

Mugla Journal of Science and Technology

8

A GRID-BASED MULTI-ZONE BURGESS APPROACH FOR FAST PROCEDURAL
CITY GENERATION FROM SCRATCH

Buğra Yener ŞAHİNOĞLU*, Engineering Directorate, BITES Defence and Aerospace Tech. Inc., Ankara, bugra.sahinoglu@gmail.com

(https://orcid.org/0000-0001-9967-0781)
Ufuk ÇELİKCAN*, Department of Computer Engineering, Hacettepe University, Ankara, ufuk.celikcan@gmail.com

(https://orcid.org/0000-0001-6421-185X)

Received: 31.08.2021, Accepted: 20.04.2022
*Corresponding author

Research Article

DOI: 10.22531/muglajsci.988965

Abstract

In this work, we present a novel methodology for procedural city generation from scratch, with the main goal of producing
realistically structured cities with as little user input as possible. The methodology offers a thorough solution including
procedural zone generation, procedural road network generation, procedural parcellation and procedural building
generation. As we adopt a Burgess development model, the generated cities are complete with various zones of urban and
suburban districts and public structures such as parks, schools, hospitals and police stations. We demonstrate the
practicality of the proposed methodology via an application featured with a simple easy-to-use interface. The advantages
of the proposed methodology, such as fast generation time and low resource requirements, are demonstrated in comparison
to a similar commercial city generation engine.
Keywords: Procedural generation, city generation, road network generation, parceling, building generation, simulation

SIFIRDAN HIZLI PROSEDÜREL ŞEHİR ÜRETİMİ İÇİN IZGARA YAPILI ÇOK
BÖLGELİ BURGESS YAKLAŞIMI

Özet

Bu çalışmada, mümkün olduğu kadar az kullanıcı girdisi ile gerçekçi biçimde yapılandırılmış şehirler üretme ana hedefi ile
sıfırdan prosedürel şehir üretimi için yeni bir metodoloji sunuyoruz. Önerdiğimiz bu metodoloji, prosedürel bölge
oluşturma, prosedürel yol ağı oluşturma, prosedürel parselasyon ve prosedürel bina oluşturma dahil olmak üzere kapsamlı
bir şehir üretim çözümü sunmaktadır. Bu çözümde Burgess gelişim modelini benimserken, oluşturulan şehirler, çeşitli
kentsel ve banliyö bölgeleri ve parklar, okullar, hastaneler ve polis karakolları gibi kamu yapıları ile tamamlanmaktadır.
Metodolojinin uygulanabilirliğini, basit, kullanımı kolay bir arayüze sahip bir uygulama ile göstermekteyiz. Sonuçlar,
benzer bir ticari şehir üretim motoruna kıyasla, metodolojinin hızlı üretim süresi ve düşük kaynak gereksinimleri gibi
avantajlarını ortaya koymaktadır.
Anahtar Kelimeler: Prosedürel üretim, şehir üretimi, yol ağı üretimi, parselleme, bina üretimi, simülasyon
Cite
Sahinoglu, B.Y., Celikcan, U., (2022). “A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from
Scratch”, Mugla Journal of Science and Technology, 8(1), 8-18

1. Introduction
The genesis of the term procedural generation in video
games dates back to late 70’s. In computer science,
procedural generation is an approach for generating data
with algorithms rather than manual creation. In
computer graphics, it is also called random generation
and is commonly used to create textures and 3D models.
It becomes particularly beneficial in video games, where
it can be used for automatically creating massive
amounts of game contents. Advantages of procedural
generation include smaller file sizes, larger amounts of
content and randomness for less predictable gameplay.
There has been a growing interest in creating realistic
and large synthetic cities on demand as they add realism

and complexity to games and simulations, where cities
can be used as open worlds to be explored and interacted
with. Such cities even greatly influence the game flow as
they give players a sense of freedom in terms of places to
explore, while allowing the developers to create their
games without losing control of the gameplay. In
simulations, cities provide complex and realistic training
environments. Using virtual cities for military or civil
trainings such as bomb disposal, hostage rescue,
intervention in internal conflicts, firefighting, flood
victims rescue, earthquake protection, search and rescue
missions etc. can be more effective than conducting these
trainings on sparse terrains. Biljecki et al. [25]
demonstrated 29 different use-cases of virtual cities in

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

9

more than 100 different applications, illustrating the
urgency of diverse 3D virtual cities.
In this vein, there have been numerous studies that
aimed to generate synthetic replicas of real cities in
whole or in part. Şenol and Kaya [22] generated a 3D
model of Çiftlikköy Campus of Harran University in
CityEngine using only data that is freely available on
internet. Likewise, Şenol et al. [23] used a geodesign
method to plan urban transformation areas and
generated the re-designed Eyyubiye district with
CityEngine. Ernst et al. [24] also used a geodesign method
to create a new master plan for Harran University
campus. Büyüksalih et al. [26] generated a 3D replica of
Istanbul with Unity based on CityGML schema version
2.0.
Building cities from scratch manually is a very costly and
time-consuming task that requires lengthy efforts by
large teams. With procedural city generation, a different
user experience can be achieved each time by creating
different cities for large-scale simulations and games.
Furthermore, it can be used for producing large and
varied datasets to be used in scientific research. So much
so that the biggest impact of procedural city generation
is likely to be on social simulations and urban testbeds
[1]. The cities produced by procedural methods will
contribute to the work in these fields by increasing the
number and diversity of the complex environments that
can be used in synthetic data requirements.
In the previous studies on procedural city generation, the
cities are not produced in a layered structure, which is
observed in many large city layouts worldwide. This type
of concentric development in layers called zones through
the years is known as the Burgess model. The lack of
zones gives the cities created with the previous work a
rather artificial look.
With an aim to offer an alternative that is suitable for the
needs of the state-of-the-art games and simulations, we
introduce a new procedural city generation framework
consisting of several algorithms that we developed for
creating large-scale virtual cities. In a grid-based multi-
zone Burgess approach, the proposed framework can
create cities that extends from a city center convoluted
with high-risers to suburbs populated with family homes,
all connected with a dense road network, within seconds.
Another significant contribution of our methodology is
that it features a holistic approach to procedural city
generation as it presents a complete solution
encompassing generation of the whole city layout
including zoning, blocking and parcellation; generation
of primary and secondary road networks; generation and
placement of public structures such as parks, schools,
police stations and sports fields; and finally, generation
and placement of all other buildings populating the city.
Furthermore, we propose novel procedural generation
algorithms virtually in all of these stages in order to
provide a diversified result that is unique at every run.
The rest of this paper is organized as follows. First, we
review the literature on procedural city generation in
Section 2. Then, we present our methodology in Section

3. Section 4 gives the details of our user application and
demonstrates the practicality of our methodology by
presenting the performance results in comparison to a
similar commercial city generation engine. Finally,
Section 5 concludes the paper.

2. Related Work
Synthetic city generation is a multifaceted issue
composed of multiple subproblems such as road network
generation, layouting, parceling and building generation.
Hence, it requires a different solution for each of these
subproblems. A review of the previous work shows that
many of the prior studies handled only a subset of these
problems.
The previous studies focusing on road networks have
used various methodologies to procedurally generate
road networks by different means such as L-Systems,
templates, graphs, and even analyzing real cities. Zee et
al. [2] used L-system as a mathematical formal grammar.
L-system was first devised by the biologist Aristid
Lindenmayer to model the growth of plants. The system
works in a rewriting process, which starts with an axiom
or an initial state that is rewritten using a set of rules, i.e.,
a grammar. The rewriting process repeats recursively
until the iterations are completed by creating a string
that defines a complex object [3]. Kelly and McCabe [4]
have examined city generation in three stages and the
first two were about road network generation. They
initially generated a primary road network using
undirected planar graphs that are implemented as
adjacency lists, then they generated the secondary road
network with the help of the L-System algorithm. Whelan
et al. [5] suggested the formation of road networks in two
stages, as well. In the first stage, the user selects points
on a 3D terrain and their algorithm generates a road
network based on these selections. In the second stage
where they use the L-System algorithm, they begin at the
borders of the city cells, which are sections of a terrain
enclosed by primary roads, form neighborhoods and
proceed inwards in a parallel fashion. In Sun et al.’s work
[6], road networks are generated based on templates.
Voronoi diagrams are used for population-based
templates and L-System was used for their raster and
radial templates. In Lechner et al.’s work [7], tertiary
road networks are generated using an agent-based
method. Two agents are created for this task. An
extender agent roams the terrain until it finds a space
lacking connection to the road network and then it builds
a road from that point to the network. The other one, a
connector agent, wanders over the existing road network
and builds road segments between unconnected patches
of the road. Hartman et al. [8] proposed to synthesize
road networks by making use of generative adversarial
networks (GANs). Their system is made up of two main
steps. In the first step, a raster image is created from a
road network patch from real world and in the second
step the trained GAN model is used to synthesize road
network variations from images containing uniformly
sampled noise.

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

10

Parceling, on the other hand, is mostly done using sub-
division algorithms in the examined work. Yang et al. [9]
generates parcels by using two splitting algorithms.
These are called template-based splitting and
streamline-based splitting. The user divides the region,
where the city is to be located, with one or more
streamlines from end to end. After this, the region is
subdivided with lines that are parallel to these
streamlines. The areas between streamlines are further
subdivided with templates that they provide. Since their
templates have similarly sized parcels and few in
number, generated city parcels are mostly isometric and
this is particularly noticeable in neighboring parcels.
Vanegas et al. [10] proposed to separate city blocks into
parcels using oriented bounding box (OBB) -based
subdivision, which is a binary space partitioning method.
Kelly et al. [4] used the lot subdivision method, which
recursively subdivides each region until a target lot size
is reached. Each division is realized with a line
perpendicular to the longest side. Even though it is
suitable where the input data is generally regular and
block shaped, the lot subdivision algorithm becomes
erratic when lots are angular and irregular as in a typical
suburban road network. As a remedy for this case, the
division is first prioritized along sides with road access.
Lots without road access are not considered suitable for
building development and discarded or labeled as green
spaces.
Building generation has been handled using different
approaches in previous studies. Some of them were
interested in generating the shape of the building
procedurally, while others generated just the facade of
the buildings. In Seifert et al.’s work [11], all buildings in
the same block are kept alike by using similar
parameters. Their buildings are generated from a
baseline, taken as parallel to the road level. The baseline
is extruded to create a polygon; the polygon is extruded
to create a shape for a new building; and finally building
generation ends with roof generation. The main focus of
Greuter et al.’s study [12] was on generating office
buildings using a method that merges various primitive
shapes into a floor plan and extrudes these plans to
random heights. Wonka et al. [13] used a split grammar
to procedurally generate facades of city buildings. A
building facade is represented by this grammar as a non-
terminal shape and subdivided until reaching
grammatically terminal shapes. When the split grammar
algorithm completes the subdivision of the facade,
terminal shapes are replaced with windows, doors, walls
etc. In Seifert et al.’s work [11], generated buildings in the
same area are of similar sizes. This creates a look with a
coherent silhouette for the city. They further stated that
their method can be used in urban planning in existing
cities. Müller et al. [14] introduced CGA, a shape grammar
for procedural architecture modeling on a large scale by
refinement of shapes via expanding a basic vocabulary
iteratively. Schwarz and Müller [15] extended this as a
grammar language called CGA++ with two main features.
The first one grants shapes first-class citizenship that

helps individual shapes to be uniquely identified. With
this feature, operations were able to take shapes as
arguments, enabling Boolean operations. The second
feature provides a dynamic grouping mechanism and
synchronization facility by a linguistic device of events to
enable coordination across a group of shapes.
In general, studies have handled city layouting task by
using road networks, since most of them generate cities
modeled by rectangular-grids. Only a few have used
other specific methods to generate different types of city
layouts. Zee et al. [2] generated zones with manually
analyzing the map of the original city. In Yang et al.’s
method [9], city layout is generated by producing parcels
with splitting algorithms. In Groenewegen et al.’s work
[16], city limits are generated based on the real cities in
Western Europe. They generate candidate locations for
districts based on a random distribution and the best
locations are chosen for placement of the districts with
respect to the positions of the previously placed districts,
terrain type, area within the city, distance from rivers
and distance from highways. For example, the industry-
heavy districts have a high attraction towards water-
adjacent locations. Finally, they divided those districts by
generating a Voronoi diagram. Bustard et al. introduced
the PatchCity method [17], where a texture synthesis
approach is used for generating city layouts. They use
one or more vector street maps as inputs for this image-
based texture synthesis.
There have also been studies that handled multiple
aspects of city generation together. Kim et al. [18] created
such a system in which they first parse the input query
image to extract a city component vector which pass
through the trained GAN model to obtain terrain and
height maps. They also construct a convolutional neural
network (CNN) model that takes the same image to
create a city property vector. After that, they synthesize
a city model based on the created terrain and height
maps by applying parameters collected from the city
property vector. Steinberger et al. [19] introduced a
method that provides city layout and building generation
conjointly by extending parallel generation of
architecture. The method generates city layouts using
visibility pruning through multiple phases. In the first
phase, building hulls that are assumed to be conservative
bounding volumes are generated for view frustum
pruning. If all vertices of the generated hull are outside of
the same side of the view frustum, the building can be
ignored, i.e., will not be put through further processing.
In the second phase called building specification, a
geometric description of the building is constructed for
occlusion pruning. Arbitrary compositions of shapes are
determined for this phase by associating each one with a
corresponding building and designating an occluder
type, which can be opaque, enclosing, or hidden. If an
opaque or enclosing shape is determined to be visible,
the building is constructed. On the other hand, the entire
building is skipped when no part of the building
specification is visible. Finally, geometry is generated for
all buildings that pass visibility pruning. In this phase,

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

11

they propose to use automatically generated surrogate
terminals for procedural level of detail. Parish and Müller
[20] also explored city generation in an expanded
approach with sub-systems for road generation, lots
division and building generation. According to their
research, those were found to be the slowest changing
elements of the cities. They proposed a method called
Extended L-Systems to generate the roads. They port the
setting and the modification of parameters in the L-
system modules to external functions. To generate
parcels, they subdivide the blocks that are formed during
road generation into smaller pieces by using a recursive
algorithm which divides longest edges until the parcels
meet or go under the thresholds specified by the user.
They use L-Systems also to generate buildings.
Furthermore, they designed a tool to create facade
textures for buildings semi-automatically using a simple
functional composition of layers.

3. Method
The survey of the prior work on the matter shows that in
previous studies cities are not produced in layers, or
zones, which are observed in layouts of many real-world
cities as a result of historical development either
naturally or by design. The lack of zones in the generated
cities gives them an uncanny appearance. To bridge this
gap and offer an alternative that is suitable for the needs
of the state-of-the-art games and simulations, we
propose a grid-based multi-zone Burgess approach to
facilitate fast procedural generation of synthetic 3D cities
from scratch. To this end, we developed a framework
consisting of an array of algorithms utilized in tandem.
For some of these algorithms, we improve upon the
previously established techniques such as Catmull-Rom

splines, OBB-based subdivision, zone-based subdivision,
random walk algorithm, and Perlin-noise algorithm. An
overview of our methodology is given in Figure 1 and its
stages are detailed in the following.

3.1. Generating Smooth and Non-Deterministic
Borders for City Zones

In our approach, cities are generated with distinct zones.
The name “zone” in this context denominates a region
where similar architectural structures exist. Naturally, a
city grows outwards from an established city center,
forming various zones. This type of development is called
concentric zone model, also known as the Burgess model
[21]. In time, the region around the old city center
becomes a heavily commercial zone (the downtown) and
the outskirts of the developed city becomes the affluent
residential suburban zone (the uptown). The ring in
between these two is called the midtown, home to the
city’s middle-income population.
To generate the zone borders, a closed form Catmull-
Rom spline consisting of Hermite curves is created to
form the outer boundary of each zone. The number of
curves n can be set arbitrarily as a parameter of the
algorithm. For n curves, n control points are needed.
These control points are created on directed line
segments emanating from the designated center point.
The successive line segments have equal angular
separation from each other by 360/n degrees. For the
sake of a structure that facilitates faster computation, the
center is simply chosen as the origin.
In our methodology, the only set of inputs requested
from the user is the ranges of radial distances of outer
zone boundaries from the city center. That makes a total
of 6 integer values as input, since our approach generates

Figure 1. Method overview: (a) Defining tentative zone borders. (b) Forming clusters. (b1, b2) Interim zone assignment:
(b1) If a cluster belongs to a single zone, that zone value is assigned directly; (b2) if a cluster lies over multiple zones,
zone values are assigned using Algorithm 1. (c) Result of interim zone assignment. Generating city blocks: (c1) handling
clusters with multiple zones. (d) Resulting city blocks with finalized zone assignments. (e) View of the parcels formed
after subdividing city blocks. Blue areas are reserved for public structures, and therefore are not subdivided. (f) Final
result with completed road network, buildings and public structures.

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

12

cities with 3 zones. For the zone i, where i ∈ {1, 2, 3}, the
inputs 𝑧𝑖𝑚𝑖𝑛

 and 𝑧𝑖𝑚𝑎𝑥
 define the minimum and maximum

radial distances of that zone, respectively.
To use as the control points cj of a spline curve, where j ∈
{1, 2, ..., n}, the algorithm generates a random number
between 𝑧𝑖𝑚𝑖𝑛

 and 𝑧𝑖𝑚𝑎𝑥
 for each of the n directed line

segments. Then, any two consecutive control points cj
and cj+1 become the start and end points of the curve j
between them and any point on this curve can be
calculated parametrically by varying the designated
parameter in the unit interval [0, 1], where 0 and 1
correspond to cj and cj+1, respectively. Thus, the
algorithm stores the outer boundary of each zone in a
separate array for each one of the n curves. No
computation is required for the inner boundaries, as the
outer boundary of one zone is the inner boundary of the
next zone.

3.2. Forming Clusters
Next, the whole city grid is divided into clusters by
random segmentation of horizontal and vertical lines,
which serve as the preliminary road network to become
the primary road network later (see Section 3.4 below).
For this, the vertical and horizontal lines are selected
randomly in column and row indices of the grid matrix.
Consequently, neighboring vertical and horizontal line
pairs define a cluster that is the axis aligned rectangular
region bounded by these lines on each side.

3.3. Interim Zone Assignment to Grid Cells
In our approach, we use a grid-based structure to
generate the interim zone structure. In this way, a grid
cell is the most elementary structural unit in our
methodology. Consequently, sides of a grid cell over the
virtual terrain are taken as a unit length, which
corresponds to a physical length of 4 meters in real-
world.
It is necessary to identify the grid cells that lie on the
three zone boundaries beforehand. For this, elements of
the stored spline arrays are converted to two-
dimensional integer coordinates. Then, to find out which
cells belong to which zones, we carry out an algorithm
that first checks the edges of the processed cluster for
zone boundaries. If none of the cells on the edges of the
cluster is a zone boundary, this shows that the cluster sits
entirely in a single type of zone. Then, the algorithm
detects which zone that is and assigns all cells within the
cluster to the detected zone. On the other hand, in case
the algorithm happens upon a zone boundary on the
edges, then it processes the cells within for further
inspection again starting from the edges. Further details
of the procedure are given in Algorithm1.

3.4. Generating the Primary Road Network
In this step, our algorithm expands the preliminary
network generated during the formation of clusters into
the primary road network. The amount of expansion per
road is carried out in a randomized way to create
primary roads in varying number of lanes between two
and six. In order to discard the excessive polygons where
two roads meet, our method generates crossroads by

Algorithm 1: INTERIM ZONE ASSIGNMENT
ProcessClusterCellsForZoneAssignment(cluster):

Check cluster edges for zone boundaries;

if zone boundary is not detected then /* indicates that the processed cluster lies within a single zone */
zoneValue ← BoundaryControl(the first cell in the cluster closest to the center);

/* zoneValue: 1 for the downtown (the central zone), 2 for the midtown (the middle zone), 3 for the uptown/suburbs (the outer
zone), 4 for the remaining non-zoned areas */
assign zoneValue to all cells in the cluster;

else /* zone boundary is detected >> the processed cluster covers portions from multiple zones */
foreach cell sitting on the cluster edges do

if processed cell has not been marked as checked then

zoneValue ← BoundaryControl(processed cell);

assign zoneValue to the processed cell;

foreach cell in the remainder of the cluster do

if processed cell has not been marked as checked then

zoneValue ← BoundaryControl(processed cell);

for i = 1 to 4 do

assign zoneValue to all cells moving from the processed cell until reachedBounds[i] in the

designated axis-aligned direction and mark visited cells along the path as checked;

BoundaryControl(cell):

for i = 1 to 4 do /* starting from the input cell, go through the unchecked cells in each of the four orthogonal directions along
the horizontal and vertical axes */

move until either a zone boundary, grid boundary, the processed cluster’s boundary or a checked cell is reached

and mark visited cells along the path as checked;

get zoneValue of the last processed cell when the move stops and store it in reachedBounds[i];

return the largest zoneValue observed;

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

13

splitting roads from the overlapping part and deleting
the extra layer of overlap.
The basic building block of our primary road mesh
consists of six triangles. The first and the last two of these
make up the rectangles which are textured with zebra
crossings (the leftmost and the rightmost portions in
Figure 2a). The remaining two in the middle form the
main rectangular part of the road block with the lane
texture. Width of a lane is set to a half unit (i.e., 2 meters
in real-world). Texturing a road of a given width is done
by repeating the road texture for every half unit across
that road. When the road mesh is extended along a line to
create a primary road, the road texture on it expands
between two crossroads such that only the main part
with the lane is repeated along the line, while the parts
with zebra crossings are kept as is. Then, the mesh with
the extended texture is repeated side-by-side as many
times as the number of lanes assigned for that road
necessitates (Fig. 2a). Finally, the method places traffic
lights on all four corners of each crossroad (Fig. 2b),
excluding the ones with roads emerging on only three
directions.

3.5. Generating City Blocks
Since different zones allow for different sets of buildings
within, the algorithm computes the parcels on which the
buildings are placed on a given block according to the
zone it is assigned to. However, as some clusters may
contain grid cells of more than a single zone, a procedure
is devised to divide a cluster that lies over multiple zones
into blocks where each block belongs to a single zone.
That is, for such a multi-zone cluster, the algorithm first
detects the innermost zone within it. Then, it also
determines the vertical and horizontal limits of the
innermost zone within the cluster. Due to the nature of
our zone border generation algorithm, the innermost
zone in this cluster is connected to at least one edge.
Leveraging this aspect and using the gathered
information about the innermost zone, the cluster is
broken into rectangular pieces by vertical and horizontal
dividers with respect to the limits of the innermost zone
(Fig. 3). This process results in a minimum of 2 and a
maximum of 6 pieces. After the division, the algorithm
goes through the side lengths of the resulting pieces. If
either side of a piece is smaller than the threshold set for
the corresponding axis, that piece is marked as irregular.
Thresholds are dictated by the minimum values set for
the buildings to be placed in that zone. Each irregular
piece is merged with a neighboring regular piece along

the axis of irregularity. This partitioning process is
carried out recursively for each multi-zone cluster.
Roads with four lanes are added along the division lines
between the resulting blocks. These newly added roads
serve as an extension of the primary road network. This
last step erases the cells now covered by a lane from both
blocks on either side of a division line.

3.6. Placing Public Structures
Public structures such as parks, schools, hospitals, fire
stations, sports facilities and police stations are
universally essential in all large-city layouts. Since the
areas for these structures are to cover multiple parcels,
our method will reserve the blocks for these areas before
the division of blocks into parcels.
The details of public structure placement procedure are
given in Algorithm 2. The number of each type of public
structure and the zones to place them are predefined and
can be changed as desired. The algorithm selects a
random block from each zone to place these structures.
Chosen blocks can be used with multiple purposes. Such
that, if the area of the randomly chosen block is larger
than the base area of the assigned public structure, then
the public structured is placed by making its entrance
roadside and as many sports fields as possible are placed
in the remaining part of the block.
The algorithm also procedurally generates a large
municipal park in the central zone. This large park may
or may not include a monument depending on its size.
Either way, wooded areas covering the lion share of the
four corners of the park, walking areas and benches
alongside them are generated and placed procedurally.

3.7. Generating Parcels
For dividing blocks into parcels, we adopt a novel
approach that builds upon the OBB-based subdivision
method [10]. In OBB-based subdivision, an area, which
will be recursively divided into smaller parts, is
surrounded with an oriented bounding box. For

 (a) (b)

Figure 2. (a) An example showing the basic road mesh
expanded into a primary road. (b) A crossroad.

Figure 3. An example showing the steps of converting a
cluster encompassing cells of two city zones (1) to a city
block that is assigned to a single zone (5). This is an
example of the extreme case where the block is divided
into 6 pieces (3).

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

14

parceling, the area is divided into two rectangular pieces
by a line parallel to the shorter edge of the bounding box.
This creates deterministic results. Thereby, for a given
area, OBB-based subdivision method always generates
the same end results.
In our method, the first major change is that the dividing
line will not always be parallel to the shorter edge of the
bounding box. Instead, it is carried out in a loop, cycling
between vertical and horizontal divisions. And secondly,
the lengths of the divided edge pieces are determined
randomly, provided that they fall within the
predetermined minimum and maximum limits. The
whole set of rules for our subdivision approach is as
follows.

• If the length of the edge to be divided is larger
than twice the minimum limit and also larger
than the maximum limit, division is carried out.

• If the length of the edge to be divided is larger
than twice the minimum limit, but not larger

Algorithm 2: PLACING PUBLIC STRUCTURES

PlacePublicStructures():

GenerateLargeMunicipalPark();

foreach structure in publicStructureList do

foreach zone do

while do

get random block within the zone;

if the base area of the public structure fits the block then

block.type = publicStructure.type; /* "police station", "hospital", "school", "small park", or "large municipal park"
*/
add block to publicBlockList;

break loop;

foreach block in publicBlockList do

generate a 5-sided park surface mesh using the park surface materials; /* do not need the bottom face which is not visible
*/
create pavements surrounding the edges of the the block with predefined width and materials;

add the generated park surface mesh at the vacancy within the pavements;

if block.type is ”small park” then

add the pre-made park in the middle of the park block by replacing the surface mesh as needed;

else

place public structure within the block randomly by replacing the surface mesh as needed and also by making its

entrance roadside;

if (block area - base area of the public structure) > sportsfield base area then

place randomly chosen sportsfield areas within the vacancies; /* such as football field, basketball field, tennis court,
or running track */

GenerateLargeMunicipalPark():

get the block closest to the city center;

if block.size > monument.size*5 then ; /* if the block is large enough for both monument and park */
place monument in the middle of the block;

/* calculating the dimensions of the wooded areas that occupy the four corners of the park */
if monument exists then

lengths of the wooded areas = (block.length – monument.length)/2-2;

widths of the wooded areas = (block.width – monument.width)/2-2;

else

lengths of the wooded areas = (block.length – 6)/2;

widths of the wooded areas = (block.width – 6)/2;

place walking areas and trees accordingly;

place benches on both sides of the walking areas;

Figure 4. A sample parcellation process of a city block.

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

15

than the maximum limit, division takes place
with a 0.5 probability.

• If the length of the edge to be divided is smaller
than or equal to twice the minimum limit,
division is not carried out.

• If at least one of the edges to be divided has no
parallel connection to road, division is not
carried out.

• The length of the divided parts cannot be smaller
than the minimum limit.

With these rules, our method produces non-
deterministic parcellation. A sample run of the algorithm
is illustrated in Figure 4.

3.8. Generating the Secondary Road Network
To generate the secondary roads of the city’s road
network, we propose a graph-based random walk
algorithm. Secondary roads with a width of two lanes are
generated between the nodes of the graph that an agent
travels randomly using the algorithm. The graph is built
using parcels in a block as follows.

• Corners of parcels in a given block constitute the
nodes of that graph.

• Two or more overlapping corners are registered
as the same node.

• If two nodes lie on the same edge without
another node in between, those two become
neighboring nodes and are connected in the
graph.

• However, if the connection between two
neighboring nodes overlaps with an edge of the
block, the connection between the two nodes is
discarded, i.e., their neighborhood is broken.

An agent initiates a random walk on the graph starting on
a node that is on an edge of the processed block. Such
nodes are significant for our approach as they are
connected to the primary road network. The agent
continues the walk using the node neighborhood
connections, never using the same connection more than
once. Every node it visits is stored in a list and eventually,
when the run inside the block is complete, this list gives
the secondary road network inside that block. If a node
visited by the agent is not on an edge, the node is pushed
on a stack. When the agent happens on another node that
is on an edge (i.e., indicating the agent reached another
edge of the block) before the walk is complete, the agent
jumps back to the last node added on the stack and
continues its random walk. In case that all neighbors of
this node have already been exhausted (i.e., visited), this
node is removed from the stack. The random walk
continues until the stack is emptied or the number of the
generated secondary road pieces exceeds the predefined
limit. After the secondary roads are generated, the
remaining areas within parcels are the available spaces

1 https://bugrayenersahinoglu.github.io/ProceduralCityGenerator/

where (non-public) buildings are to be placed to
populate the city zones.

3.9. Generating and Placing Buildings
To populate the city with buildings, there are two
alternatives in our methodology. For the vacant parcels
within the central zone, buildings are generated
procedurally. For the other zones, 3D models from the
library of available buildings are picked and placed
randomly.
The blocks in the central zone (the so-called downtown
of the city) need to be more tightly populated with
buildings in comparison to outer zones as it is crucial to
use the land much more efficiently in the city center.
Hence, the algorithm generates buildings for the central
zone to fit the exact sizes of the parcels they occupy.
Height of each building is computed using a two-
dimensional normalized Perlin-noise algorithm. A
random value generated by the Perlin’s algorithm is
multiplied by a and then the result is added to b to give
the height. While a and b are set to 70 and 30,
respectively, by default, either can be changed as desired.
Shapes of the buildings are randomly varied based on
their height. Visual appearances of the buildings are also
varied by applying textures randomly.
For the remaining two zones, buildings for a given block
are chosen randomly with respect to which zone the
block belongs to. Each of these two zones is given a
separate building library. That is, while midtown-style
buildings are placed in the second zone, single-family
homes with spacious gardens are used in the third zone,
which has the suburban districts of the city. The buildings
are chosen to match the size of the parcels. It is also
ensured that the front facade of each building is placed so
that the parcel faces the roadside.

4. User Application, Results and Comparison
We developed a procedural city generator application in
order to demonstrate the practicality of our
methodology. The application is built using Unity
graphics engine. A fully-featured WebGL version of the
application is made available online1.
The application has a rather easy-to-use and minimal
interface. In the main menu (Fig. 5a), the user is only
asked to enter the desired radius ranges for the three
zones as input. The total number of buildings in the city
is automatically determined by the zone sizes that result
according to the user input. Then, the user can generate
the city right away using a single button. After the
generation completes in a few seconds, the user may
either view the generated city from a top-down view or
roam around in it using the free-fly camera mode (Fig.
5b). They may also observe the city in different layers
(zone boundaries, blocks, parcels, as well as the 3D city)
or in a combination of multiple layers.
We tested our application in comparison to CScape, a
commercial procedural city generation engine. CScape is
a publicly available city generator that is also based on

https://bugrayenersahinoglu.github.io/ProceduralCityGenerator/

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

16

the Unity graphics engine. Thus, we were able to make a
fair benchmark test with it. CScape also uses a grid-
structure for parcellation but only generates Manhattan-
like cities which correspond to the central zone produced
with our approach. A visual comparison of the cities
generated by both engines is available in Figure 6. While
the generated buildings by CScape look more
photorealistic, CScape only generates business district
type city centers and the layouts of the generated cities
are always similar to each other. Our application, on the
other hand, is able to generate cities as a whole, with
more diverse compositions, including public structures.
The performance results of the comparison are given in
Table I. It is seen that our application is able to generate
a city that is similarly complex in considerably less time
using significantly less memory.
Both city generators were tested in Unity’s editor mode,
since CScape runs only in this mode. A notebook
computer with 8GB RAM, 2.70GHz Intel i7-5700HQ
processor, and a 2GB NVidia 960m graphics card was
used for the tests. It was seen that a city of 841 buildings
was generated by our application in 16.8 seconds using
0.98GB memory, while CScape generated a city of 840
buildings in 61.05 seconds using 1.43GB memory.
The executable version of our application is even faster,
generating a city of 836 buildings in 5.81 seconds. At
runtime, frame refresh rate of our application varies

between 5 and 20 FPS with the executable, and between
2 and 17 FPS in the Unity editor mode.

5. Conclusion and Future Work
In this work, we presented a novel set of methods for
procedural large city generation from scratch. The
proposed methodology offers a holistic grid-based
approach complete with solutions for the whole city
layout and road networks, public structures as well as
private buildings. To address the problem of uniformly
created cities in the previous work, our approach adopts
a Burgess model which is manifested in a concentric
development layered in zones and therefore grants a
more natural overall look.

 (a) (b)
Figure 5. (a) The main user interface of our application.
(b) A sample screenshot of a city procedurally generated
by our application with a view of the city’s urban center

Table 1. Comparison of our application with CScape.
Tool Building Count Time (second) Reserved Memory (GB) Used Memory (GB)

CScape 840 61.05 1.76 1.43

City Generator 841 16.8 1.25 0.98

(c) (d)
Figure 6. (a) Top-down view and (b) perspective view of the city generated by our application. (c) Top-down view and
(d) perspective view of the city generated by CScape.

 (a) (b)

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

17

We demonstrated the practicality of the offered
methodology in a framework which is made publicly
available as a web application. We tested the presented
framework with respect to a commercial alternative and
showed its diversity as well as its rapidity. The results
exhibit the applicability of our methodology towards the
needs of the-state-of-the-art games and simulations
which call for fast generation and varied outcomes that
look fairly realistic. Despite its contributions and
improvements to the existing body of work, the
presented methodology has several limitations. First of
all, our method, like many other procedural city
generation methods, assumes a completely flat terrain
across the land to be build the city on. However, that is
rarely the case in reality. Therefore, changes to the
proposed method are necessary to make it generalized
enough for applicability to terrains that are more rugged,
coastal terrains and terrains with waterways such as
rivers or canals. Another shortcoming is that our method
builds a city on an exact grid structure while very few real
cities adhere to this. Finally, further arrangements can be
easily added to the proposed methodology in order to
generate cities consisting of zone structures with more
than one center, as observed in many metropolitan cities.

6. References

[1] Kim, J. S., Kavak, H. and Crooks, A., “Procedural city

generation beyond game development”, SIGSPATIAL
Special, 10(2), pp. 34-41, 2018.

[2] van der Zee, A. and de Vries, B., “Modeling of RL-
Cities”, 30th International Conference on Education
and Research in Computer Aided Architectural Design
in Europe (eCAADe 2012), eCAADe and CVUT, Faculty
of Architecture, pp. 375-380, 2012.

[3] Prusinkiewicz, P. and Lindenmayer, A., The
algorithmic beauty of plants. Springer Science &
Business Media, 2012.

[4] Kelly, G. and McCabe, H., “Citygen: An interactive
system for procedural city generation”, Fifth
International Conference on Game Design and
Technology, pp. 8-16, 2007.

[5] Whelan, G., Kelly, G. and McCabe, H., “Roll your own
city”, Proceedings of the 3rd international
conference on Digital Interactive Media in
Entertainment and Arts, pp. 534-535, 2008.

[6] Sun, J., Yu, X., Baciu, G. and Green, M., “Template-
based generation of road networks for virtual city
modeling”, Proceedings of the ACM symposium on
Virtual reality software and technology, pp. 33-40,
2002.

[7] Lechner, T., Watson, B. and Wilensky, U., “Procedural
city modeling”, 1st Midwestern Graphics Conference,
2003.

[8] Hartmann, S., Weinmann, M., Wessel, R. and Klein, R.,
“Streetgan: Towards road network synthesis with
generative adversarial networks”, 25th International
Conference on Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG), pp. 133-
142, 2017.

[9] Yang, Y. L., Wang, J., Vouga, E. and Wonka, P., “Urban
pattern: Layout design by hierarchical domain
splitting”, ACM Transactions on Graphics (TOG),
32(6), pp. 1-12, 2013.

[10] Vanegas, C. A., Kelly, T., Weber, B., Halatsch, J., Aliaga,
D. G. and Müller, P., “Procedural generation of parcels
in urban modeling”, Computer graphics forum,
Oxford, UK: Blackwell Publishing Ltd, Vol. 31, No.
2pt3, pp. 681-690, 2012.

[11] Seifert, N., Mühlhaus, M. and Petzold, F., “A
parametric 3d city model: basis for decision support
in inner-city development”, Proceedings of the 16th
International Conference on Computing in Civil and
Building Engineering, pp. 1285-1292, 2016.

[12] Greuter, S., Parker, J., Stewart, N. and Leach, G.,
“Real-time procedural generation of pseudo infinite
cities”, Proceedings of the 1st international
conference on Computer graphics and interactive
techniques in Australasia and South East Asia, pp.
87-ff, 2003.

[13] Wonka, P., Wimmer, M., Sillion, F. and Ribarsky, W.,
“Instant architecture”, ACM Transactions on Graphics
(TOG), 22(3), pp. 669-677, 2003.

[14] Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van
Gool, L., “Procedural modeling of buildings”, ACM
SIGGRAPH 2006 Papers, pp. 614-623, 2006.

[15] Schwarz, M. and Müller, P., “Advanced procedural
modeling of architecture”, ACM Transactions on
Graphics (TOG), 34(4), pp. 1-12, 2015.

[16] Groenewegen, S. A., Smelik, R. M., de Kraker, K. J. and
Bidarra, R., “Procedural city layout generation based
on urban land use models”, Short Paper Proceedings
of Eurographics 2009, 2009.

[17] Bustard, J. D. and de Valmency, L. P., “PatchCity:
Procedural City Generation using Texture Synthesis”,
IRISH MACHINE VISION & IMAGE PROCESSING
Conference proceedings 2015, 2015.

[18] Kim, S., Kim, D. and Choi, S., “CityCraft: 3D virtual
city creation from a single image”, The Visual
Computer, 36(5), pp. 911-924, 2020.

[19] Steinberger, M., Kenzel, M., Kainz, B., Wonka, P. and
Schmalstieg, D., “On‐the‐fly generation and
rendering of infinite cities on the GPU”, Computer
graphics forum, Vol. 33, No. 2, pp. 105-114, 2014.

[20] Parish, Y. I. and Müller, P., “Procedural modeling of
cities”, Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pp.
301-308, 2001.

[21] Kearsley, G. W., “Teaching urban geography: The
Burgess model”, New Zealand Journal of Geography,
75(1), pp.10-13, 1983.

[22] Şenol, H. İ. and Kaya, Y., “İnternet Tabanlı Veri
Kullanımıyla Yerleşim Alanlarının Modellenmesi:
Çiftlikköy Kampüsü Örneği”, Türkiye Fotogrametri
Dergisi, 1(1), pp.11-16, 2019.

[23] Şenol, H. İ., Ernst, F. B., & Akdağ, S., “Kentsel
Dönüşüm Alanlarının Geotasarım Yöntemi ile
Planlanması: Eyyübiye Örneği”, Harran Üniversitesi
Mühendislik Dergisi, 3(3), pp. 63-69, 2018.

Buğra Yener Şahinoğlu, Ufuk Çelikcan
A Grid-Based Multi-Zone Burgess Approach for Fast Procedural City Generation from Scratch

18

[24] Ernst, F., Erdoğan, S., Yılmaz, M., Ulukavak, M., Şenol,
H. İ., Memduhoğlu, A., & Çullu, M. A., “Geodesign For
Urban Planning – The Example Of Harran
University's Campus Masterplan”, International
Journal of Environmental Trends (IJENT), 3(1), pp.
17-30, 2019.

[25] Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., &
Çöltekin, A., “Applications of 3D city models: State of
the art review”, ISPRS International Journal of Geo-
Information, 4(4), pp. 2842-2889, 2015.

[26] Buyuksalih, I., Bayburt, S., Buyuksalih, G., Baskaraca,
A. P., Karim, H., & Rahman, A. A., “3D Modelling and
Visualization Based on The Unity Game Engine-
Advantages and Challenges”, ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial
Information Sciences, 4, 2017

