
* Corresponding Author Cite this article

*(mbatar@mehmetakif.edu.tr) ORCID ID 0000-0002-8231-6628

Research Article / DOI: 10.31127/tuje.987141

Batar M (2022). Word-based game development on Android with an efficient graphical
data structure. Turkish Journal of Engineering, 6(3), 256-261

Received: 25/08/2021; Accepted: 07/09/2021

Turkish Journal of Engineering – 2022; 6(3); 256-261

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje

e-ISSN 2587-1366

Word-based game development on Android with an efficient graphical data structure

Mustafa Batar*1

1Burdur Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Department of Computer Engineering, Burdur, Turkey

Keywords ABSTRACT
Word-Based games
Mobile games
Android
Graphs
DAWG

 Today, new games are released every day, and the virtual reality market is developing in a
similar way to the rapidly growing smartphone ecosystem about 10 years ago. In addition to
this, mobile games that take place with smartphones in people’s daily lives can be downloaded
to their phones for free, without paying any money, only with an internet connection. In this
sense, a mobile game on android has been designed and developed about word games for this
study. These word games need to have fast feedback and fast research time to the users and
the players. In this context, Directed Acyclic Word Graph (DAWG) has been used and applied
for giving fast feedback in the developed game “Kelimetris” in the study. The game “Kelimetris”
has been explained in detail step by step with showing its captures, screenshots, UML
diagrams and code blocks. In addition, this study has showed – the graphical data structure –
DAWG’s efficiency and usability in word-based games on mobile phones on Android. As a
result, this study will have had a positive effect on the relationship between data structures
and mobile games with the contribution of the developed game “Kelimetris” and the finite
state machine DAWG.

1. INTRODUCTION

Cultural historian and philosopher Johan Huizinga
has one of the most enduring evaluations of the game.
Huizinga game; “A voluntary action or activity that is
freely consented, but carried out within the limits of
certain time and place in accordance with fully mandated
rules, has a purpose in itself, accompanied by a sense of
tension and joy and a consciousness of 'being different'
from 'ordinary life'.” (Huizinga, 1995). It is possible to
adapt the definition of game that Johan Huizinga has
stated in this paragraph to games (adventure, simulation,
action, platform games, and etc.) (Yılmaz, & Çağıltay,
2015).

The game is directed by the players, within the
framework of their own wishes, the rules of the game and
depending on the rules. In a game, no matter what kind
of game the player plays, s/he has to comply with the
rules drawn by the game scenario or the group principles
developed by the virtual groups established in the game
for her/his “success in the game” (Bates, 2004). It
depends on the game scenario; the character cannot go
out of it in order to reach his goal. Within the framework
of these rules, the place where the player is located is the

virtual digital game world. In addition, it is the place
where the player can interact with other players in the
game where the character's struggle continues. Dialogue
during game streaming, especially with other players in
the virtual world can establish. At the same time, the
player can develop their characters in the games and
provide a financial income on top of that (Aarseth, 2001).

According to Huizinga; at the same time, s/he stated
that after playing once, the game can be conveyed as
having a spiritual value in the memories and can be
repeated at any time (Aarseth, 2003). Although some
rules are games, they are not independent of everyday
life. As a result, the addiction of the game increased. The
game and game stages have gained new identities and
images with technologies that have reached virtual
reality, and have continued to take place in different
positions in human life with new functions and different
gameplay diversity (Su & Zhao, 2011).

Nowadays, there are thousands of different types of
games in the market (Rouse, 2005). Generally, these
games are related to war, strategy, race, gambling, etc.
When it is looked at the games, it is realized that some
users play them to take pleasure, some of them play to
spend their times. However, in this study, a word-based

https://dergipark.org.tr/en/pub/tuje
https://orcid.org/0000-0002-8231-6628

Turkish Journal of Engineering – 2022; 6(3); 256-261

 257

game has been chosen in order to design, develop and
implement.

Word games and puzzles are spoken or board games
often designed to test ability with language or to explore
its properties. It has to be thought that it is to benefit
individuals in several ways (Mitchell, 2001). These
games enrich vocabulary of users while enjoying, they
improve user’s memory and exercise their mind muscles
for long-term learning and retention. Thus, they have
slight contribution to the users not to catch Alzheimer’s
disease. Furthermore, children can learn and understand
new and complex words in an easy and enjoyable way.
Moreover, these games require the person to read and
write. After a time, they improve a person’s reading and
writing speed. Also, text-based games can help people
(especially people in hospital, whether admitted there or
waiting to hear news about a loved one) to relieve a
stressful day in a way that other games cannot (Ahl,
1983).

In this study, a word game which is named
“Kelimetris” has been designed and developed on
Android. In “Kelimetris”, stones are falling rapidly from
top to bottom. One has to click on the stones to select the
letters. What is needed to do is to derive meaningful
words by selecting the right stones. There is no need to
create words related to the each other. For each correct
word, user gets points based on the points of letters.
When the screen is filled with stones, the game is over.

2. The Game “Kelimetris”

General Game Functionality has described main game
menu. This menu has included four main sections: “How
to Play”, “About the Game”, “Best Players” and “Start
Game”. Figure 1 has showed the use cases in general
game functionality in the developed game “Kelimetris”.

Figure 1. Use cases of the general game functionality

Figure 2. Screenshot of main game menu

In order to start the game (the main menu of the game
has been given in Figure 2), if the player doesn’t have a
profile, the player has to create a new profile or if it exists,
existing profile has to be selected. After the game is
started, the player has to try to construct words by
selecting as many letters as possible. The player
increases his/her own score for each valid word after
submission. Otherwise, s/he needs to construct new
ones. In addition to this, the activity diagram of the player
in order to play the game “Kelimetris” has demonstrated
in Figure 3.

Figure 3. Activity diagram of the section “play game”

Turkish Journal of Engineering – 2022; 6(3); 256-261

 258

In “Kelimetris” game scenario, once the player starts
the game in the main menu, then the stones that
embedded a character drop consecutively in an order.
The stones land on the top of each of one after another
through a pattern and the stone locations are different to
prevent that one stone overlaps the other. A location of a
stone is not given as a location of another one before the
stone leaves the window. Everything about the
arrangement of the locations to the stones is done in Port
super class. Also, it is needed to define some classes
extending Port: these are Port1, Port2, Port3, Port4 and
Port5 which are specialized to settle the stones in
different columns. These ports have been captured in
Figure 4 in the following.

Figure 4. Capture of ports in the game

Each stone location is an integer variable and they are
kept in an array named as Locations[] in port class. When
any one of the classes called Port1, Port2, Port3, Port4,
Port5 which extend Port is initiated, base elements of
Locations[] array are initialized to -1 value by the
initializeLocations() method. That means all the
locations in that port are available at the beginning to
settle a stone.

int [] Locations=new int[7];
int btnId=0;

Port(){
 initializeLocations();
}
public void initializeLocations(){
 int i;
 for(i=0;i<=6;i++){
 Locations[i]=-1;
 }
}

When a stone is created, its location needs to be
assigned to it, therefore getButtonLocation() method
gives an available location by traversing in Locations[]
array and comparing if an element of it is -1. If it is, then
it means this location is available and the method returns
the index with the element of -1.

public int getButtonLocation(){
 int x=0,i;
 for(i=0;i<=6;i++){
 if(Locations[i]==-1){
 x=i;
 }
 }
 return x*100;
}

After returning the index that represents an available

location, the element at that index is assigned to the
button ID value by insertButton() method. That means
the location is not available for the coming other stones.

public void insertButton(){
 int i,current=0;
 for(i=0;i<=6;i++){
 if(Locations[i]==-1){
 current=i;
 }
 }
 Locations[current]=btnId;
}

There is an updateLocations() method which is
invoked if the created word is confirmed. The method
updateLocations() actually gets IDs of the buttons that
were used to make meaningful word, as the word has a
meaning, the letters of that word must be removed from
the game window. Their locations also have to be
available in the Locations[] array, updateLocations()
replace the ID values regarding the past word by -1. As
the array is used to keep locations, there is no
dynamically changing size of the collection after the
stone is hidden (as shown in Figure 5), just the value of
its location index in Location[] array in Port class is
assigned to -1. Assigning -1 means that location is made
available to land another stone. New dropping stones –
as given in Figure 6 – come to these empty locations.

void updateLocations(Vector<Integer> Clickeds){
 int i;
 for(i=0;i<=6;i++){
 if(Clickeds.contains(Locations[i])){
 Locations[i]=-1;
 }
 }
}

Turkish Journal of Engineering – 2022; 6(3); 256-261

 259

Figure 5. Capture of hidden stones in the game

Figure 6. Replacement of new stones in the empty areas

Also, there is isLocationAvailable() method which
returns true if a Location[] array includes at least one -1
value meaning available location exists. It is used to make
the game over, if the game window is filled, then game
has to be stopped. In this context, the location adjustment
has been shown in Figure 7 in the following.

boolean isLocationAvailable(){
 int i;
 for(i=0;i<=6;i++){
 if(Locations[i]==-1){
 return true;
 }
 }
 return false;
}

Figure 7. Drop of the stones in the game

A mechanism is needed to provide an immediate
movement to each stone after it is created. It is seen that
the movement of the stone (as given Figure 7 above) can
be succeeded by assigning a layout parameter to this, by
changing some values of this parameter periodically, and
Mytask class, which extends TimerTask class, provides
the mechanism. In addition, extending TimerTask class
gives us an advantage to provide a continual movement
by invoking a method in a specific time period.

Figure 8. The regions of the window in the game

The game window has been divided into some parts
as shown in Figure 8 above: the score is displayed on the
right side of the layout and the buttons drop on the left
side of the layout. There is a stable button stands for
submission, when it is clicked; the word generated by the
player is sent for looking up to a function of LetterFactory
instance. If the word is confirmed, the Flag variable is

Turkish Journal of Engineering – 2022; 6(3); 256-261

 260

assigned to be true and the update locations methods
regarding each port are invoked, update locations
methods result in removal of the buttons which were
used for obtaining last confirmed word. A variable called
portcounter type of integer is assigned, it keeps track of
at which port a button will drop.

When a stone is generated, a letter is assigned to it.
We have lines of words of a text file which the words are
randomly taken from, and shuffled. Each character of
these shuffled words is set one by one to each released
stone. Words are used when their all letters are assigned
to the stones, and then the new words are brought from
the file. This process goes on as long as the game is being
played. All things that regarding the above are done by
LetterFactory class. The method addFromFile() opens a
text file and fetches corresponding to valid words at the
random lines in the file. Then fetched words are pushed
into a vector named words. wordsIndexes are random
integers corresponding to random lines in the text file so
as to get the words randomly from the file.

In addition to this, in computer science, a directed
acyclic word graph (DAWG) (Appel & Jacobson, 1988) is
a data structure that represents a set of strings, and
allows for a query operation that tests whether a given
string belongs to the set-in time proportional to its
length. In these respects, a DAWG (Crochemore & Vérin,
1997) is very similar to a tree, but it is much more space
efficient. The entry point into the graph represents the
starting letter in the search. Each node represents a
letter, and you can travel from the node to two other
nodes, depending on whether you the letter matches the
one you are searching for. It is a directed graph (Aoe,
Morimoto, Shishibori & Park, 1996) because one can only
move in a specific direction between two nodes. In other
words, one can move from A to B, but one can’t move
from B to A. It is Acyclic (Perrin, 1990) because there are
no cycles. One cannot have a path from A to B to C and
then back to A. The link back to A would create a cycle,
and probably an endless loop in your search program.
The structure of DAWG (Jansen & Boekee, 1990) has
been given in Figure 9.

Figure 9. DAWG working structure

Based on DAWG in Figure 9, the words “can”, “can’t”,
“do” and “dog” could be gained and created easily.

Moreover, each letter has its own point. The points
have been determined based on their usage rate. That
means if a letter places in many words, its point will be
less than the others that place rarely. Table 1 in the
following has showed the standard points of each letter
in the game “Kelimetris” for scoring.

Table 1. Letter points in the game
Letter Value Letter Value Letter Value

A 1 I 2 R 1

B 3 İ 1 S 2

C 4 J 10 Ş 4

Ç 4 K 1 T 1

D 3 L 1 U 2

E 1 M 2 Ü 3

F 7 N 1 V 7

G 5 O 2 Y 3

Ğ 8 Ö 7 Z 4

H 5 P 5

3. Results of the Game “Kelimetris”

As the consequences of the performance test in
which trying to search in a text file for a particular word,
it results that it takes 0,8 seconds for a file that consists
of 3.000 lines of words. However, when it comes to
handle a file that consists of 60.000 lines of words,
approximately it takes over 10 seconds. There is need a
dictionary which includes at least 80.000 words to be
played in the game. Therefore, DAWG Algorithm
implementation has been applied and developed for this
game “Kelimetris”. The results of searching a word in
“Kelimetris” have been given in Table 2 in the following.

Table 2. Word search time in the game “Kelimetris”

The Technique
The Number

of The Words

The Search

Time

Read from the File 1000 ~0,6 seconds

Read from the File 48000 ~10 seconds

DAWG 1000 ~0,001 seconds

DAWG 48000 ~0,5 seconds

Read from Database 1000 ~1 seconds

Read from Database 48000 ~5 seconds

Figure 10. The class diagram of the game

Turkish Journal of Engineering – 2022; 6(3); 256-261

 261

According to data in Table 2, it has been easily seen
that DAWG is very efficient and useful data structure in
searching a word in a mobile game with its fast feedback.

Finally, the game “Kelimetris” has been designed,
developed and accomplished to complete based on the
class diagram shown in Figure 10.

4. CONCLUSION

As a result of the development of technologies, the
game industry has become a large economic market in a
short time. From the first electronic game in 1947, to
Tennis for Two in 1958, from Pong to Pac-Man, from
Commodore 64 to Gameboy and Playstation, from Snake
on a Nokia mobile phone to social media games, from
Angry Birds on smartphones Until the first Pokemon Go
game, which was developed using virtual reality, the
game industry has always made progress, except for
short pauses. By making large investments in the mobile
game market, companies have entered into the
competition of game making. The increase in internet
connection speed, tablets, smartphones and social media
have made the gaming industry a constantly evolving
industry.

Based on this evolving gaming industry, there is need
to give fast responses to the players and the users in the
games. In this context, the developed game “Kelimetris”
on Android in the study has given a graphical data
structure DAWG (directed acyclic word graph) to
improve fast feedbacks and to shorten waiting period in
the game. Thus, the study has brought an innovation into
the mobile game development, and the literature as well.

ACKNOWLEDGEMENT

Ethics committee approval document is not required
for this study, and the author declares that there is no
conflict of interest.

Conflicts of interest

The authors declare no conflicts of interest.

REFERENCES

Aarseth E (2001). Computer Game Studies, Year One,
Game Studies: International Journal of Computer
Game Research, 1(1).

Aarseth E (2003). Playing Research: Methodological
Approaches to Game Analysis. Computer Game
Theory Compendium.

Ahl D H (1983). Creative Computing Video & Arcade
Games.

Aoe J, Morimoto K, Shishibori M & Park K-H (1996). A
Trie Compaction Algorithm for a Large Set of Keys,
IEEE Transactions on Knowledge and Data
Engineering, 8(3), 476-491.

Appel A W & Jacobson G J (1988). The World’s Fastest
Scrabble Program. Communications of the ACM,
31(5), 572-578.

Bates B (2004). Game Design: The Art and Business of
Creating Games. Boston, MA: Thomson Course
Technology.

Crochemore M & Vérin R (1997). Direct Construction of
Compact Directed Acyclic Word Graphs, 8th Annual
Symposium, CPM 97, Aarhus, Denmark, 116-129.

Huizinga J (1995). Homo Ludens, (Çev. MA. Kılıçbay),
İstanbul: Ayrıntı Yayınları.

Jansen J A & Boekee D E (1990). On the significance of the
directed acyclic word graph in cryptology, Advances
in Cryptology — AUSCRYPT '90, Lecture Notes in
Computer Science, 453, Springer-Verlag, pp. 318–
326, doi:10.1007/BFb0030372, ISBN 3-540-53000-
2.

Mitchell B L (2001). Game Design Essentials,
Indianapolis: John Wiley & Sons, Inc.

Perrin D (1990). Finite Automata, in: J. van Leeuwen, ed.,
Handbook of Theoretical Computer Science,
Elsevier, Amsterdam, Vol. A, 3-57.

Rouse R (2005). Game Design, Theory and Practice
(Wordware Game Developer’s Library). USA:
Worldware Publishing.

Su H, Zhao V (2011). Alive Character Design: For Games,
Animation and Film, Beijing: CYPI Press.

Yılmaz E & Çağıltay K (2015). History of Digital Games in
Turkey, Digra Uluslar Arası Konferansı.

© Author(s) 2022. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

