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Abstract. The purpose of this article is to study the optimal control prob-
lem for fractional stochastic differential system driven by fractional Brownian

motion with Poisson jumps in Hilbert space. Initially, the sufficient conditions

for existence of mild solution results are formulated and proved by virtue of
fractional calculus, solution operator and stochastic analysis techniques. Fur-

ther, we formulated and proved the existence results for optimal control of the
proposed system with corresponding cost function by using Balder’s theorem.

Finally an example is provided to illustrate the main results.

1. Introduction

Fractional Calculus (FC) has been introduced since the end of the nineteenth
century by famous mathematicians Riemann and Liouville, but the concept of non-
integer calculus as a generalization of the traditional integer order calculus was
mentioned already in 1695 by Leibnitz and L’Hospital. The subject of FC has
become a rapidly growing area in the field of system physics, chemistry, biology,
medicine and finance etc. On the other, fractional derivatives and integrals enable
the description of the memory and hereditary properties inherent in various materi-
als and processes. Hence, there is a growing need to find the behavior of solution of
the fractional differential equations (FDEs). For more details on FDEs, the reader
may refer to the monographs [3, 4, 5, 6, 2] and references therein.

The fractional Brownian motion (fBm) is usual candidate to model phenomena
due to its self-similarity of increments and long-range dependence. This fBm BH is
the continuous centered Gaussian process with covariance function described by

RH(t, s) = E
[
BH(t)BH(s)

]
=

1

2
(t2H + s2H − |t− s|2H)

2020 Mathematics Subject Classification. 26A33, 34K12, 34A08, 60H10, 93C23.
Key words and phrases. Fractional calculus, stochastic differential system, mild solution,

optimal control, fractional Brownian motion, Poisson jumps.
©2022 Proceedings of International Mathematical Sciences.
Submitted on 30.08.2021, Accepted on 14.03.2022.
Communicated by Hakan SAHIN.

1



2 K. RAVIKUMAR, K. RAMKUMAR, AND E. M. ELSAYED

The parameter H characterizes all the important properties of the process, when
H < 1

2 , the increments are negatively correlated and the correlation decays more

slowly the quadratically; when H > 1
2 , the increments are positively correlated and

the correlation decays so slowly that they are not summable, a situation which
is commonly known as the long memory property. The fBm can be expressed as
Wiener integral with respect to the standard Wiener process, i.e. the integral of
a deterministic kernal with respect to a standard Brownian motion, the Hermite
process of order 1 is fBm and of order 2 is the Rosenblatt process. However, there
exist only a few papers in this field, for more details (see [13, 14, 15, 16] and reference
therein).

On the other hand, the Poisson jumps have become very popular one in recent
years, the Poisson jumps are generally based on the Poisson random measure in
aspects of applications in many real life phenomena such as, finance, biology and
any other field of science see [7, 8, 10]. For example Poisson jump models that
are very popular in financial modeling sice Merton first derived an option pricing
formula based on a stock price process generated by a mixture of a Brownian mo-
tion and a Poisson process. This mixed process is also called the jump diffusion
process. The requirement for a jump component in a stock price process is intu-
itive, and supported by the big crashes in stock markets: The Black Monday on
October 17, 1987 and the recent market crashes in the financial crisis since 2008
are two prominent examples. To model jump events, we need two quantities: jump
frequency and jump size. The first one specifies how many times jumps happed in
a given time period, and the second one determines low large a jump is if it occurs.
It is natural and necessary to include a jump term in the stochastic differential
equation. Recently, Balasubramaniam et al. [1] and Muthukumar et al. [10] have
studied, respectively, fractional stochastic differential equations driven by Poisson
jumps and fractional stochastic differential equations with Poisson jumps. Very
recently Rihan et al. [11] extended to study the existence of solutions of fractional
stochastic differential equations with Hilfer fractional derivative and Poisson jumps.

An optimal control problem (OCP) describes the path of control variables con-
cerned with minimizing the cost functional or maximizing a payoff to the corre-
sponding system over a set of admissible control functions. Nowadays, optimal
control theory has a considerable development and have fruitful applications in
many fields like science and engineering (see [17, 18]). Stochastic optimal con-
trol problem (SOCP) makes to design the time path of the controlled variables
which performs the desired control task with minimum cost despite the presence
of noise. SOCPs and its applications have extensive attention in the literature see
[24, 25, 26, 9]. The main goal of optimal control is to find, in an open-loop control,
the optimal values of the control variables for the dynamic system which maxi-
mize or minimize a given performance index. If a fractional differential equation
describes the performance index and system dynamics, then an optimal control
problem is known as a fractional optimal control problem. Using the fractional
variational principle and lagrange multiplier technique, Agrawal [21] discussed the
general formulation and solution scheme for Riemann-Liouville fractional optimal
control problems. It is remarkable thathe fixed point technique, which is used to
establish the existence results for abstract fractional differential equations, could
be extended to address the fractional optimal control problems. Recently, Aicha
Harrat et al. [19] studied the optimal controls of impulsive fractional system with
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Clarke subdifferential. Very recently, using the LeraySchauder fixed point theorem,
Balasubramaniam et al. [1] studied the solvability and optimal controls for im-
pulsive fractional stochastic integrodifferential equations. Tamilalagan et al. [20]
investigated the solvability and optimal controls for fractional stochastic differential
equations driven by Poisson jumps in Hilbert space via analytic resolvent operators
and Banach contraction mapping principle.

Motivated by the aforementioned research works, in this manuscript we drive the
sufficient conditions for the existence of solutions of the following class of optimal
control for fractional stochastic differential system driven by fractional Brownian
motion with Poisson jumps

CDα
t x(t) = Ax(t) +B(t)u(t) + f(t, x(t)) + σ(t, x(t))

dwH(t)

dt

+

∫
U
h(t, x(t), u)Ñ(ds, du), t ∈]0, τ ],

x(0) = x0 ∈ X, (1.1)

where the integral l = [0, τ ] × X × U → R ∪ {∞} is specified latter; CDα
t is the

Caputo fractional derivative of order 0 < α < 1, the state x(·) is X-valued stochastic
process; Suppose {wH(t)}t≥0 is a fractional Brownian motion with Hurst parameter

H ∈ ( 12 , 1) defined on (Ω,ℑ, {ℑt}t≥0 ,P) with values in Hilbert space Y. The control

function u(·) takes its values from a separable reflexive Hilbert space U; A : D(A) ⊆
X → X is the infinitesimal generator of a resolvent Sα(t), t ≥ 0 on X; {B(t) : t ≥ 0}
is a family of linear operator from U to X; the functions f : [0, τ ] × X → X,
σ : [0, τ ]×X → L0

2(Y,X) and h : [0, τ ]×X×U → X are nonlinear, where L0
2(Y,X)

be the space of all Q-Hilbert-Schmidt operators from Y into X.
Let (Ω,ℑ, {ℑt}t≥0 ,P) be a complete probability space equipped with a normal

filtration (ℑt), t ∈ [0, a] and Let X, Y be real separable Hilbert spaces and L(Y,X)
denote the space of all bounded linear operator from Y into X. Let Q ∈ L(Y,Y)
be an operator defined by Qen − λnen with finite trace tr(Q) =

∑∞
n=1 λn < ∞

where λn ≥ 0 (n = 1, 2, ...) are non-negative real numbers and {en} (n = 1, 2, ...) is
a complete orthonormal basis in Y.

We define the infiite dimensional fractional Brownian motion on Y with covari-
ance Q as

wH(t) = wH
Q(t) =

∞∑
n=1

√
λnenβ

H
n(t)

where βHn are real, independent fractional Brownian motions.
In order to define Wiener integrals with respect to the Q-fractional Brownian

motion, we introduce the space L0
2 = L0

2(Y,X) of all Q-Hilbert-Schmidt operators
ψ : Y → X. We recall that ψ ∈ L(Y,X) is called a Q-Hilbert-Schmidt operator, if

∥ψ∥2L0
2(Y,X) =

∞∑
n=1

∥∥∥√λnψen

∥∥∥2 <∞

and that the space L0
2 equipped with the inner product < υ,ψ >L0

2
=

∑∞
n=1 <

υen, ψen > is a separable Hilbert space. Let ϕ(s); s ∈ [0, a] be a function with
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values in L0
2(Y,X), the Wiener integral of ϕ with respect to wH is defined by∫ t

0

ϕ(s)dwH(s) =

∞∑
n=1

∫ t

0

√
λϕ(s)endβ

H
n

=

∞∑
n=1

∫ t

0

√
λK∗(ϕen)(s)dβn(s) (1.2)

where βn is the standard Brownian motion. Let C ([0, τ ],L2(Ω,X)) be the Banach

space of continuous maps from [0, τ ] into L2(Ω,X) satisfying sup0≤t≤τ E ∥x(t)∥2 <
∞. Let X2 be the closed subspace of C ([0, τ ],L2(Ω,X)) consistingof measurable,
ℑt-adapted, X-valued processes x ∈ C ([0, τ ],L2(Ω,X)) equipped with the norm

∥x∥X2
=

(
sup

0≤t≤τ
E ∥x(t)∥2

)1/2

.

Suppose that {q(t); t ∈ [0, τ ]} is the Poisson point process, taking its value in a
measurable space (U ,B(U)) with a σ-finite intensity measure v(du). The compen-
sating martingle measure and Poisson counting measure are defined by

Ñ(ds, du) = N(ds, du)− v(du)ds.

Let us assume that the filteration ℑt = σ {N((0, s],Λ) : s ≤ t,Λ ∈ B(U)} ∨ N , t ∈
[0, τ ], produced by q(·) Poisson point process and is augmented, where N is the
class of P-null sets. Let p2([0, τ ] × U ; X) be the space of all predictable mappings
h : [0, τ ]× U → X for ∫ τ

0

∫
U
E ∥h(t, u)∥2X dtv(du) <∞.

Consider the following integral cost functional

ȷ {x, u} = E

{∫ τ

0

l(t, xu(t), u(t))dt

}
, (1.3)

Define the admissible set Uad, the set of all v(·) : [0, τ ] × Ω → U such that v
is ℑt-adapted stochastic process and E

∫ τ

0
∥v(t)∥p dt < ∞. Clearly Uad ̸= ∅ and

Uad ⊂ Lp([0, τ ]; U) (1 < p < +∞) is bounded, closed and convex.
Denoted by the set of all admissible state-control pairs (x, u) by Aad, where x

is the mild solution of the system (1.1) corresponding to the control u ∈ Uad. The
main objective of this paper is to find a pair (x0, u0) ∈ Aad such that

ȷ(x0, u0) := inf {ȷ(x, u) : (x, u) ∈ Aad} = ϵ.

To the best of authors knowledge, up to now, no work has been reported to derive
the optimal control for fractional stochastic differential system driven by fractional
Brownian motion with Poisson jumps. The main contributions are summarized as
follows:

(1) Fractional stochastic differential system driven by fractional Brownian mo-
tion with Poisson jumps is formulated.

(2) Fractional calculus theory is effectively used to derive the existence and
uniqueness of mild solution, a set of sufficient conditions is constructed by
using fixed point theorem.

(3) The existence of fractional optimal control for stochastic system is also
discussed.
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(4) An example is provided to illustrate the obtained theoretical results.

2. Preliminaries

In this section, we collect basic concepts, definitions and Lemmas which will be
used in the sequel to obtain the main results.

Definition 2.1. The Riemann-Liouville fractional integral operator of order α > 0
of a function f : [0,∞) → R with the lower limit 0 is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the Euler gamma function.

Definition 2.2. The Caputo fractional derivative of order α > 0 for the function
f ∈ Cm([0, τ ],R) is defined by

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−∞−1f (m)(s)ds, m− 1 <∞ < m ∈ N.

If f is an abstract function with values in X, then the integrals appearing in Defi-
nition 2.1 and Definition 2.2 are taken in the Bochner sense. Moreover, the Caputo
derivative of a constant is always zero.

The two-parameter function of the Mittag-Leffler type is defined by the series
expension

Eα,β(z) =

∞∑
j=1

zj

Γ(αj + β)
=

1

2πi

∫
C
eλ

λα−β

λα − z
dλ; α, β > 0, z ∈ C,

where C is a contour that start and end at −∞ and encircles the disc ∥λ∥ ≤ |z|1/2
counterclockwise.

Definition 2.3. [22] A closed and linear operator A is said to be sectorial type

µ if there exist π/2 ≤ θ ≤ π, M̃ > 0 and µ ∈ R such that the following condi-
tions are satisfied: ρ(A) ⊂

∑
(θ,µ) = {λ ̸= µ, |arg(λ− µ)| < θ}, and ∥R(λ,A)∥ =∥∥(λ−A)−1

∥∥ ≤ M̃
|λ−µ| , λ ∈

∑
(θ,µ).

Lemma 2.1. [22] For 0 < α < 2, a linear closed densely defined operator A belongs
to Aα(θ0, µ0) iff λα ∈ ρ(A) for each λ ∈

∑
(θ0+π/2),µ and for any µ > µ0, θ < θ0

there is a constant C0 = C0(θ, µ) such that∥∥λα+1R(λα, A)
∥∥ ≤ C0

|λ− µ|
, for λ ∈

∑
(θ0+π/2),µ

.

Lemma 2.2. [22] If f satisfies the uniform Holder condition with the exponent
0 < γ ≤ 1 and A is a sectorial operator, then the unique solution of the Cauchy
problem

CDα
t x(t) = Ax(t) + f(t), 0 <∞ < 1, t ∈ (0, τ ],

x(0) = x0, (2.1)

is given by

x(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)F (s)ds,
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where

Sα(t) = Eα,1(At
α) =

1

2πi

∫
B̂ρ

eλt
λα−1

λα −A
dλ,

Tα(t) = tα−1Eα,1(At
α) =

1

2πi

∫
B̂ρ

eλt
1

λα −A
dλ,

B̂ρ is the Bromwich path, Tα(t) is called the α-resolvent family, and Sα(t) is the
solution operator generated by A.

An operator A is said to belong to Dα(M̃, µ) if problem (4) with f = 0 has a

solution operator Sα(t) satisfying ∥Sα(t)∥ ≤ M̃eµt. Denote Dα(µ) = ∪
{
Dα(M̃, µ) :

M̃ ≥ 1
}
, Dα = {Dα(µ : µ ≥ 0)}, and Aα(θ0, µ0) =

{
A ∈ Dα : A generates analytic

solution operators Sα(t) of type (θ0, µ0)
}
.

If 0 < α < 1 and A ∈ Aα(θ0, µ0), then we have ∥Sα(t)∥ ≤ M̃eµt and ∥Tα(t)∥ ≤
Ceµt(1 + tα−1), t > 0, µ > µ0. If

MS = sup
0≤t≤τ

∥Sα(t)∥ , MT = sup
0≤t≤τ

Ceµt(1 + t1+α),

then, we have

∥Sα(t)∥ ≤MS , ∥Tα(t)∥ ≤ tα−1MT .

Lemma 2.3. [13] If ψ : [0, a] → L0
2(Y,X) satisfies

∫ a

0
∥ψ(s)∥2L0

2
<∞ then the above

sum in (1.2) is well defined as X-valued random variable and we have

E

∥∥∥∥∫ t

0

ψ(s)dwH(s)

∥∥∥∥2 ≤ 2Ht2H−1

∫ t

0

∥ψ(s)∥2L0
2
ds.

By Lemma 2.2. a mild solution of the system (1.1) is defined as

Definition 2.4. An ℑt-adapted stochastic process x(t) ∈ C ([0, τ ],L2(Ω,ℑ,X)) is
called a mild solution of system (1.1) if for each u(·) ∈ Lp([0, τ ]; U), x(t) is mea-
surable and the following stochastic integral equation

x(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)u(s) + f(s, x(s))]ds

+

∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, x(s), u)Ñ(ds, du). (2.2)

3. Existence and Uniqueness

To prove the existence and uniqueness of mild solution of the system (1.1), we
impose the following hypotheses:

(H1) The functions f : [0, τ ] × X → X, σ : [0, τ ] × X → L0
2(Y,X) and h :

[0, τ ]×X×U → X are continuous, and satisfying linear growth and Lipschitz
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conditions: there are positive constants Lf , Lσ and Lh such that

∥f(t, x)− f(t, y)∥2 ≤ Lf ∥x− y∥2 , ∥f(t, x)∥2 ≤ Lf (1 + ∥x∥2),
∥σ(t, x)− σ(t, y)∥2 ≤ Lσ ∥x− y∥2 , ∥σ(t, x)∥2 ≤ Lσ(1 + ∥x∥2),∫

U
∥h(t, x, u)− h(t, y, u)∥2 v(du) ≤ Lh ∥x− y∥2 ,∫

U
∥h(t, x, u)∥2 v(du) ≤ Lh(1 + ∥x∥2).

(H2) The operator B ∈ L∞([0, τ ];L(U,X)) and ∥B∥∞ stand for the norm of
operator B in the Banach space L∞([0, τ ];L(U,X)).

(H3) The multi-valued map Ξ(·) : [0, τ ] → 2u/ {∅} has closed, convex and
bounded values, Ξ(·) is graph measurable and Ξ(·) ⊆ Φ, where Φ is a
bounded subset of U.

Theorem 3.1. Assumptions (H1)− (H3) the system (2.2) admits a unique mild
solution on [0, τ ] for each control function u(·) ∈ Uad and for each some p such that
pα > 1.

Proof. Define an operator G : X2 → X2 as

(Gx)(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)u(s) + f(s, x(s))]ds

+

∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, x(s), u)Ñ(ds, du).

To show that (2.2) is the mild solution of the system (1.1) on [0, τ ], it is enough to
prove that G has a fixed point in the space X2. We first show that G(X2) ⊂ X2.
Let x ∈ X2, then we have

E ∥(Gx)(t)∥2 ≤ 5 [Γ1 + Γ2 + Γ3 + Γ4 + Γ5] (3.1)

Clearly

Γ1 = ∥Sα(t)x0∥2

≤ M2
sE ∥x0∥2 .

Next, using the Cauchy-Schwartz inequality, we have

Γ2 = ∥Tα(t− s)B(s)u(s)ds∥2

≤ M2
T ∥B∥2∞

[∫ t

0

(t− s)α−1 ∥u(s)∥ ds
]2

≤ M2
T ∥B∥2∞

(∫ t

0

(t− s)
p(α−1)
p−1 ds

) p−1
p

(∫ t

0

∥u(s)∥pU ds
) 1

p

2

≤ M2
T ∥B∥2∞ ∥u∥2L([0,τ ];U) τ

2( pα−1
p )(

p− 1

pα− 1
)

2(p−1)
p .



8 K. RAVIKUMAR, K. RAMKUMAR, AND E. M. ELSAYED

Next, by (H1) and Cauchy-Schwartz inequality, we have

Γ3 = E

∥∥∥∥∫ t

0

Tα(t− s)f(s, x(s))ds

∥∥∥∥2
≤ M2

T

(∫ t

0

(t− s)α−1ds

)(∫ t

0

(t− s)α−1E ∥f(s, x(s))∥2 ds
)

≤ M2
TLf

τα

α

∫ t

0

(t− s)α−1(1 +E ∥x(s)∥2)ds

≤ M2
TLf

τα

α2
(1 + ∥x∥2X2

).

By (H1) and Lemma 2.3, we have

Γ4 = E

∥∥∥∥∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)

∥∥∥∥2
≤ M2

T

[∫ t

0

(t− s)α−12Ht2H−1
(
E ∥σ(s, x(s))∥2L0

2

)
ds

]
≤ M2

T

[
2Ht2H−1

∫ t

0

(t− s)α−1E ∥σ(s, x(s))∥2 ds
]

≤ M2
TLσ2Ht

2H−1 τ
2α

α2
(1 + ∥x∥2X2

).

and

Γ5 = E

∥∥∥∥∫ t

0

Tα

∫
U
(t− s)h(s, x(s), u)Ñ(ds, du)

∥∥∥∥2
≤ M2

T

(∫ t

0

(t− s)α−1ds

)(∫ t

0

∫
U
(t− s)α−1E ∥h(s, x(s), u)∥2 v(du)ds

)
≤ M2

TLh
τα

α2
(1 + ∥x∥2X2

).

Thus (3.1) becomes

E ∥(Gx)(t)∥2 ≤ a+ b ∥x∥2X2
,

where a and b are suitable positive constants. Thus G maps X2 into itself.
Next, we prove that G is a contraction. For x, y ∈ X2, the Cauchy-Schwartz

inequality, and (H1) yield that

E ∥(Gx)(t)− (Gy)(t)∥2

≤ 3E

∥∥∥∥∫ t

0

Tα(t− s)[f(s, x(s))− f(s, y(s))]ds

∥∥∥∥2
+ 3E

∥∥∥∥∫ t

0

Tα(t− s)[σ(s, x(s))− σ(s, y(s))]dwH(s)

∥∥∥∥2
+ 3E

∥∥∥∥∫ t

0

Tα

∫
U
(t− s)[h(s, x(s), u)− h(s, y(s), u)]Ñ(ds, du)

∥∥∥∥2
≤ 3M2

T

(
Lf + Lσ2Ht

2H−1 + Lh

) τ2α
α2

∥x− y∥2X2
.
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Consequently if

3M2
T

[
Lf + Lσ2Ht

2H−1 + Lh

] τ2α
α2

< 1, (3.2)

then the operator G has a unique fixed point in X2, which is a solution of the system
(1.1). The extra condition on τ can be easily removed by considering the equation
on intervals [0, τ̃ ], [0, 2τ̃ ], ... with τ̃ satisfying (3.2). □

We now obtain a priori estimate of mild solution for the system (1.1), that helps
us to obtain our main results.

Lemma 3.2. Assuming that system (2.2) is the mild solution of system (1.1) on
[0, τ ] corresponding to the control u. Then there exists a constant M > 0 such that

E ∥x(t)∥2 ≤ M, t ∈ [0, τ ].

Proof. By (H1) and Holder’s inequality, we obtain

E ∥x(t)∥2 ≤ 5E ∥Sα(t)x0∥2

+ 5E

∥∥∥∥∫ t

0

Tα(t− s)B(s)u(s)ds

∥∥∥∥2 + 5E

∥∥∥∥∫ t

0

Tα(t− s)f(s, x(s))ds

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

Tα(t− s)σ(s, x(s))dwH(s)ds

∥∥∥∥2
+ 5E

∥∥∥∥∫ t

0

∫
U
Tα(t− s)σ(s, x(s), u)Ñ(ds, du)

∥∥∥∥2
≤ 5M2

S + 5M2
T ∥B∥2∞ ∥u∥2Lp([0,τ ];U) τ

2( pα−1
p )(

p− 1

pα− 1
)

2(p−1)
p

+ 5M2
T

(
Lf + Lσ2Ht

2H−1 + Lh

) τ2α
α2

+ 5M2
T

(
Lf + Lσ2Ht

2H−1 + Lh

) τ2α
α

∫ t

0

(t− s)α−1E ∥x(s)∥2 ds.

Now using the Gronwall inequality, one can easily obtain the boundedness of x in
X2. □

4. Existence of Fractional Optimal Control

In this section, we prove the existence of fractional optimal control under the
hypothesis:

(H4) Following conditions are imposed on the integrand

l : [0, τ ]×X×U → R ∪ {∞}
such that
(1) The integrand l : [0, τ ]×X×U → R ∪ {∞} is ℑt-measurabl.
(2) The integrand l(t, ·, ·) is sequentially lower semicontinuous on X×U for
almost all t ∈ [0, τ ].
(3) The integrand l(t, x, ·) is convex on U for each x ∈ X and almost all
t ∈ [0, τ ].
(4) There exist constants d ≥ 0, e > 0, µ0 is nonnegative and µ0 ∈
L1([0, τ ];R) such that

µ0(t) + dE ∥x∥2 + eE ∥u∥pU ≤ l(t, x, u).
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Theorem 4.1. Suppose (H1)− (H4) hold, then Lagrange problem (1.3) admits at
least one optimal pair, that is, there exists an admissible state-control pair (x0, u0) ∈
Aad such that

ȷ(x0, u0) := E

{∫ τ

0

l(t, x0(t), u0(t))dt

}
≤ ȷ(x, u), ∀(x, u) ∈ Aad.

Proof. If inf
{
l(x, u)|(x, u) ∈ Aad

}
= +∞, then there is nothing to prove. With-

out any loss of generality, we may assume that inf
{
l(x, u)|(x, u) ∈ Aad

}
= +∞.

Now assumption (H4) implies that ϵ > −∞. By definition of infimum, there is
a minimizing sequence of feasible pairs (xm, um) ∈ Aad, such that l(xm, um) → ϵ
as m → +∞. Since {um} ⊆ Uad, m = 1, 2, · · · , {um} is a bounded subset of the
separable reflexive Banach space Lp([0, τ ]; U), there exists a subsequence, relabeled

as {um} and Lp([0, τ ]; U) such that um
w→ u0 (um → u0) weakly as m → +∞

in Lp([0, τ ]; U). Since Uad is closed and convex, the Mazur lemma forces us to
conclude that u0 ∈ Uad.

Let {xm} be the sequence of solution of the system (1.1) corresponding to {um},
that is

xm(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)um(s) + f(s, xm(s))]ds

+

∫ t

0

Tα(t− s)σ(s, xm(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, xm(s), u)Ñ(ds, du). (4.1)

By Lemma 3.1, it is easy to see that there exists δ > 0 such that

E ∥xm∥2 ≤ δ, m = 0, 1, 2, · · · ,

where x0 is the mild solution of the system (1.1) corresponding to the control
u0 ∈ Uad given by

x0(t) = Sα(t)x0 +

∫ t

0

Tα(t− s)[B(s)u0(s) + f(s, x0(s))]ds

+

∫ t

0

Tα(t− s)σ(s, x0(s))dwH(s)

+

∫ t

0

∫
U
Tα(t− s)h(s, x0(s), u)Ñ(ds, du).

For all t ∈ [0, τ ], using (H4), the Cauchy-Schwartz inequality and the Holder
inequality, we obtain

E
∥∥xm(t)− x0(t)

∥∥2
≤ 4E

∥∥∥∥∫ t

0

Tα(t− s)[B(s)um(s)−B(s)u0(s)]ds

∥∥∥∥2
≤ 4E

∥∥∥∥∫ t

0

Tα(t− s)[f(s, xm(s))− f(s, x0(s))]ds

∥∥∥∥2
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≤ 4E

∥∥∥∥∫ t

0

Tα(t− s)[σ(s, xm(s))− σ(s, x0(s))]dwH(s)

∥∥∥∥2
≤ 4E

∥∥∥∥∫ t

0

∫
U
Tα(t− s)[h(s, xm(s), u)− h(s, x0(s), u)]Ñ(ds, du)

∥∥∥∥2
≤ 4M2

T (
p− 1

pα− 1
)

2p−2
p τ2α−

2
p

(∫ t

0

∥∥B(s)um(s)−B(s)u0(s)
∥∥p ds) 2

p

+ 4M2
T

τα

α
(Lf + Lσ2Ht

2H−1 + Lh)

∫ t

0

(t− s)α−1E
∥∥xm(s)− x0(s)

∥∥2 ds.
By applying Gronwall inequality, there exists a constant K∗(α) independent of u,m
and t such that

E
∥∥xm(t)− x0(t)

∥∥2 ≤ K∗(α)

(∫ τ

0

∥∥B(s)um(s)−B(s)u0(s)
∥∥p ds) 2

p

≤ K∗(α)
∥∥Bum −Bu0

∥∥2
Lp([0,τ ];U)

. (4.2)

Since B is strongly continuous, we get

∥∥Bum −Bu0
∥∥2
Lp([0,τ ];U)

s→ 0 as m→ ∞. (4.3)

From (4.2) and (4.3), we conclude that

E
∥∥xm(t)− x0(t)

∥∥2 → 0 as m→ ∞. (4.4)

This implies that E
∥∥xm − x0

∥∥2 → 0 in C ([0, τ ];L2(Ω,X)) as m→ ∞.
By (H4) implies the assumptions of Balder (see Theorem 2.1, [23]). Hence, by

Balder’s theorem, we get

(x, u) → E

∫ τ

0

L(t, x(t), u(t))dt

is sequentially lower semicontinuous in the strong topology of L1([0, τ ]; X) and week
topology of Lp([0, τ ]; U) ⊂ L1([0, τ ]; X). Hence, ȷ is weakly lower semicontinuous
on Lp([0, τ ]; U), and since by (H4)(4), ȷ > −∞, ȷ attains its infimum at u0 ∈ Uad,
that is,

ϵ := lim
m→∞

E

∫ τ

0

l(t, xm(t), um(t))dt

≥ E

∫ τ

0

l(t, x0(t), u0(t))dt

= ȷ(x0, u0) ≥ ϵ.

Hence completes the proof. □
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5. Application

Consider the following fractional stochastic integrodifferential system driven by
Rosenblatt process with Poisson jumps

CD
2
3
t x(t, z) = ∆x(t, z) +

∫ t

0

B̃(z, s)u(s, t)ds+

∫ t

0

f̃(s, z)sin(x, s)ds

+

∫ t

0

(x(t, z))2

1 + (x(t, z))2
dwH(t)

dt
+

∫
U
(1 + e−t)cosy(t, x, u)Ñ(dt, du),

x(0, z) = x0(z), z ∈ Ω1,

x(t, z)|z∈∂Ω = 0, t > 0, (5.1)

Here Let wH is a fractional Brownian motion with Hurst parameter H ∈ ( 12 , 1). Let

Ω1 ⊂ R3 be abounded domain and ∂Ω1 ∈ C3. Further let X = U = L2(Ω1), w(t) is
a standard cylindrical Wiener process in X defined on a stochastic space (Ω,ℑ,P).
Suppose D(A) = X2(Ω1)

⋂
X1

0(Ω1) and for z ∈ D(A), Az =
(

∂2

∂z2
1
+ ∂2

∂z2
2
+ ∂2

∂z2
3

)
z.

The admissible control set Uad :=
{
u ∈ U : ∥u∥Lp([0,1];U) ≤ 1

}
. Define the frac-

tional Brownian motion in Y by wH(t) =
∑∞

n=1

√
λnβH(t)en, where H ∈ ( 12 , 1) and

{βHn}n∈N is a sequence of one-dimensional fractional Brownian motions mutually
independent.

The functions f : [0, τ ] × X → X, σ : [0, τ ] × X → L0
2(Q

1/2Y,X) and h :
[0, τ ]×X× U → X are defined by

x(t)(z) = x(t, z), x(0)(z) = x(0, z) = x0(z),

(Bu)(t)(z) =

∫ t

0

B̃(z, s)u(s, t)ds,

f(t, x(t))(z) = f(t, x(t, z)) =

∫ t

0

f̃(s, z)sin(x, s)ds,

σ(t, x(t))(z) = σ(t, x(t, z)) =
(x(t, z))2

1 + (x(t, z))2
,∫

U
h(t, x, u)Ñ(ds, du) =

∫
U
(1 + e−t)cosy(t, x, u)Ñ(dt, du),

Thus, for α = 2
3 the problem (5.1) can be written as the abstract from of system

(1.1) with the cost function

ȷ(x, u) = E

{∫ 1

0

l(t, x(t), u(t))dt

}
,

where l(t, x(t), u(t))(z) =
∫
Ω1

|x(t, z)|2 dz +
∫
Ω1

|u(t, z)|2 dz. It is easy to see that

the assumptions (H1)− (H4) are satisfied, there exists an optimal pair (x0, u0) ∈
L0([0, 1]Ω1 × L2[0, 1] × Ω1) such that ȷ(x0, u0) ≤ ȷ(x, u) for all (x, u) ∈ L2([0, 1] ×
Ω1 × L2([0, 1]× Ω1).

6. Conclusion

In this paper, we studied the existence of solutions and optimal control results
of fractional stochastic differential system driven by fractional Brownian motion
with Poisson jumps in Hilbert space. The sufficient conditions for the existence
of mild solution results are formulated and proved by virtue of fractional calculus,
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solution operator and stochastic analysis techniques. Furthermore, the existence of
optimal control of the proposed problem is presented by using Balder’s theorem.
The optimal control analysis for fractional stochastic differential inclusions with
distributed delays, time varying delays, and impulsive effects will be our future
work.
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