiyor. Hal böyle olunca sadece 

madenler değil, çevredeki sakinler de tehlike altına giriyor. Öyle ki kaya fırlamaları, yerüstü madenciliğinde 

patlatma işleminin en tehlikeli yan etkilerinden biridir. Kaya fırlamasını tahmin etmek için deneye dayalı birkaç 

yöntem vardır. Bu birbirinden farklı yöntemlerin düşük performansa sahip olması, kayaç analizinin 

karmaşıklığından ve zorluğundan kaynaklanmaktadır. Çeşitli etkili parametrelerin varlığı ve bunların bilinmeyen 

ilişkileri, deneye dayalı modellerin yanlışlığının ana nedenleridir. Bu ışık altında, bu makale, kaya fırlamalarının 

kontrolü ve tahmini alanındaki en son araştırmalara ve bunların sonuçlarına genel bir bakış sunmaktadır. Bu 

makale, yumuşak hesaplama tekniklerinin kaya fırlamalarını kontrol etme ve minimize etmede önemli katkısını 

tartışıyor. Ayrıca, kesinliklerini ve evrenselleşmelerini geliştirmek için tahmin modellerinde en önemli kaya 

patlayıcı ve patlatma tasarım parametrelerinin bilimsel ve kategorik olarak tanımlanmasına vurgu yapmaktadır. 

 
Anahtar Kelimeler: Kaya Fırlamaları, Güvenlik, Tahmin Modelleri, Patlatma 
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1. Introduction 

The mining industry largely depends on blasting 

for rock excavation. It is the first and the most 

important operation in the mining production 

cycle. The main objective of rock fragmentation 

by blasting to break the maximum possible 

quantity of rock at a minimum cost with minimum 

damage to the environment (Kahriman et al., 

2006; Uysal et al., 2013; Karadogan et al. 2014; 

Gorgulu et al., 2015; Kulekci and Alemdag, 

2016). The materials that are blasted include ore, 

coal, overburden rocks, limestone, aggregates for 

construction industry and rocks in tunnelling 

operations etc. A precise application of 

engineering is essential in achieving the desired 

objectives of blasting. The blasting operation 

must ensure quality and quantity requirements of 

production, maximizing the overall economics of 

any mining operation. The damage to the 

environment by various nuisances must also be 

properly controlled for their minimization. 

In any surface mines, the cycle of drilling and 

blasting operations comprises of drilling blast 

holes in a fixed pattern on the bench. The blast 

holes are charged with explosive and stemmed 

with stemming material. The blast holes are then 

fired using predetermined blast patterns and delay 

timing. The explosive action causes rock to 

fragment with variable throw and drop of the 

muckpiles, depending on the pattern and blasting 

designs. The fragmented rock is subsequently 

loaded and transported for further downstream 

operations.  

In general, the fragmentation optimisation with 

safety, ease of loading, controlled throw, drop and 

scatter of fragments are the prime objectives in 

any blasting operation. The primary blast must be 

designed in such a manner that the resulting 

fragments require little or no secondary breakage. 

Large fragments and fines are due to either poor 

blast design or adverse geological conditions. It 

must be noted that only 20 to 30% of explosive 

energy is used to loosen and fragment the rock. 

From the rest of the energy, a major percentage is 

wasted in the form of flyrock, ground vibration, 

air over-pressure, generation of dust and 

excessive fines etc. (Singh and Singh, 2005; 

Rezaei et al., 2011; Hajihassani et al., 2014; 

Sadeghi et al., 2020). 

In the current scenario, as the mining operations 

are increasing in areas close to human settlements, 

various aforestated blasting nuisances call for 

emergent attention. Unless the blasting 

impediments such as fly rocks ground vibration, 

dust generation, and air overpressure, etc. are 

controlled, the problems are likely to grow out of 

proportion and not only create the unceasing 

urban sprawl in the vicinity of blasting sites, but 

also beyond that and would have a far-reaching 

impact on damage to the ecosystem. Therefore, 

any surface mining operation must critically 

address to the mitigation of blasting nuisances for 

reducing the unwarranted damage to the 

ecosystem on one hand, while complying to the 

safety and productivity requirements on the other 

hand (Kulekci et al., 2018). 

Many researchers have attempted to predict 

nuisances due to blasting through various 

empirical equations (Kulekci and Yilmaz, 2018; 

2019). However, the performance of these models 

has not been very satisfactory in the field scale 

owing to lack of precision and scientifically. With 

the advent of scientific tools, techniques and 

gadgets (both hardware and software) in the past 

few decades it is possible to improve the accuracy 

and precision of prediction (Alemdag et al., 2019). 

To this end, the use of AI techniques including 

training and testing of blast data and comparing 

the results using different computational 

algorithms, have gained tremendous significance 

in last almost one decade. 

The AI techniques such as fuzzy inference system 

(FIS), artificial neural network (ANN), and 

adaptive neuro-fuzzy inference system (ANFIS) 

have already been successfully deployed in 

solving complex geotechnical problems (e.g., 

Momeni et al., 2014; Mohamad et al.; 2013a). 

These methods have also been extensively utilized 

for mitigation of blasting nuisances (e.g., Monjezi 

and Dehghani, 2008; Esmaeili et al., 2014) as the 

AI-based analytical models take benefit of 

flexible nature of data due to which, the models 
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can be easily calibrated as a prognostic tool for 

any new data that is obtained. This benefit makes 

the AI a fast and powerful tool in resolving the 

problems the relationship between the input and 

output parameters are nonlinear and are not 

known (Garret, 1994). 

In this light, the present paper provides a 

comprehensive review of some predictive models 

that have been widely used by focussing on 

prediction the flyrock distance due to blasting. 

Since flyrocks are very detrimental for any 

blasting episode and may call a lot of wrath not 

only within but also outside the mine boundaries. 

Furthermore, the paper is especially focussing on 

flyrocks state-of-art since this subject area needs 

as much importance as the ground vibration, air 

over pressure and dust, the paper aims at 

providing review of various models that can 

predict the flyrock distance effectively before the 

blast. This will help in improving the blast design 

thereby minimizing and controlling the flyrock 

distance. 

2. Materials and Methods 

2.1. Mechanisms of Flyrock 

2.1.1. Rifling 

Rifling occurs due to improper stemming and 

stemming material. The gaseous product of 

detonation can escape rapidly from the blasthole 

along the least resistance path resulting in ejection 

of stemming material and collar rock leading to 

flyrock (Figure 1). The disproportionate rocks in 

the stemming column may become lethal 

projectiles. Rifling can also be closely related to 

airblast mechanism (Amini et al., 2011; Ghasemi 

et al., 2012a). 

2.1.2. Cratering 

Cratering occurs mainly due to insufficient 

stemming length. It may also happen due to weak 

collar rock (Figure 1). The crater in the collar 

region due to weakened rock layer from the 

previous blast may result in flyrock which can be 

projected in any direction. The gaseous products 

of detonation start rapidly escaping through this 

region generating cratering and flyrock. Shorter 

inter-row delays or improper initiation of blasting 

rows may also lead to similar effects (Amini et al., 

2011; Ghasemi et al., 2012a). 

2.1.3. Face Bursting 

Face bursting occurs due to reasons such as 

insufficient burden, overcharging in the zones of 

weakness or the regions with major geological 

structures (Figure 1). The escape of gaseous 

detonation products at high pressure from these 

zones results in airblast, noise and flyrock (Amini 

et al., 2011; Ghasemi et al., 2012a). 

 
Figure 1. Mechanisms of flyrock-face burst, 

cratering and rifling (Zhou et al., 2019) 

 

2.2. Causes of Flyrock 

Flyrock is unexpected projection of rock 

fragments due to blasting beyond blast area. The 

area in which person may get injured due to 

blasting is generally referred as a blast area. The 

extent of blast area depends on rock mass 

properties, geology, blast design parameters, and 

the properties of the explosive used. The major 

reasons for cause of flyrock are the mismatch 

between explosive energy with the physico-

mechanical properties of the rock. The improper 

blast designs also contribute to this in a prodigious 

manner (Bajpayee et al., 2004, Mishra and Rout, 

2011; Murlidhar et al., 2020). 

2.3. Theory of Flyrock Generation 

In any blasting operation, flyrock is one of the 

unwanted phenomena which may cause 

nuisances. This includes disproportionately 

propelled rock fragments that are energized even 

to cross the mine boundaries endangering the 
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safety of man, materials, and machines. In a 

milder version they have abilities to cross the 

specified danger zone within the mining area also 

with similar consequences (IME, 1997). Flyrock 

can consequence in fatalities, injuries to human 

and other stray animals, and permanent damage to 

machineries, nearby structures, and other 

installations. Various studies have led towards a 

better understanding of causes of flyrock and 

helped in identifying the parameters responsible 

for the generation of flyrocks (Lundborg et al., 

1975; Verakis and Lobb, 2003). 

Some of the major parameters responsible for 

flyrock as explained by various studies are 

inappropriate delay time, improper blasthole 

pattern, insufficient burden, excessive charging, 

hole diameter, misfires, rock mass properties, 

geological structures, geological anomalies, and 

inadequate stemming, (Langefors and Kishlstrom, 

1963; Holmeberg and Persson, 1976; Roth, 1979; 

Persson et al., 1994; Adhikari, 1999; Kecojevic 

and Radomsky, 2005; Mohamad et al., 2013b; 

Mohamad et al., 2018). Lundborg (1974,1981) 

developed an empirical model for prediction of 

flyrock. Studies on the flyrock due to blasting 

were also accomplished by Ladegaard and 

Persson (1973), Fletcher and Andrea (1986), 

Siskind and Kopp (1995), Shea and Clark (1998), 

Bajpayee et al. (2004), Rehak et al. (2001), Jang 

and Topal (2014), Armaghani et. al. (2015a), 

Koopialipoor et al. (2019) and Yan et. al. (2020). 

3. Results 

It is important to identify and demarcate danger 

zones to avoid hazards associated with flyrock. 

Security lapses, lack of knowledge, and poor 

competence in judging the flyrock are aminly 

responsible for Accidents due to flyrocks 

(Adhikari, 1999; Bajpayee et al. 2004; Raina et al. 

2011). To overcome the incompetence in 

prejudging the flyrock distance, various models 

have been developed using Fuzzy Inference 

System (FIS), Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Artificial Neural Network 

(ANN), ANN based Imperialism Competitive 

Algorithm (ICA), ANN based Particle Swarm 

Optimization (PSO),) and Support Vector 

Machine (SVM) to predict the flyrock distances in 

any blasting round. 

3.1. Prediction of Flyrock by Fuzzy Inference 

System 

Rezaei et al. (2011) developed a fuzzy model to 

study flyrock phenomenon in the blasting. 

Spacing, burden, hole depth, stemming length, 

and powder factor were considered as input 

parameters. A comparative evaluation between 

the performance of fuzzy model and conventional 

statistical method was also performed. Coefficient 

of determination (R2) for the fuzzy model and 

conventional statistical model were 0.984 and 

0.701, respectively whereas the root mean square 

error (RMSE) for the fuzzy model and 

conventional statistical model were found as 1.98 

and 8.31, respectively.  As such, the fuzzy based 

model was reported to be superior over the 

statistical model. The study also performed 

sensitivity analysis which revealed that the most 

effective parameters on the flyrock were the 

powder factor and stemming length whereas the 

least effective was rock density. 

Same testing datasets were used for both fuzzy 

model and statistical model in order to compare 

the performance. The graph of predicted vs 

measured flyrock distance for fuzzy and statistical 

models developed by Rezaei et al. (2011) are 

shown in Figure 2, respectively. The predictive 

capability of both fuzzy model and statistical 

model is shown in the Figure 3. It can be observed 

from the figures below that the performance of the 

fuzzy is much better compared to conventional 

statistical model in terms of R2. 

Armaghani et al. (2015b) developed two models 

using ANFIS and ANN to predict flyrock 

distance. Powder factor and maximum charge per 

delay were used as input parameters to predict 

flyrock distance. The study indicated that the 

ANFIS (R2= 0.964) technique can provide better 

prediction capacity for flyrock distance when 

compared to ANN (R2= 0.925) model. The R2 for 

measured and predicted values for ANFIS and 

ANN are presented in Figure 4. 
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Figure 2. Comparative evaluation of measured 

and predicted flyrock distances for the (a) fuzzy 

model and (b) statistical model (Rezaei et al., 

2011) 

 

 
Figure 3. Comparison evaluation of predicted and 

measured flyrock distances (Rezaei et al., 2011) 

 

 
Figure 4. R2 of measured and predicted values of 

flyrock for (a) ANFIS and (b) ANN (Armaghani 

et al., 2015a) 

 

3.2. Prediction of Fly-rock by Artificial Neural 

Network (ANN) 

Monjezi et al. (2010a) employed Neuro-Genetic 

Algorithm (NGA) based modelling for predicting 

flyrock distances. The neural network parameters 

were optimized using Genetic Algorithm. 

Spacing, burden, powder factor, stemming length, 

and charge per delay were used as input 

parameters to predict the flyrock distances. The 

performance of the model was also compared with 

statistical method. Better efficiency was observed 

in Neuro-Genetic Algorithm with a high R2 value 

of 0.976 between predicted and measured flyrock. 

Stemming and powder factor were reported as the 

most influential parameters for predicting flyrock 

whereas RMR, spacing, and specific drilling, 

were the least effective parameters for predicting 

flyrock.

 

a)

b)

a)

b)
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Figure 5. Correlation between predicted and 

measured flyrock for NGA (Monjezi et al., 2010a) 

 

Monjezi et al. (2010b) developed a back 

propagation ANN model to predict flyrock 

occurrence and their distances. Hole diameter, 

average hole depth, stemming length, burden to 

spacing ratio, number of rows, powder factor, 

charge per delay, and rock density were used as 

input parameters for developing the model. The 

study determined ANN as a useful technique for 

improving the efficiency of blasting. It also 

reported a reduction from 110 m to 30 m in 

flyrock distance. A comparison of measured and 

predicted flyrock is shown in Figure 6. 

 
Figure 6. Comparison of measured and predicted 

flyrock distance (Monjezi et al., 2010b) 

 

Monjezi et al. (2012) used ANN to predict the 

flyrock in the blasting operation. Burden, spacing, 

stemming, hole depth, hole diameter, charge per 

delay, powder factor, and specific drilling, RMR 

were used as input parameters. It was reported in 

the study that that ANN has advantage in 

predicting flyrock in comparison to statistical 

model and Lundborg et al. (1975) model. Also, 

sensitivity analysis revealed that stemming, 

powder factor, charge per delay, and hole 

diameter were the most effective parameters, 

whereas hole depth and specific drilling were 

reported as the least effective parameters in this 

regard. Figure 7 presents a comparison between 

measured and predicted flyrock values by various 

models. As presented in the figure, the results of 

Lundborg equations have high predicted values of 

flyrock compared to measured values. Moreover, 

the results of ANN were reported as more accurate 

as compared to Lundborg model and statistical 

model. 

 
Figure 7. Comparative evaluation of measured 

and predicted flyrock by different models 

(Monjezi et al., 2012) 

 

Ghasemi (2012b) proposed two modes: the ANN 

based on backpropagation algorithm and the fuzzy 

model based on Mamdani algorithm. Burden, 

spacing, hole length, stemming, charge per delay, 

and powder factor were used as input parameters. 

The research reported fuzzy model as more 

reliable and successful than the ANN model. The 

R2 was determined as 0.957 for the fuzzy model. 

The deviation interval for fussy model (−8 to +9) 

were found smaller than that of ANN model (-10 

to 18). The predicted flyrock distances by fussy 

method were also found closer to the measured 

value of flyrock distance than that of ANN based 

model. 
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Figure 8. Comparison between the measured and predicted flyrock for fussy model and ANN model 

(Ghasemi, 2012b) 

 

Mohamad et al. (2013a) introduced a 

backpropagation ANN model to predict the size 

of fllyrock and the flyrock distance. The trial-and-

error method is used to determine the best suited 

architecture of ANN. Hole depth, hole diameter, 

burden to spacing ratio, stemming, subdrilling, 

number of rows, charge per delay, powder factor, 

and rock density were used as input parameters. 

Adequate consistency was observed between the 

predicted results and the measured data. The 

correlation coefficient for training, validation, and 

testing was obtained for evaluation of 

performance of the selected network. Figure 9 

shows the linear regression analysis for the 

measured values and predicted values obtained by 

the developed ANN model. The analysis indicated 

a high value of correlation coefficient among 

measured and predicted values. 

Trivedi et al. (2014) predicted flyrock distances 

by ANN, and MVRA. The motion analysis of 

videos of flyrock projectiles were also used to 

calculate flyrock distance and compared it with 

the observed data. Linear charge concentration, 

stemming length, burden, specific charge, RQD, 

and UCS were selected as input parameters. ANN 

method was reported as having the highest 

coefficient of determination and lowest Mean 

absolute error as well as root  

 

mean square error. The specific charge and linear 

charge concentration were positively correlated 

with the flyrock distance, whereas stemming 

length, burden, RQD and UCS have a negative 

correlation with the flyrock distance. Burden and 

stemming length have most pronounced impact 

for blast hole of 165 mm whereas UCS and RQD 

have most pronounced impact for blast hole of 

115 mm. Figure 10 presents a comparison 

between predicted, calculated and observed 

flyrock distances. 

 
Figure 9. Linear regression analysis for the 

selected model for datasets (a) training, (b) 

validation, (c) testing and (d) all (Mohamad et al., 

2013a) 

a) b)

c) d)
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Figure 10. Comparison between predicted, 

calculated and observed flyrock distances 

(Trivedi et al., 2014) 

 

Saghatforoush et al. (2015) employed ANN to 

predict the flyrock distance. It selected powder 

factor, spacing, burden, stemming, and depth of 

hole as input parameters. The value of 

determination coefficient for the ANN model was 

0.994, indicating high performance capacity of 

ANN in predicting flyrock distance (Figure 11). 

Ant Colony Optimization (ACO) algorithm is 

used in this study for optimizing the blasting 

parameters as well as outputs of ANN part. Trial-

and-error method is used for determining the 

number of iterations and values of ACO 

parameters. The study reported a reduction of 

61% for flyrock distance. 

 
Figure 11. Evaulation of measured and predicted 

values of flyrock for ANN model (Saghatforoush 

et al., 2015) 

 

Rad et al. (2020) used ANN to predict blast-

induced flyrock. Burden, spacing, stemming 

length and maximum charge per delay were 

considered as the input parameters. The study 

found that the performance of ANN was not good 

enough. The performance of ANN was then 

improved by using Genetic algorithm (GA). The 

GA-ANN was found superior when compared to 

ANN and regression models. Moreover, a 

combination of recurrent fuzzy neural network 

(RFNN) and GA hybrid model was also 

developed. The performance of RFNN-GA model 

was reported to be better than the ANN and GA-

ANN models. 

The study also conducted sensitivity analysis. 

This analysis revealed that the maximum charge 

per delay was the most influencing parameter 

affecting flyrock than the other parameters. 

RMSE and R2 were used for performance 

analysis of the predictive models proposed in this 

study. It is observed that the by the RFNN-GA 

model had lowest RMSE and the highest R2 

values, for testing datasets. The regression plots 

between the predicted results obtained from the 

predictive models and the real datasets for testing 

datasets are presented in Fig 12. From these 

figures, the superior predictive ability of RFNN-

GA model than the GA-ANN, ANN, and 

nonlinear regression models can be observed. 

3.3. Prediction of Fly-rock by Imperialism 

Competitive Algorithm (ICA) 

Marto et al. (2014) developed a combination of 

imperialist competitive algorithm (ICA) and ANN 

based model to predict flyrock distances due to 

blasting operation. Hole depth, stemming length, 

maximum charge per delay, burden to spacing 

ratio, powder factor, Schmidt hammer rebound 

number, and rock density were used as input 

parameters. The study demonstrated high degree 

of accuracy to predict flyrock distance with the 

proposed ICA-ANN model. The study reported 

maximum charge per delay and powder factor as 

the most influential parameters affecting flyrock. 

In this study, models were developed using ICA-

ANN and MRA to predict flyrock distance. 

Burden to spacing, hole depth, stemming, powder 

factor, maximum charge per delay, Schmidt 

hammer rebound number, and rock density were 

used as input parameter. Figure 13 presents the 

graphs between predicted flyrock distances using 

ICA-ANN and MRA techniques against the 

measured flyrock distances respectively. 

b)

a)
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Figure 12. Results of simulation of flyrock using (a) ANN, (b) GA-ANN, (c) nonlinear regression  

and (d) RFNN-GA (Rad et al., 2020) 

 

The predictive model indices are tabulated in 

Table 1. It is evident that the proposed ICA-ANN 

model produced higher performance in predicting 

flyrock distance among all methods.

a)

b)

c)

d)
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Figure 13. R2 of model in predicting flyrock 

distance (a) ICA-ANN and (b) MRA (Marto et al., 

2014) 

 

Table 1. Performance indices of the various 

predictive models (Marto et al.,2014) 

Predictive 

model 

Performance 

indices (R2) 

 
RMSE 

ICA-ANN 0.981  6.582 

BP-ANN 0.919  13.478 

MRA 0.743  23.877 

Empirical 0.118  109.064 

 

3.4. Prediction of Fly-rock by Particle Swarm 

Optimization (PSO) 

Armaghani et al. (2013) employed a hybrid PSO 

based ANN model for prediction of flyrock 

distances. Hole diameter, hole depth, sub-drilling, 

stemming, spacing, burden, powder factor, charge 

per delay, number of rows, and rock density were 

used as input parameters. Optimum parameters of 

the PSO algorithm were obtained by sensitivity 

analysis. It was found that this network was able 

to accurately estimate the flyrock distance. It was 

also found that the powder factor and charge per 

delay were most effective parameters affecting the 

flyrock distance. Figure 19 shows the strengths of 

the relations (rij values) between input and 

outputs (flyrock distance and PPV) parameters. 

Sensitivity analysis results show that powder 

factor and charge per delay are the most 

influential parameters on flyrock distance, 

whereas sub-drilling (I) and charge per delay are 

the most effective parameters on PPV. 

3.5. Prediction of Fly-rock by Support Vector 

Machine (SVM) 

Amini et al. (2011) demonstrated the application 

of SVM technique and ANN technique for 

prediction of flyrocks distances. Input parameters 

such as hole depth, hole diameter, spacing, 

burden, stemming, specific drilling and powder 

factor were considered for both the methods. It 

was reported that the running time considerably 

faster in SVM than ANNs. The accuracy of SVM 

model was also found to be higher than ANN 

based model.  

 
Figure 14. Correlation between measured and 

predicted flyrock by (a) ANN and (b) SVM 

techniques (Amini et al., 2011)  

b)

a)

a)

b)
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The plot for SVM modelling indicated an 

acceptable correlation coefficient of R = 0.97 for 

prediction the flyrock. Moreover, it was depicted 

in Figure 14 that in situations where there is non-

uniformly distributed dataset, the SVM is a more 

applicable model than ANN. For comparative 

evaluation the relative RMSE of both SVM and 

ANN was also determined. RMSE of SVM was 

4.5 while that for the ANN is 7.98. It was also 

reported that, the SVM method consumed a 

considerably less time compared to that of the 

ANN methods in the prediction process. The 

study concluded that SVM had high performance 

and makes good prediction. However, it was also 

reported that ANN can be considered as an 

alternative approach after the SVM for the 

prediction of flyrock. 

Manoj and Monjezi (2013) used the SVM model 

to predict the flyrock distance and occurrence in 

the blasting operations. Spacing, burden, hole 

length, stemming, specific drilling, and powder 

factor were used as input parameters. The SVM 

technique was reported as much better and more 

accurate in comparison with the statistical 

techniques. The SVM model had also a better 

prediction capacity for flyrock when compared to 

multivariate regression analysis (MVRA) model. 

The SRM model had it resulted in higher 

coefficient of determination and lesser mean 

absolute error (MAE). Figure 15 shows a graph of 

measured and predicted flyrock by SVM and 

MVRA. The SVM model demonstrated 

superiority over MVRA model. 

Bhagat et al. (2021) used Classification and 

Regression Trees (CART) and Multiple linear 

regression (MLR) models for mitigation of fly-

rock during boulder blasting. Sensitivity analysis 

of selected input parameters in model was also 

carried out to find the relevancy in prediction of 

flyrock. Five inputs namely specific drill density, 

rock density, charge per hole, specific charge, and 

stemming to burden ratio were considered for the 

best models. The RMSE and R2 values of testing 

dataset of CART model were 1.141 and 0.9555 

respectively, whereas for the MLR model, they 

were 4.868 and 0.7938 respectively. 

The CART model was reported to be the better 

model compared to MLR for predicting fly-rock 

distance. The relevancy factor analysis of inputs 

revealed most contributing parameters in order of 

relevance as specific charge (0.935), specific drill 

density (0.847), charge per hole (0.583), 

stemming to burden ratio (0.383) and rock density 

(0.243). Comparison of measured and predicted 

fly-rock distances for CART and MLR model is 

shown in Figure 16. 

 

 
Figure 15. Comparison of measured and predicted flyrock distance by SVM and MVRA (Manoj and 

Monjezi, 2013) 
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Figure 16. Comparison of measured and predicted fly-rock distances by best CART and MLR models 

 

4. Discussion 

It is well understood that three important 

parameters which affect the blasting design, and 

its outcome are rock mass parameters, blast design 

parameters, and explosive parameters.  

Nevertheless, most of the models for predicting 

the occurrence and distance of flyrocks have 

largely included the blast design parameters 

namely, spacing, burden, hole diameter, spacing 

to burden ratio, stemming length, hole depth, and 

subgrade drilling. 

Burden or burden to spacing ratio were used as 

input parameters in all the models. Burden has an 

important role in prediction of flyrock distance as 

the flyrock distance generally varies inversely to 

the burden. Flyrock distance seems to be directly 

proportional to the hole depth whereas it is 

inversely proportional to stemming length. 

Nonetheless, delay timing and initiation system 

(DF, NONEL, Electronic) play a significant 

impact on the flyrock, which needs to be 

thoroughly analysed by various state-of-art tools. 

Among rock mass properties, rock density is the 

most common parameter used in the models. Rock 

density also has an important role in the prediction 

of flyrock distance. The lighter the rock, the 

greater is the distance that the rock may cover. 

Some of the models have also considered RMR 

and SMR. The RMR and SMR values can be a 

good indicator of geological conditions of the 

rock which can improve the prediction efficiency. 

Nevertheless, the geological discontinuities, 

hydrological properties and porosity are also 

some important parameters that need to be 

incorporated discreetly in future studies. 

Maximum charge per delay, powder factor, and 

specific charge are the parameters related to the 

explosives that are used in the models. Maximum 

charge per delay represents the maximum quantity 

of explosive detonated at a given time indicated 

the maximum energy release, whereas the powder 

factor shows overall explosive energy release per 

unit volume of rock. Both factors play a crucial 

role on the assessment of flyrock distance. The 

index like blast ability index can also be 

incorporated for improving the prediction 

accuracy.  Future studies need to lay additional 

emphasis on type of explosive, VOD of explosive 

and essentially on the explosive rock-matching as 

important study parameters. 

5. Conclusion 

From the foregoing paper it may be clearly drawn 

that flyrocks are a major source of nuisance in any 

blasting operation in surface mine. The 

occurrence of flyrocks due to blasting has 

certainly gained tremendous attention by recent 

researchers as well as mine operators since time 

immemorial. The soft computing techniques have 

contributed profoundly during the last decade in 

prognosis, control, and mitigation of flyrocks. 

However, at the same time it may be noted that the 

range of applicability of various models 

developed so far seems to be limited by the 

unscientific selection of input data, which, in turn, 
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must be constraining factor in the prognosis and 

mitigation. Therefore, outside of the trained range 

the models may lack accuracy and precision. 

Therefore, it appears that the need of the hour is 

to use the AI based soft computing tools in 

prediction and mitigation of flyrock occurrence 

and distances based on thorough and scientific 

discretion of the input parameters to train test and 

validate the results. A lot more endeavour needs 

to be channelized in scientific identification of 

important rock mass, explosive and blasting 

design parameters to expand the scope of 

acceptance of prediction of flyrock occurrence, 

control, and mitigation. This will eliminate the 

subjectivity in selection of the input parameters in 

the prediction models. 
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