Küme ailelerinin kümülatif graf temsilleri üzerine

On cumulative graph representations of set-families

Kadirhan POLAT ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Letter, Agri Ibrahim Cecen University, Agri, Turkey

(Received: 29 August 2021; Accepted: 21 September 2021)

Abstract

Özet. Bu makalede, önce kümülatif graf tanımını tanıtıyoruz. Ardından, bir küme ailesinden başlayarak, o küme ailesini temsil eden kümülatif grafı elde etmek için izlenecek adımları veriyoruz. Ayrıca, bu adımların örnek bir uygulamasını gösteriyoruz.

Anahtar Kelimeler: kümülatif graf, küme ailesi, graf temsili.

Abstract

In this paper, we first introduce the definition of cumulative graph. Then, starting from a set-family, we give the steps to follow to obtain the cumulative graph representing that set-family. Also, we show an example implementation of these steps.

Keywords: cumulative graph, set family, graph representation.
2010 Mathematics Subject Classification: 05C62;05C20;03E75.

1. Introduction

We denote the sets of all endpoints, all tails and all heads of a digraph G by $V(G), V_{t}(G)$ and $V_{h}(G)$, respectively, which implies $V(G)=V_{t}(G) \cup V_{h}(G)$ for any digraph G. A subgraph H of G is denoted by $G[H]$. A vertex-induced subgraph by $W \subseteq V$ of a graph $G=(V, A)$ is denoted by $G[W, \cdot]$ while an edge-induced subgraph by $B \subseteq A$ of G is denoted by $G[\cdot, B]$ (see [1-5] for detailed information).

Let $\mathcal{P}(X)$ represent the power set of a set X. We also denote the power set of $\mathcal{P}(X)$ by $\mathcal{P}^{2}(X)$. In general, a n-set-family on X, denoted by $\mathcal{F}_{X}^{(n)}$ or shortly $\mathcal{F}^{(n)}$, is a subfamily of n-iterated power set operation $P^{n}(X)$ on X, that is, a subfamily of n-times repeated composition of the power set operation on X with itself. In particular, it is our convention that a 0 -set-family $\mathcal{F}^{(0)}$ on X is a subset of X. We denote k-times generalized union of an n-set-family $\mathcal{F}^{(n)}$ with $k \leq n$ by $\bigsqcup^{k} \mathcal{F}^{(n)}$, that is,

$$
\bigsqcup^{k} \mathcal{F}^{(n)}=\underbrace{\bigcup \cdots \bigcup}_{k \text { times }} \mathcal{F}^{(n)}
$$

In particular, we use the conventions $\bigsqcup^{1} \mathcal{F}^{(n)}=\bigcup \mathcal{F}^{(n)}$ and $\bigsqcup^{0} \mathcal{F}^{(n)}=\mathcal{F}^{(n)}$.
The motivation for this paper is to show that there is a special class of graphs, which we will call cumulative graphs, representing any n-set family with $n>0$, and to obtain its some basic properties.

[^0]
2. Cumulative graphs

We now introduce the concept of cumulative graph, which corresponds to a special class of acyclic digraphs. Notice that in the next definition we bend the rule that each member of a partition of a set is non-empty.

Definition 1. An acyclic digraph $G=(V, A)$ is called a cumulative graph if there exists a partition $\mathcal{V}=\left\{\emptyset=V_{0}, V_{1}, \ldots, V_{n}\right\}$ of V, and a partition $\mathcal{A} \cup \mathcal{B}$ of A where $\mathcal{A}=\left\{\emptyset=A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $\mathcal{B}=\left\{\emptyset=B_{1}, B_{2}, \ldots, B_{n}\right\}$ such that
(1) V_{i} consists of all endpoints in A_{i}, all tails in B_{i} and all heads in B_{i+1}, that is, it holds that $V_{i}=V\left(G\left[\cdot, A_{i}\right]\right) \cup V_{t}\left(G\left[\cdot, B_{i}\right]\right) \cup V_{h}\left(G\left[\cdot, B_{i+1}\right]\right)$ for every $1 \leq i<n$. Also, $V_{n}=$ $V\left(G\left[\cdot, A_{i}\right]\right) \cup V_{t}\left(G\left[\cdot, B_{i}\right]\right)$.
(2) $u v \in A_{i}$ and $v w \in A_{i}$ implies $u w \notin A_{i}$ for every $1 \leq i \leq n$ (antitransitivity).
(3) $u v \in A_{i}$ and $v w \in B_{i}$ implies $u w \notin B_{i}$ for every $1 \leq i \leq n$.

We denote a cumulative graph by $G=(\mathcal{V}, \mathcal{A}, \mathcal{B})$.

Figure 1. An example of a cumulative graph

Example 1. Let $G=(V, A)$ be an acyclic digraph with $V=\left\{v_{1}, v_{2}, \ldots, v_{11}\right\}$ and

$$
\begin{aligned}
A=\{ & \left\{v_{11} \rightarrow v_{5}, v_{11} \rightarrow v_{6}, v_{11} \rightarrow v_{8}, v_{11} \rightarrow v_{10}, v_{10} \rightarrow v_{7}, v_{10} \rightarrow v_{9}, v_{8} \rightarrow v_{1},\right. \\
& \left.v_{8} \rightarrow v_{2}, v_{8} \rightarrow v_{6}, v_{8} \rightarrow v_{7}, v_{7} \rightarrow v_{4}, v_{7} \rightarrow v_{5}, v_{6} \rightarrow v_{3}, v_{6} \rightarrow v_{5}\right\} .
\end{aligned}
$$

as Figure 1. In order to show that G is a cumulative graph, we set $\mathcal{V}=\left\{V_{0}, V_{1}, V_{2}, V_{3}\right\}, \mathcal{A}=$ $\left\{A_{1}, A_{2}, A_{3}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}\right\}$ where

$$
\begin{gathered}
V_{0}=\emptyset, V_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, V_{2}=\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}, V_{3}=\left\{v_{9}, v_{10}, v_{11}\right\}, \\
A_{1}=\emptyset, A_{2}=\left\{v_{8} \rightarrow v_{6}, v_{8} \rightarrow v_{7}, v_{7} \rightarrow v_{5}, v_{6} \rightarrow v_{5}\right\}, \\
A_{3}=\left\{v_{11} \rightarrow v_{10}, v_{10} \rightarrow v_{9}\right\}, B_{1}=\emptyset, \\
B_{2}=\left\{v_{8} \rightarrow v_{1}, v_{8} \rightarrow v_{2}, v_{7} \rightarrow v_{4}, v_{6} \rightarrow v_{3}\right\}, \\
B_{3}=\left\{v_{11} \rightarrow v_{5}, v_{11} \rightarrow v_{6}, v_{11} \rightarrow v_{8}, v_{10} \rightarrow v_{7}\right\} .
\end{gathered}
$$

It is easy to check that \mathcal{V} is a partition of V while $\mathcal{A} \cup \mathcal{B}$ is a partition of A. Besides,

$$
\begin{aligned}
V\left(G\left[\cdot, A_{1}\right]\right) \cup V_{t}\left(G\left[\cdot, B_{1}\right]\right) \cup V_{h}\left(G\left[\cdot, B_{2}\right]\right) & =\emptyset \cup \emptyset \cup\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}=V_{1}, \\
V\left(G\left[\cdot, A_{2}\right]\right) \cup V_{t}\left(G\left[\cdot, B_{2}\right]\right) \cup V_{h}\left(G\left[\cdot, B_{3}\right]\right) & =\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\} \cup\left\{v_{6}, v_{7}, v_{8}\right\} \cup\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}=V_{2}, \\
V\left(G\left[\cdot, A_{3}\right]\right) \cup V_{t}\left(G\left[\cdot, B_{3}\right]\right) & =\left\{v_{9}, v_{10}, v_{11}\right\} \cup\left\{v_{10}, v_{11}\right\}=V_{3}
\end{aligned}
$$

which ensure that the first condition is satisfied. It can easily be observed that there exists no arc that does not satisfy the second or third condition. Thus $G=(\mathcal{V}, \mathcal{A}, \mathcal{B})$ is a cumulative graph.

3. A graph representation of a set-family

We claim that a n-set-family with $n \geq 0$ can be represented by a cumulative graph. Starting from an n-set-family $\mathcal{F}^{(n)}$, we perform the steps below to obtain the cumulative graph to represent it.

Step 1: Set $\mathcal{V}:=\left\{V_{i} \mid i \in \mathbb{Z}, 0 \leq i \leq n+1\right\}$ where $V_{0}=\emptyset$ and

$$
V_{i}=\left\{v_{j} \mid j \in \mathbb{Z}, \xi_{n}(i-1)<j \leq \xi_{n}(i)\right\}
$$

for $1 \leq i \leq n+1$ where

$$
\xi_{n}(k)=\left\{\begin{array}{ll}
0 & k=0 \\
\sum_{i=1}^{k}\left|\bigsqcup^{n-i+1} \mathcal{F}^{(n)}\right| & 0<k \leq n
\end{array} .\right.
$$

Step 2: Define a one-to-one correspondence f_{i} from V_{i} to $\bigsqcup^{n-i+1} \mathcal{F}^{(n)}$ for each $1 \leq i \leq n+1$.
Step 3: Set $\mathcal{A}:=\left\{A_{i} \mid 1 \leq i \leq n+1\right\}$ where $A_{1}=\emptyset$ and

$$
u v \in A_{i} \Leftrightarrow f_{i}(v) \text { is a maximal proper subset of } f_{i}(u) \text { in } \bigsqcup^{n-i+1} \mathcal{F}^{(n)}
$$

for $2 \leq i \leq n+1$.
Step 4: Set $\mathcal{B}:=\left\{B_{i} \mid 1 \leq i \leq n+1\right\}$ where $B_{1}=\emptyset$ and $u v \in B_{i} \Leftrightarrow f_{i}(u)$ is a minimal set containing $f_{i-1}(v)$ in $\bigsqcup^{n-i+1} \mathcal{F}^{(n)}$
for $2 \leq i \leq n+1$.
We give the following example to perform the steps given above for a n-set-family.
Example 2. Given a 3-set-family

$$
\begin{aligned}
\mathcal{F}^{(3)}= & \{\{\{\{b\},\{c, d\}\}\},\{\{\{b\}\},\{\{a\},\{c, d\}\}\}, \\
& \{\{\{a\},\{b\}\},\{\{a\},\{b\},\{c, d\},\{a, b, c, d\}\}\}\} .
\end{aligned}
$$

Let's get the cumulative graph representing it by performing the above four steps.
In the first step, considering $\mathcal{F}^{(3)}$, we get $\xi_{n}(k)$ as $\xi_{3}(0)=0, \xi_{3}(1)=4, \xi_{3}(2)=8, \xi_{3}(3)=13$ and $\xi_{3}(4)=16$ since $\bigsqcup^{3} \mathcal{F}^{(3)}=\{a, b, c, d\}, \bigsqcup^{2} \mathcal{F}^{(3)}=\{\{a\},\{b\},\{c, d\},\{a, b, c, d\}\}$,

$$
\bigsqcup^{1} \mathcal{F}^{(3)}=\{\{\{b\}\},\{\{a\},\{b\}\},\{\{a\},\{c, d\}\},\{\{b\},\{c, d\}\},\{\{a\},\{b\},\{c, d\},\{a, b, c, d\}\}\}
$$

and $\bigsqcup^{0} \mathcal{F}^{(3)}=\mathcal{F}^{(3)}$. Hence we get $\mathcal{V}=\left\{V_{0}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$ where $V_{0}=\emptyset, V_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}, V_{2}=$ $\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}, V_{3}=\left\{v_{9}, v_{10}, v_{11}, v_{12}, v_{13}\right\}$ and $V_{4}=\left\{v_{14}, v_{15}, v_{16}\right\}$.

In the next step, if the functions f_{i} from V_{i} to $\bigsqcup^{4-i} \mathcal{F}^{(3)}, 1 \leq i \leq 4$ is defined by

$$
\begin{gathered}
f_{1}\left(v_{1}\right)=a, f_{1}\left(v_{2}\right)=b, f_{1}\left(v_{3}\right)=c, f_{1}\left(v_{4}\right)=d, \\
f_{2}\left(v_{5}\right)=\{a\}, f_{2}\left(v_{6}\right)=\{b\}, f_{2}\left(v_{7}\right)=\{c, d\}, f_{2}\left(v_{8}\right)=\{a, b, c, d\}, \\
f_{3}\left(v_{9}\right)=\{\{b\}\}, f_{3}\left(v_{10}\right)=\{\{a\},\{b\}\}, f_{3}\left(v_{11}\right)=\{\{a\},\{c, d\}\}, \\
f_{3}\left(v_{12}\right)=\{\{b\},\{c, d\}\}, f_{3}\left(v_{13}\right)=\{\{a\},\{b\},\{c, d\},\{a, b, c, d\}\}, \\
f_{4}\left(v_{14}\right)=\{\{\{b\},\{c, d\}\}\}, f_{4}\left(v_{15}\right)=\{\{\{b\}\},\{\{a\},\{c, d\}\}\}, \\
f_{4}\left(v_{16}\right)=\{\{\{a\},\{b\}\},\{\{a\},\{b\},\{c, d\},\{a, b, c, d\}\}\},
\end{gathered}
$$

then it is clear that each of them is a one-to-one correspondence.
In the third step, we first take A_{1} as the empty set. Then we get

$$
A_{2}=\left\{v_{8} v_{5}, v_{8} v_{6}, v_{8} v_{7}\right\}
$$

since $f_{2}\left(v_{5}\right), f_{2}\left(v_{6}\right), f_{2}\left(v_{7}\right)$ are maximal subsets of $f_{2}\left(v_{8}\right)$ and one of any other pair of images of members in V_{2} under f_{2} is not a maximal subset of the other. By similar reasoning, we have

$$
A_{3}=\left\{v_{13} v_{10}, v_{13} v_{11}, v_{13} v_{12}, v_{12} v_{9}, v_{10} v_{9}\right\}
$$

Figure 2. the cumulative graph representing the 3-set-family $\mathcal{F}^{(3)}$ in Example 2
and $A_{4}=\emptyset$.
In the last step, we first take $B_{1}=\emptyset$. We obtain $B_{2}=\left\{v_{7} v_{3}, v_{7} v_{4}, v_{6} v_{2}, v_{5} v_{1}\right\}$ because $f_{2}\left(v_{5}\right)$ and $f_{2}\left(v_{6}\right)$ is a minimal set containing $f_{1}\left(v_{1}\right)$ and $f_{1}\left(v_{2}\right)$, respectively; also $f_{2}\left(v_{7}\right)$ is a minimal set containing both $f_{1}\left(v_{3}\right)$ and $f_{1}\left(v_{4}\right)$. Following similar arguments, we get

$$
B_{3}=\left\{v_{13} v_{8}, v_{12} v_{7}, v_{11} v_{5}, v_{11} v_{7}, v_{10} v_{5}, v_{9} v_{6}\right\}
$$

and

$$
B_{4}=\left\{v_{16} v_{10}, v_{16} v_{13}, v_{15} v_{9}, v_{15} v_{11}, v_{14} v_{12}\right\}
$$

Thus the cumulative graph representing the 3-set-family $\mathcal{F}^{(3)}$ is $G=(\mathcal{V}, \mathcal{A}, \mathcal{B})$ with $\mathcal{V}=\left\{V_{0}, V_{1}, V_{2}, V_{3}, V_{4}\right\}$, $\mathcal{A}=\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ and $\mathcal{B}=\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}$ as Figure 2 where V_{i} 's, A_{i} 's and B_{i} 's are taken as above.

4. Conclusion

The cumulative graph introduced in this paper is a special class of graph which represents an arbitrary n-set family, and we have given the steps to be followed to obtain a cumulative graph from an n-set family, with an example implementation.

5. Further work

As a future work, we plan to present the definition of a topological cumulative graph on a set, reconsider some basic concepts of set-theoretic topology on a topological cumulative graph, and obtain some useful results.

References

[1] B. Bollobas. Modern Graph Theory. Graduate Texts in Mathematics. Springer New York, 2013.
[2] G. Chartrand and P. Zhang. A First Course in Graph Theory. Dover Books on Mathematics. Dover Publications, 2013.
[3] J.L. Gross and J. Yellen. Handbook of Graph Theory. Discrete Mathematics and Its Applications. CRC Press, 2003.
[4] K.R. Saoub. Graph Theory: An Introduction to Proofs, Algorithms, and Applications. Textbooks in Mathematics. CRC Press, 2021.
[5] R.J. Trudeau. Introduction to Graph Theory. Dover Books on Mathematics. Dover Publications, 2013.

[^0]: Corresponding Author Email: kadirhanpolat@agri.edu.tr, orcid.org/0000-0002-3460-2021.

