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 The accurate methods for the forecasting of hydrological characteristics are significantly important 

for water resource management and environmental aspects. In this study, a novel approach for 

daily streamflow discharge data forecasting is proposed. Streamflow discharge, temperature, and 

precipitation data were used for feature extraction which were systematically employed for 

forecasting studies. While the correlation-based feature selection (CFS) was used for feature 

selection, Random Forest (RF) model is employed for forecasting of following 7 days. Moreover, 

an accuracy comparison between the RF model and CFS-RF model is drawn by using streamflow 

discharge data. Acquired results confirmed the accuracy of CFS-RF model for both, middle and 

extended forecasting times compared to RF model which had similar accuracy values for the closer 

forecasting times. Moreover, the CFS-RF model proved to be much robust for extended 

forecasting durations.    
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1. Introduction 

The world population has increased dramatically in the 

latter half of previous century. However, the scarcity of 

water is the most pressing issue that sustainable survival 

of human civilization is facing. Against this backdrop, 

conservation of water resources needs urgent attention. On 

the other hand, accurate estimation of water characteristics 

such as precipitation, flow, evaporation, runoff, land use, 

and basin characteristics is critical to manage water 

resources. Furthermore, these estimates have a significant 

role in minimizing the fallouts of natural disasters such as 

drought and floods. Above all, one of the most crucial 

parameter is the streamflow discharge [1]. Moreover, there 

is an essential role of streamflow data in dam project 

design, basin management, hydroelectric energy capacity 

determination, flood control projects etc. Irregularities in 

water flow may result in significant economic losses and 

permanent damage to the environment around the river. 

The factor causing variation in river flows include change 

in climate, the greenhouse gases emissions, and 

meteorological and hydrological features [1, 2]. 

Streamflow discharge processes are challenging to 

forecast due to their dynamic nature, complexity, non-

stationarity, non-linearity. Therefore, the challenges 

involved in forecast accuracy of streamflow discharge 

made it an attractive area of research among hydrologists.  

Traditionally, time series have been evaluated using 

models such the Autoregressive Integrated Moving 

Average (ARIMA) using linear approach which is a 

parametric approach [3,4]. However, due to the non-

stationary and non-linear nature of streamflow discharge 

data, Artificial Intelligence (AI) techniques have been 

introduced [5-7].  

Furthermore, while predicting streamflow discharge 

Artificial Neural Network (ANN) based models provided 

better forecast accuracy. In addition, for estimation of 

streamflow discharge, models such as generalized 

regression, radial basis neural networks along with 

meteorological data are available now [8, 9]. Likewise, in 

water resource management and hydrological prediction, 

support vector machines are widely used. [10]. In previous 

literature, Streamflow discharge data were analyzed as 

signals, and decomposed using Discrete Wavelet 

Transform (DWT), Singular Spectral Analysis (SSA), 

Empirical Mode Decomposition (EMD), and Fourier 

Transform. The previous values of streamflow discharge 

data and the sub-band components of the signals are 

estimated using ANN, Support Vector Machines, and 

other techniques [6, 7, 11]. In addition, forecasting 
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building energy, streamflow discharge, day-ahead load, an 

hour ahead wind power and electrical short-term load, 

Random Forest (RF) is also used in literature [12-15]. 

The present study used an ensemble of CFS and RF as a 

novel approach to forecast daily streamflow discharge 

data. The main contributions of the present study are: 

• It proposes a forecasting method for streamflow 

discharge data with better accuracy by using previous 

data (seven days before the first forecast day). 

• Systematically extracted features from the daily 

streamflow discharge, precipitation, and temperature 

data were used using CFS-RF model for training and 

validation of the proposed method.  

 
 

2. Materials and Methods  

The input data used in this study is based on streamflow 

discharge (Q), precipitation (P) and temperature (Tmax, 

Tmin) values. The streamflow discharge data (16527 

datapoints) was recorded over a period of 46 years from 

Kootenay River near Skookumchuck basin in British 

Columbia, Canada. The exact coordinates of the drainage 

basin location at which data was collected are reported as 

49°54'38" N, 115°44'08" W (latitude: 49.91056061, 

longitude: 115.7355576) as shown in Figure 1. The data was 

obtained from CANOPEX database [16, 17] from a drainage 

area of 7196.93 km2. 

Figure 2 shows how the above-mentioned input data was 

used for the forecast model by utilizing seven days previous 

data for predicting the discharge data for the following seven 

days. While the previous seven days are denoted as one-to-

seven previous data, the following seven days are mentioned 

as one-to-seven ahead data. One-to-seven data (denoted as t-

n while n takes the value of 1 to 7) for each input (i.e., Q, P, 

Tmax, Tmin, a total of 28 dataset values). Correlation-based 

method (CFS) was used for selecting the features from the 

above mentioned 28 datasets for forecasting of one-to-seven 

ahead data. Also, Figure 2 shows the overall methodology as 

well as data constituents used for the development of CFS-

RF model. 

This model is based on 3 steps. The first step is 

distinguishing between the training and testing data.  The 

second step is feature extraction from the input datasets of 28 

values as shown in Table 1. The third step comprises of the 

application of selected features using RF model and this way 

a forecasting model was achieved. Later the accuracy of the 

trained forecasting model was evaluated using the testing 

data.  

More specifically, 70% of the datapoints belonging to all 

input datasets (P, Q, Tmax, Tmin) were used for training the 

forecasting model. The remaining 30% of the data was used 

for checking the accuracy of the model.  

 

Figure 1. Map of Kootenay River Near Skookumchuck 

 

 
Figure 2. The proposed CFS-RF forecasting model for daily 

streamflow discharge data 

 
Table 1. Selected features for forecasting of Q(t)  

Total features 

Tmax(t-1), Tmax(t-2), Tmax(t-3), Tmax(t-4), Tmax(t-5), 

Tmax(t-6), Tmax(t-7) 

Tmin(t-1), Tmin(t-2), Tmin(t-3), Tmin(t-4), Tmin(t-5), 

Tmin(t-6), Tmin(t-7) 

P(t-1), P(t-2), P(t-3), P(t-4), P(t-5), P(t-6), P(t-7) 

Q(t-1), Q(t-2), Q(t-3), Q(t-4), Q(t-5), Q(t-6), Q(t-7),   

Selected Features for One Ahead Forecast Output 

Tmax(t-2), Tmin(t-5), Tmin(t-7), P(t-1), Q(t-1) Q(t) 

Selected Features for Two Ahead Forecast Output 

Tmax(t-2), Tmin(t-1), P(t-1), P(t-6), Q(t-1) Q(t+1) 

Selected Features for Three Ahead Forecast Output 

Tmax(t-3), Tmin(t-1), Tmin(t-1),P(t-1), P(t-2), 

P(t-7), Q(t-1) 
Q(t+2) 

Selected Features for Four Ahead Forecast Output 

Tmax(t-1), P(t-5), P(t-6), P(t-7), Q(t-1) Q(t+3) 

Selected Features for Five Ahead Forecast Output 

Tmax(t-1), P(t-4), P(t-5), P(t-6), P(t-7), Q(t-1) Q(t+4) 

Selected Features for Six Ahead Forecast Output 

Tmax(t-1), P(t-4), P(t-5), P(t-6), P(t-7), Q(t-1) Q(t+5) 

Selected Features for Seven Ahead Forecast Output 

Tmax(t-1), P(t-4), P(t-5), P(t-6), P(t-7), Q(t-1) Q(t+6) 
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Training and testing streamflow discharge data used in 

this study are shown in Figure 3. Correlation coefficient for 

all datasets until t (the forecast day) to t-7 (seven days before 

the forecast day) is shown in Table 2. 

 

 
a) 

 
b) 

Figure 3. Daily streamflow data measured on Kootenay River 

Near Skookumchuck basin a) Training Data, b) Testing Data 

Table 2. Correlation Coefficient until (t) to (t-7) 

Training Correlation 

Coefficient (t) to (t-7) 

Testing Correlation 

Coefficient (t) to (t-7) 

Streamflow Discharge Data 

0.9887, 0.9656, 0.9423, 

0.9219, 0.9043, 0.8894 

0.9877, 0.9628, 0.9372, 

0.9139, 0.8931, 0.8739 

Precipitation Data 

0.3259, 0.0897, 0.0599, 

0.0513, 0.0454, 0.0473 

0.3171, 0.0679, 0.0477, 

0.0369, 0.0484, 0.0775 

Maximum Temperature Data 

0.9623, 0.9184, 0.8863, 

0.8645, 0.8487, 0.8365 

0.9586, 0.9111, 0.8766, 

0.8528, 0.8358, 0.8243 

Minimum Temperature Data 

0.9325, 0.8678, 0.8250, 

0.7956, 0.7745, 0.7595 

0.9368, 0.8691, 0.8232, 

0.7893, 0.7613, 0.7378 

 

2.2 Feature Selection 

The feature selection is a machine learning preprocessing 

stage that reduces the dimensionality of the data, removes 

irrelevant data, improves learning accuracy, and result 

comprehensibility. CFS method is a peculiar approach used 

for regression of datasets by evaluating the classification 

capabilities of the inherent features. This model prefers non-

contradicting features from the datasets by examining its 

relationship with the expected classification criteria. The 

CFS model uses the entropy based information theory. The 

definition of entropy is shown in Equation (1). 

𝐻(𝑥) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2(𝑃(𝑥𝑖))

𝑥∈𝑋

 
(1) 

The entropy of variable x is calculated using conditional 

probability, as shown in Equation 2 based on the input values 

of y.  

𝐻(𝑥/𝑦) = − ∑ 𝑃(𝑦𝑗) ∑ 𝑃(𝑥𝑖/𝑦𝑗)

𝑦∈𝑌

𝑙𝑜𝑔2(𝑃(𝑥𝑖/𝑦𝑗))

𝑥∈𝑋

 (2) 

Where P(xi), P(xi/yj) are the prior probability for all x values 

and the posterior probability for x and y values, respectively.  

Mutual information is defined as the amount by which the 

entropy of x as a result of additional information about x 

given by y shown in Equation 3. 

𝑔𝑎𝑖𝑛(𝑥/𝑦) = 𝐻(𝑥) − 𝐻(𝑥/𝑦) (3) 

If the gain(x/y) > gain(z/y), we can infer that feature y is more 

associated with feature x than to feature z.  

Equation 4 shows the symmetrical uncertainty coefficient 

(SUC), an important metric which shows the relationship 

between the features  

𝑆𝑈𝐶 = 2𝑥(
𝑔𝑎𝑖𝑛

𝐻(𝑦) + 𝐻(𝑥)
) 

(4) 

The SUC shows its tendency towards the relationship and 

has a normalized value with the range [0,1]; 1 denotes that 

one's knowledge completely predicts the value of the other, 

whereas 0 denotes that x and y are unrelated. It symmetrically 

handles a pair of attributes [18]. 

2.3 Random Forest Algorithm 

The random forest (RF) is an ensemble approach that 

combines the predictions of numerous decision trees into a 

single forecast and can be used for both, regression and 

classification problems. Leo Breiman [19] invented the RF 

technique in 2001. The main principle is bagging, which 

involves randomly selecting a sample of size m from the 

training set and fitting it to a regression tree. This is known 

as a bootstrap sample, and it is picked using replacement, 

meaning that the same observations may appear many times 

[20]. The RF algorithm is applied as follows: 
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• With the Bootstrap method, n size data set is selected. 

This data set is split into two sections: training data and 

test data. 

• The largest decision tree (CART) is generated using the 

training dataset, and this decision tree is not pruned. 

When dividing each node in this tree, m out of a total of 

p estimator variables are chosen randomly. The 

condition m<p must be satisfied in this situation because 

it is undesirable to see the tree grow too fast and adapt 

too soon. The highest knowledge gain among the m 

estimators chosen is used for branching. The value of 

this variable is decided by the Gini index. This process 

is repeated until there are no more branches to be created 

for each node. 

• Each leaf node is assigned a class. The test data set is 

then at the top of the tree, and each observation in this 

data set is assigned to a class. 

• All stages from 1st to 3rd step are repeated N times. 

• The tree is evaluated using observations that were not 

used during the development process. The repeat 

number of observations is used to classify the data. 

• A majority of votes is used to decide class assignments 

for each observation, tree set. 

Random forest parameters in Table 3 were established by 

trial and error throughout the model's creation, taking into 

consideration calculation time and predicting performance. 

2.4  Performance Evaluation 

In this study, The Root Mean Square Error (RMSE), The 

Mean Absolute Error (MAE), The Correlation Coefficient 

(R) and The Determination Coefficient (R2) were used to 

show the performance of the proposed method [21]. 

The differences between observed time series data and 

forecasted data by the proposed model are measured by 

average absolute error. MAE is described as follows: 

M𝐴𝐸 =
1

𝑁
∑|𝑋𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑖 − 𝑋𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖|

𝑁

𝑖=1

 

(5) 

RMSE is calculated by root of squared the average difference 

across the time series data. RMSE is denoted by the 

following equation: 

RMSE = √
1

N
∑(Xobserved,i − Xestimated,i)

2

N

i=1

 

(6) 

The R value shows the magnitude, direction, and 

significance of the relationship between measured and 

forecasted time series data. The R represents the correlation 

coefficient, which has a value between [-1, 1]. The R value 

is determined as shown in Equation 7: 

Table 3. Random Forest Parameters used in the forecasting study 

 Trials 
The best result 

for forecasting 

Number of iterations 
100, 200, 300, 

400 
300 

Number of attributes to 

randomly investigate 
0, 1, 2 0 

Number of folds for 

backfitting 
0 ,1 0 

Size of each bag, as a 

percentage of the 

training set size 

70, 80, 100 100 

Seed for random 

number generator 
Yes, No Yes 

The desired batch size 

for batch prediction 
70, 80, 100 100 

 

R =
1

N − 1
∑ (

Xobserved,i − μX

σX
) (

Xestimated,i − μXe

σXe
)

N

i=1

 

 

 

(7) 

While 𝑿𝒐𝒃𝒔𝒆𝒓𝒗𝒆𝒅,𝒊 shows the measured data, 𝝁𝑿  is the 

average, 𝑿𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅,𝒊 is predicted data and 𝝈𝑿 is the standard 

deviation of the measured data, 𝝁𝑿𝒆 shows the average of 

the predicted data is and the standard deviation 𝝈𝑿𝒆. 

The R2 coefficient is widely used to measure the 

predictability of hydrological models and is described as 

shown in Equation 8. This statistical criterion takes the value 

between -∞ and 1. The closer the R2 value is to 1, higher is 

the forecast accuracy.  [22]. The R2 value is calculated using 

the following equation: 

R2 = 1 −
∑ [Xobserved,i − Xestimated,i]2N

i=1

∑ [Xobserved,i − μX]2N
i=1

 
(8) 

Weka and MATLAB software packages are used to perform 

all the required calculations.  

 

3. Results and Discussion 

The results of the feature selection are given in Table 1. 

Figures 4, 5, and 6 respectively show the graphical 

representation of the trained model for the forecasting of t, 

t+1, t+2 forecasts for streamflow discharge data, out of total 

t+7 forecasts. 

Table 4 on the other hand shows the numerical values of 

the total forecast from t to t+6.  

Q(t-1) feature was applied to obtain Q(t) value for one 

ahead forecasting, Q(t-1) feature was applied to obtain 

Q(t+1) value for two ahead forecasting, Similarly, Q(t-1), 

data was applied as input features for three (Q(t+2)), four 

(Q(t+3)), five (Q(t+4)), six (Q(t+5)) and seven (Q(t+6)) 

ahead forecasting. Obtained performance parameters using 

Q(t-1) feature and RF model are given in Table 5. 

Table 4. 1-7Ahead Forecasting performance of CFS-RF Model  
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 RMSE MAE R R2 

One Ahead 17.9864 8.1520 0.9895 0.9791 

Two Ahead 30.1717 13.3113 0.9703 0.9414 

Three Ahead 41.2998 19.0428 0.9442 0.8914 

Four Ahead 49.0520 23.0490 0.9212 0.8486 

Five Ahead 54.5374 26.2710 0.9021 0.8138 

Six Ahead 59.0526 28.7231 0.8852 0.7837 

Seven Ahead 63.1710 30.7558 0.8685 0.7542 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. a) One-ahead forecasting of daily streamflow 

discharge data using CFS-RF Model, b) Zoomed graphic,         

c) Scatter plot 

In the area of water resources planning and management, 

efficient water resource utilization demands accurate and 

successful streamflow discharge data forecasting [23]. A 

forecasting framework was established in this study to 

investigate the efficacy of the CFS-RF model with a novel 

approach. An estimation of daily streamflow discharge data 

for the upcoming seven days was performed using the CFS-

RF model. Daily streamflow discharge data was divided into 

training and testing data. A comparative analysis was drawn 

between the forecasting capabilities of single RF model and 

the CFS-RF model combined. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. a) Two-ahead forecasting of daily streamflow 

discharge data using CFS-RF Model, b) Zoomed graphic,         

c) Scatter plot 
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It can be seen from the Table 4 that the R2 value for the t 

to t+4 is above 0.80 compared to much later forecast days 

such as t+5 and t+6 for which the R2 value is slightly above 

0.75. Moreover, the value of R2 for much earlier forecasts (t 

and t+1) are above 0.94 as shown in Figure 4 and 5 as well. 

As significantly linear relation between the forecasted and 

actual (real) values can be seen (see Figure 4 and 5).  

 
(a) 

 
(b) 

 
(c) 

Figure 6. a) Three-ahead forecasting of daily streamflow 

discharge data using CFS-RF Model, b) Zoomed graphic,         

c) Scatter plot 

Table 5. 1-7 Ahead Forecasting performance of RF Model  

 RMSE MAE R R2 

One Ahead 20.7351 9.3833 0.9859 0.9720 

Two Ahead 35.5437 15.7612 0.9584 0.9184 

Three Ahead 45.6941 20.5596 0.9307 0.8661 

Four Ahead 77.7896 38.8902 0.7922 0.6276 

Five Ahead 81.1282 41.0384 0.7725 0.5968 

Six Ahead 84.3759 43.1028 0.7535 0.5678 

Seven Ahead 87.0211 44.9170 0.7366 0.5426 

 

The forecast study results acquired by CFS-RF model 

using only streamflow discharge data are given in in Table 5 

in order to compare the reliability of CFS-RF and only RF 

model. It can be clearly seen, after inspecting the numerical 

values of the Table 4 and 5, that although CFS-RF model 

given much accurate results for mediocre (t+3 and t+4 

forecasting) and extended (t+5, t+6) forecasting, it has low 

accuracy values for much recent forecasting. Similar 

scenario is valid for the RF model for closer forecasting time; 

however, its accuracy is slightly lower than the CFS-RF 

model. 
 

4. Conclusion 
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of this article. The author also declared that this article is 

original, was prepared in accordance with international 

publication and research ethics, and ethical committee 

permission or any special permission is not required. 

 

Author Contributions 

L. Latifoğlu developed the methodology, performed the 

analysis and wrote the whole article. 

 

 

 

 

The proposed model appears to be an important tool that 

can be used in forecasting studies. 

 

Declaration 

Based on the findings, it is established that the RF model 

combined with CFS model shows an inherent superior 

capability of streamflow discharge forecasting for the river 

of Kootenay, Canada. 

Using temperature and precipitation data instead of only 

streamflow discharge data increases the forecast 

performance. Also, the selection of input features plays an 

important role for model performance and the accuracy of 

the results. In this study, it is recommended that temperature 

data, precipitation data in addition to streamflow discharge 

data should be used to obtain the best input variable 

combination for forecasting of streamflow discharge data. 
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