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Abstract
In this paper, we consider the Le Roy-type Mittag-Leffler function. Our main focus is to
establish some sufficient conditions so that the normalized Le-Roy type Mittag-Leffler func-
tion posses some geometric properties such as starlikeness, convexity, close-to-convexity
(univalency) and uniformly convexity inside the unit disk. Using these results, geometric
properties of the normalized Mittag-Leffler function are derived as application. Results
obtained in this paper are new. Interesting consequences, corollaries and examples are
provided to support that these results are better and improve several results available in
the literature.
Mathematics Subject Classification (2020). 33E12, 30C45
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1. Introduction
1.1. Preliminaries

Suppose that H denotes the class of analytic functions in the unit disk D = {z : |z| < 1}.
Let A be the class of all functions f ∈ H such that f(0) = f ′(0) − 1 = 0 with the following
form

f(z) = z +
∞∑

k=2
akz

k, z ∈ D.

Assume that S denotes the class of all functions in A which are univalent in the unit disc
D. A function f ∈ A is called starlike (with respect to the origin 0) in D, if f is univalent
in D and f(D) is a star-like domain with respect to 0 in C. The class of starlike functions
is denoted by S∗. The analytic characterization of S∗ can be found in [5], which is given
below:

f ∈ S∗ ⇐⇒ ℜ
(
zf ′(z)
f(z)

)
> 0 ∀z ∈ D.
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Let 0 ≤ α < 1. Then a function f ∈ A is called starlike function of order α, if

ℜ
(
zf ′(z)
f(z)

)
> α, ∀z ∈ D.

This class is denoted by S∗(α). A function f ∈ A is called convex in D if f is univalent in
D and f(D) is a convex domain in C. The class of convex functions is denoted by K. The
analytic characterization of this class is given by:

f ∈ K ⇐⇒ ℜ
(

1 + zf ′′(z)
f ′(z)

)
> 0, ∀z ∈ D.

If in addition,

ℜ
(

1 + zf ′′(z)
f ′(z)

)
> α, ∀z ∈ D,

where α ∈ [0, 1), then f is called convex function of order α. We denote the class of convex
functions of order α by K(α).

A function f ∈ A is close-to-convex in D if there exists a starlike function g in D such
that

ℜ
(
zf ′(z)
g(z)

)
> 0, z ∈ D.

It is well known that every close-to-convex function in D is also univalent in the unit disk
D.

A function f ∈ A is called uniformly convex (starlike) if for any circular arc γ contained
in D with center ζ ∈ D the image arc f(γ) is convex (starlike w.r.t. the image f(ζ)). Let
UCV (UST ) denote the class of all uniformly convex (starlike) functions [26]. In [9,10], A.
W. Goodman introduced these classes. In [26], F. Rønning introduced a class of starlike
functions Sp in the following way.

Sp := {f : f(z) = zF ′(z), F ∈ UCV }.

For further details on geometric properties of analytic functions we refer to [5,13–16] and
references cited therein.

1.2. Motivation
Problems for studying the geometric properties (including univalency, starlikeness or

convexity) of family of analytic functions (in the unit disk) involving special functions
have always been attracted by several researchers [2, 9, 10, 15, 16, 20, 21]. Mittag-Leffler
functions are important special functions which play important role in fractional calculus,
approximation theory and various branches of science and engineering. These functions
also appear in the solution of fractional order differential equations or fractional order
integral equations. In [25], application of Mittag-Leffler functions in fractional modeling
has been discussed. In 1903, M. G. Mittag-Leffler [17,18] introduced the classical Mittag-
Leffler function, defined as

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
, α > 0, z ∈ C.

A famous generalization of Eα(z) with two parameters (i.e., two parametric Mittag-Leffler
function) is given by

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α, β > 0, z ∈ C.
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In [2,20,21], several geometric properties of the normalized Mittag-Leffler function Eα,β(z),
defined as

Eα,β(z) = zΓ(β)Eα,β(z) = z +
∞∑

k=1

Γ(β)zk+1

Γ(αk + β)
, α, β > 0, z ∈ C,

has been discussed inside the unit disk D.
M. A. Al-Bassam and Yu. F. Luchko [1] introduced multi-index (also known as vector

index) Mittag-Leffler functions of 2m-parameters, defined as

E
(m)
(α,β)(z) ≡ E

(m)
(α1,β1),...,(αm,βm)(z) =

∞∑
k=0

zk∏m
i=1 Γ(αik + βi)

, αi, βi > 0,m ∈ N, z ∈ C,

(1.1)

to solve a Cauchy type problem for a fractional differential equation and obtained explicit
solution in terms of E(m)

(α,β)(z).
In [27], Le Roy function was introduced by É. Le Roy, defined as

Rγ(z) =
∞∑

k=0

zk

(k!)γ
, γ > 0, z ∈ C,

to study asymptotic of certain power series. Recently, S. Gerhold [8] and independently
R. Garra-F. Polito [6] introduced Le Roy-type Mittag-Leffler function, defined as

F γ
α,β(z) =

∞∑
k=0

zk

[Γ(αk + β)]γ
, α, β, γ > 0, z ∈ C. (1.2)

It can be easily noted that F (γ)
α,β(z) is a generalization of Eα,β(z), F (γ)(z) and various other

special functions. For example,

F
(1)
α,β(z) = Eα,β(z), F

(γ)
1,1 (z) = Rγ(z)

F
(1)
2,2 (z) = sinh

√
z

z
, F

(1)
1,1 (z) = exp(z)

F
(1)
1,2 (z) = exp(z) − 1

z
, F

(1)
2,1 (z) = cosh

√
z

F
(2)
1,1 (z) = J0(2

√
z), F

(n)
α,β(z) = E

(n)
(α,β),...,(α,β)(z), n ∈ N,

F
(ν)
1,1 (λ) = Z(λ, ν), F

(α+1)
1,1 (z) = eα(z),

where J0(z), Z(λ, ν) and eα(z) denote the Bessel function of the first kind [3], COM-
Poisson renormalization constant [4] and αL-exponential function [6] respectively.

In [7], R. Garrappa, S. Rogosin and F. Mainardi derived integral representations, in-
tegral transforms and asymptotic expansion of F (γ)

α,β(z). Moreover, they posed some open
problems related to the complete monotonicity of F (γ)

α,β(z) in [7]. These open problems
[7] have been solved by K. Górska, A. Horzela and R. Garrappa in [11]. Definite inte-
gral representation of F (γ)

α,β(z) and COM-Poisson renormalization constants integral forms
have been established by T. K. Pogány in [23]. Recently, T. Simon [28] studied complete
monotonicity property of F (γ)

α,β(z) on the negative half-line and proposed some conjec-
tures related to random variables. The above results motivate us to study the geometric
properties of normalized form of F (γ)

α,β(z).
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Since, F (γ)
α,β(z) /∈ A, we consider the following normalization of F (γ)

α,β(z):

F(γ)
α,β(z) = z[Γ(β)]γ F (γ)

α,β(z) =
∞∑

k=1

[ Γ(β)
Γ(α(k − 1) + β)

]γ

zk, α, β, γ > 0, z ∈ C

:= z +
∞∑

k=2
ak(α, β, γ)zk,

(1.3)

where ak(α, β, γ) =
[

Γ(β)
Γ(α(k−1)+β)

]γ
. Although, the formula (1.3) holds for α, β, γ > 0 and

z ∈ C, in this article we will restrict our attention to the case of positive real valued α, β, γ
and z ∈ D.

1.3. Main contributions and methodologies

The main focus of this paper is to study certain geometric properties of F(γ)
α,β(z). The

main contributions along with methodologies are listed below:
• Derive sufficient conditions so that F(γ)

α,β(z) ∈ S∗ in D.
To solve this problem, we will use the classical definition of stralikeness and the
following lemmas:

Lemma 1.1. [12] For any positive real number s, the digamma function (psi func-
tion) ψ(s) = Γ′(s)

Γ(s) satisfies the following inequality:

log(s) − 1
s
< ψ(s) < log(s) − 1

2s
. (1.4)

Lemma 1.2. [19] Let f(z) ∈ A and |f ′(z) − 1| < 2/
√

5 ∀ z ∈ D. Then f(z) is a
starlike function in D.

• Obtain sufficient conditions so that F(γ)
α,β(z) ∈ S∗ in D1/2.

We will use Lemma 1.1 and the following lemma to solve this problem.

Lemma 1.3. [13] Let f ∈ A and |(f(z)/z) − 1| < 1 for each z ∈ D, then f is
univalent and starlike in D1/2 = {z : |z| < 1/2}.

• Establish sufficient conditions so that F(γ)
α,β(z) ∈ K in D.

To solve this problem, we will use the fact that a function f(z) ∈ K in D if and only
if zf ′(z) ∈ S∗ in D. Moreover, with the help of Lemma 1.1 and classical definition
of starlikeness, we will obtain the required result.

• Find sufficient conditions so that F(γ)
α,β(z) ∈ K in D1/2.

Lemma 1.1 and the following lemma will be applied to solve this problem.

Lemma 1.4. [14] Let f ∈ A and |f ′(z) − 1| < 1 for each z ∈ D, then f is convex
in D1/2 = {z : |z| < 1/2}.

• Obtain sufficient conditions so that F(γ)
α,β(z) belongs to UCV and Sp inside the unit

disk.
Using Lemma 1.1 and the following lemma, we will derive the required result.

Lemma 1.5. [24] Let f ∈ A.

(i) If
∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ < 1
2

, then f ∈ UCV .

(ii) If
∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ < 1

2
, then f ∈ Sp.
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• Derive sufficient conditions so that F(γ)
α,β(z) is close-to-convex with respect to certain

functions.
Lemma 1.1 and the following lemmas will be used to solve this problem.

Lemma 1.6. [22] Let f(z) = z +
∑∞

k=2Akz
k. If 1 ≤ 2A2 ≤ · · · ≤ nAn ≤ (n +

1)An+1 ≤ · · · ≤ 2, or 1 ≥ 2A2 ≥ · · · ≥ nAn ≥ (n + 1)An+1 ≥ · · · ≥ 0, then f is
close-to-convex with respect to − log(1 − z).

Lemma 1.7. [22] Let f(z) = z+
∑∞

k=2A2k−1z
2k−1 be analytic in D. If 1 ≥ 3A3 ≥

· · · ≥ (2k − 1)A2k−1 ≥ · · · ≥ 0 or 1 ≤ 3A3 ≤ · · · ≤ (2k − 1)A2k−1 ≤ · · · ≤ 2, then
f is univalent in D.

• Discuss the geometric properties of Eα,β(z) as application and show that the re-
sults obtained in this paper are better and improve several results available in the
literature.
To do so, we will use numerical computation with the help of mathematical soft-
ware.

2. Starlikness of normalized Le Roy-type Mittag-Leffler function
Theorem 2.1. Let α, β, γ be positive real numbers such that αγ ≥ 1 and α2γ ≥ β and the
following relation holds:

αγ log(α+ β) − log(2) − 3
4

− αγ

α+ β
> 0.

(i) If 2(e− 1)[Γ(β)]γ < [Γ(α+ β)]γ , then the function F(γ)
α,β(z) is starlike in D.

(ii) If 3(e− 1)[Γ(β)]γ < [Γ(α+ β)]γ , then F(γ)
α,β(z) ∈ Sp.

Proof. (i) By definition, to prove that the function F(γ)
α,β(z) is starlike in D, it is enough

to show that ∣∣∣∣[z (
F(γ)

α,β(z)
)′ /(

F(γ)
α,β(z)

)]
− 1

∣∣∣∣ < 1,

for all z ∈ D. Thus, we have

(
F(γ)

α,β(z)
)′

−
F(γ)

α,β(z)
z

=
∞∑

k=1

k[Γ(β)]γ

[Γ(αk + β)]γ
zk

=
∞∑

k=1

bk(α, β, γ)zk

k!
,

(2.1)

where (bk)k≥ is defined by

bk(α, β, γ) = kΓ(k + 1)[Γ(β)]γ

[Γ(αk + β)]γ
, k ≥ 1. (2.2)

We consider the function f1(s) defined by

f1(s) = sΓ(s+ 1)[Γ(β)]γ

[Γ(αs+ β)]γ
, s ≥ 1. (2.3)

Therefore,
f ′

1(s) = f1(s)f2(s), (2.4)
where f2(s) is defined as

f2(s) = 1
s

+ ψ(s+ 1) − αγψ(αs+ β), s ≥ 1.



1090 K. Mehrez, S. Das

With the help of Lemma 1.1, we get

f2(s) < f3(s) := log(s+ 1) − αγ log(αs+ β) + s+ 2
2s(s+ 1)

+ αγ

αs+ β
. (2.5)

By differentiation, we get

f ′
3(s) = α(1 − αγ)s+ (β − α2γ)

(αs+ β)(s+ 1)
− s2 + 4s+ 2

2s2(s+ 1)2 − α2γ

(αs+ β)2 . (2.6)

This implies that the function f3(s) is decreasing on (0,∞) if αγ ≥ 1 and α2γ ≥ β.
In addition, it can be verified that f3(1) < 0, under the given conditions. Therefore,
f3(s) is negative on [1,∞), which implies that f2(s) < 0 for all s ≥ 1. Consequently,
the function f1(s) is decreasing on [1,∞). Hence, the sequence (bk)k≥1 is decreasing.
Thus, in view of (2.1), we obtain∣∣∣∣ (

F(γ)
α,β(z)

)′
−

F(γ)
α,β(z)
z

∣∣∣∣ < ∞∑
k=1

bk(α, β, γ)
k!

≤
∞∑

k=1

b1(α, β, γ)
k!

= b1(α, β, γ)(e− 1).

(2.7)

On the other hand, we have∣∣∣∣∣∣F
(γ)
α,β(z)
z

∣∣∣∣∣∣ > 1 −
∞∑

k=1

ck(α, β, γ)
k!

, z ∈ D, (2.8)

where the sequence (ck)k≥1 is defined by

ck = Γ(k + 1)[Γ(β)]γ

[Γ(αk + β)]γ
, k ≥ 1. (2.9)

Since, the sequence (bk)k≥1 is decreasing, the sequence (ck)k≥1 is also decreasing.
Then, by (2.8) we obtain∣∣∣∣∣∣F

(γ)
α,β(z)
z

∣∣∣∣∣∣ > 1 − c1(α, β, γ)(e− 1), z ∈ D. (2.10)

In virtue of (2.7) and (2.10) we get∣∣∣∣∣∣∣
z

(
F(γ)

α,β(z)
)′

F(γ)
α,β(z)

 − 1

∣∣∣∣∣∣∣ <
b1(α, β, γ)(e− 1)

1 − c1(α, β, γ)(e− 1)
, z ∈ D. (2.11)

The above inequality needs to be less than 1, this gives the conditions 2[Γ(β)]γ(e−
1) < [Γ(α+ β)]γ . Hence,

ℜ

z(F(γ)
α,β(z))′

(F(γ)
α,β(z)

 > 0

for all z ∈ D. This implies that the function F(γ)
α,β(z) is starlike on D. The proof of

part (i) of Theorem 2.1 is complete.
(ii) Proceeding similarly as part (i) and applying part (ii) of Lemma 1.5 in (2.11), part

(ii) of Theorem 2.1 can be proved.
�

Corollary 2.2. If
−1+

√
1+4

√
2(e−1)

2 < β ≤ 8, then the function F(2)
2,β(z) is starlike in D.
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Proof. Letting α = γ = 2 in Theorem 2.1, we get that the function F(2)
2,β(z) is starlike in

D, if β(β + 1) −
√

2(e− 1) > 0 such that 0 < β ≤ 8 and the function f(β) defined by

f(β) = 4 log(2 + β) − log(2) − 3
4

− 4
β + 2

,

is positive. We observe that the function f(β) is increasing on (0,∞) such that

f

−1 +
√

1 + 4
√

2(e− 1)
2

 ≈ 1.53 > 0.

This implies that the function f(β) > 0 if

−1 +
√

1 + 4
√

2(e− 1)
2

< β ≤ 8,

which completes the proof. �

Similarly, we can derive the following corollary.

Corollary 2.3. If
−1+

√
1+4

√
3(e−1)

2 < β ≤ 8, then the function F(2)
2,β(z) ∈ Sp.

Example 2.4. (i) The function F(2)
2, 20

21
(z) is starlike in D.

(ii) F(2)
2, 11

10
(z) ∈ Sp.

On setting γ = 1 in Theorem 2.1, we get the following result as follows:

Corollary 2.5. Let α, β be positive real numbers such that α ≥ 1, α2 ≥ β and the following
condition holds:

α log(α+ β) − log(2) − 3
2

− α

α+ β
> 0.

(i) If 2(e− 1)Γ(β) < Γ(α+ β), then the function Eα,β(z) is starlike in D.
(ii) If 3(e− 1)Γ(β) < Γ(α+ β), then Eα,β(z) ∈ Sp.

Example 2.6. The function E2, 19
10

(z) is starlike in D and E2, 19
10

(z) ∈ Sp.

Remark 2.7. Using Corollary 2.5 and proceeding similarly as Corollary 2.2, we can
compute that E2,β(z) and Eα, 1

2
(z) are starlike in D if 1.9 ≤ β ≤ 4 and α ≥ 3.52 respectively.

Furthermore, with the help of numerical computation, we observe that for any α ≥ 2.55,
there exists β ∈ (0, 1) such that Eα,β(z) is starlike in D. Hence, Corollary 2.5 can discusses
the case when 0 < β < 1. In [2, Theorem 2.2], it is proved that Eα,β(z) is starlike in D if
α ≥ 1 and β ≥ (3+

√
17)

2 ≈ 3.56155. In [21, Theorem 2], it is shown that Eα,β(z) is starlike
in D if α ≥ 2.67 and β ≥ 1. Moreover, it is also proved in [21, Theorem 6] that Eα,β(z) is
starlike in D if α ≥ 1 and β ≥ 3.214319744. The results in [2, 21] discuss the starlikeness
of Eα,β(z) when α, β ≥ 1 but Corollary 2.5 can also consider the case when 0 < β < 1
and also provide the sharper lower bound for β. Hence, Corollary 2.5 improves the results
available in [2, Theorem 2.2] and [21, Theorem 2, Theorem 6].

Theorem 2.8. Let α, β, γ > 0 such that αγ ≥ 1, γ ≥ 1
2 , β ≤ min(α

√
2γ, α2γ) and (e −

1)[Γ(β)]γ < [Γ(α+ β)]γ . Also, if

αγ log(α+ β) − log(2) + 1
4

− αγ

α+ β
> 0,

then the function F(γ)
α,β(z) is starlike in D1/2.



1092 K. Mehrez, S. Das

Proof. A simple computation gives∣∣∣F(γ)
α,β(z))/z − 1

∣∣∣ < ∞∑
k=1

ck(α, β, γ)
k!

, z ∈ D, (2.12)

where (ck)k≥1 is defined in (2.9). Now, we define the function g1(s) by

g1(s) = Γ(s+ 1)
[Γ(αs+ β)]γ

, s ≥ 1.

Then, we have
g′

1(s) = g1(s)g2(s), (2.13)
where

g2(s) = ψ(s+ 1) − αγψ(αs+ β).
Again, applying Lemma 1.1, we get

g2(s) < g3(s) := log(s+ 1) − αγ log(αs+ β) − 1
2(s+ 1)

+ αγ

αs+ β
. (2.14)

Therefore,

g′
3(s) = α(1 − αγ)s+ β − α2γ

(s+ 1)(αs+ β)
+[α(1 −

√
2γ)s+ β −

√
2γα] [α(1 +

√
2γ)s+ β +

√
2γα]

2(s+ 1)2(αs+ β)2 < 0,

under the given hypotheses. This implies that the function g3(s) is decreasing on [1,∞)
with g3(1) < 0. So, g3(s) < 0 for all s ≥ 1. Consequently, the function g1(s) is decreasing
with the aid of (2.13) and (2.14). Hence, the sequence (ck)k≥1 is decreasing. Therefore,
using (2.12), we obtain ∣∣∣∣∣∣F

(γ)
α,β(z)
z

− 1

∣∣∣∣∣∣ < c1(e− 1) < 1, z ∈ D,

under the given conditions of Theorem 2.8. Finally, using Lemma 1.3, the desired result
can be obtained. �

Corollary 2.9. If
√
e− 1 < β ≤ 2, then the function F(2)

1,β is starlike in D1/2.

Proof. We set α = 1 and γ = 2 in Theorem 2.8, we deduce that the function F(2)
1,β is

starlike in D1/2 if
√
e− 1 < β ≤ 2 and the function g(β) defined by

g(β) = 2 log(1 + β) − log(2) + 1
4

− 2
β + 1

,

is positive. Since the function g(β) is increasing on (0,∞) and g(
√
e− 1) ≈ 0.37 > 0, we

get the desired result. �

Example 2.10. The function F(2)
1,3/2 is starlike in D1/2.

Upon setting γ = 1 in Theorem (2.8), we establish the following result:

Corollary 2.11. Let α, β > 0 such that α ≥ 1, β ≤ min(α
√

2, α2) and (e − 1)Γ(β) <
Γ(α+ β). Also, if

α log(α+ β) − log(2) + 1
4

− α

α+ β
> 0,

then the function Eα,β(z) is starlike in D1/2.

Example 2.12. The function E2, 10
11

(z) is starlike in D1/2.
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Remark 2.13. Using Corollary 2.11 and following similar techniques as Corollary 2.9, we
can verify that E2,β(z) is starlike in D1/2 if 10

11 ≈ 0.909091 ≤ β ≤ 2
√

2. Moreover, using
numerical computation we can verify that for any α ≥ 2.4, there exists β ∈ (0, 1) such
that Eα,β(z) is starlike in D1/2. In [2, Theorem 2.4], it is shown that Eα,β(z) is starlike in
D1/2 if α ≥ 1 and β ≥ (1+

√
5)

2 ≈ 1.61803. Moreover, the results proved in [2, Theorem 2.4]
consider the case α, β ≥ 1. But Corollary 2.11 discusses the case for 0 < β < 1 and also
provides sharper lower bound for β. Hence, Corollary 2.11 improves the results available
in [2, Theorem 2.4].

(a) Mapping of F(2)
2, 20

21
(z)

over D
(b) Mapping of E2, 19

10
(z)

over D
(c) Mapping of F(2)

1, 3
2

(z)
over D1/2

(d) Mapping of E2, 10
11

(z)
over D1/2

Figure 1. Mapping F(2)
α,β(z) and Eα,β(z) over D and D1/2.

3. Convexity of normalized Le Roy-type Mittag-Leffler function
Theorem 3.1. Let α, β, γ > 0 be such that αγ ≥ 1 and 2α2γ ≥ β. If

αγ log(α+ β) − log(3) − 5
6

− αγ

α+ β
> 0 and 4(e− 1)[Γ(β)]γ < [Γ(α+ β)]γ ,

then the function F(γ)
α,β(z) is convex in D.

Proof. It is well known that a function f(z) is convex in D if and only if zf ′(z) is starlike
in D. So, in order to prove F(γ)

α,β(z) is convex it is sufficient to prove that the function

G(γ)
α,β(z) := z

(
F(γ)

α,β(z)
)′

is starlike in D. Therefore,(
G(γ)

α,β(z)
)′

− G(γ)
α,β(z)/z =

∞∑
k=1

dk(α, β, γ)zk

k!
, (3.1)

where (dk)k≥1 is defined by

dk := dk(α, β, γ) = [Γ(β)]γkΓ(k + 2)
[Γ(αk + β)]γ

, k ≥ 1.

Let us define the function h1(s) by

h1(s) = sΓ(s+ 2)
[Γ(αs+ β)]γ

.

Then, we have
h′

1(s) = h1(s)h2(s), s ≥ 1,
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where
h2(s) = 1

s
+ ψ(s+ 2) − αγψ(αs+ β).

Using Lemma 1.1, we have

h2(s) < h3(s) := log(s+ 2) − αγ log(αs+ β) + s+ 4
2s(s+ 2)

+ αγ

αs+ β
.

Hence,

h′
3(s) = α(1 − αγ)s+ β − 2α2γ

(s+ 2)(αs+ β)
+ s(s+ 2) − 2(s+ 1)(s+ 4)

2s2(s+ 2)2 − α2γ

(αs+b eta)2 < 0

for all s ≥ 1, αγ ≥ 1 and 2α2β ≥ β. This implies that the function h3(s) is decreasing
on [1,∞). As h3(1) < 0, we deduce that the function h1(s) is decraesing on [1,∞) and
consequently, the sequence (dk)k≥1 is decreasing. Then for all z ∈ D we get∣∣∣∣(G(γ)

α,β(z)
)′

− G(γ)
α,β(z)/z

∣∣∣∣ < ∞∑
k=1

d1(α, β, γ)zk

k!
= d1(e− 1). (3.2)

However, for z ∈ D, we obtain∣∣∣G(γ)
α,β(z)/z

∣∣∣ =
∣∣∣∣(F(γ)

α,β(z)
)′

∣∣∣∣ ≥ 1 −
∞∑

k=1

ek(α, β, γ)zk

k!
, (3.3)

where (ek)k≥1 is defined by

ek := ek(α, β, γ) = dk(α, β, γ)
k

, k ≥ 1. (3.4)

We observe that the sequence (ek)k≥1 is decreasing because (dk)k≥1 is decreasing. There-
fore, using (4.2) we have ∣∣∣G(γ)

α,β(z)/z
∣∣∣ > 1 − e1(α, β, γ)(e− 1). (3.5)

In view of (3.2) and (3.5), we have∣∣∣∣∣∣∣
z

(
G(γ)

α,β(z)
)′

G(γ)
α,β(z)

− 1

∣∣∣∣∣∣∣ ≤ d1(α, β, γ)(e− 1)
1 − e1(α, β, γ)(e− 1)

≤ 1. (3.6)

This shows that the function F(γ)
α,β(z) is convex in D. �

Corollary 3.2. If (−1 +
√

1 + 8
√
e− 1)/2 < β ≤ 16, then the function F(2)

2,β(z) is convex
in D.

Proof. Setting α = γ = 2 in Theorem 3.1, we observe that the function F(2)
2,β(z) is convex

in D, if β ≤ 16, β2 + β − 2
√
e− 1 > 0 and the function h(β) defined by

h(β) = 4 log(2 + β) − log(3) − 5
6

− 4
2 + β

,

is positive. The condition β2 + β − 2
√
e− 1 > 0 holds true if β ≥ β1 := −1+

√
1+8

√
e−1

2 . In
addition, we see that the function h(β) is increasing on (0,∞) such that h(β1) > 0. This
completes the proof of Corollary 3.2. �

Example 3.3. The function F(2)
2, 6

5
(z) is convex in D.

Taking γ = 1 in Theorem 3.1, we obtain the following result:
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Corollary 3.4. Let α, β > 0 such that α ≥ 1 and 2α2 ≥ β. Also, if

α log(α+ β) − log(3) − 5
6

− α

α+ β
> 0 and 4(e− 1)Γ(β) < Γ(α+ β),

then the function Eα,β(z) is convex in D.

Setting α = 2 in Corollary 3.4, we get the following result:

Corollary 3.5. If (−1 +
√

16e− 15)/2 < β ≤ 8, then the function E2,β(z) is convex in D.

Example 3.6. The function E2, 9
4
(z) is convex in D.

Remark 3.7. In [21, Theorem 7], it is proved that Eα,β(z) is convex in D if α ≥ 1
and β ≥ 3.56155281. From Corollary 3.5, we can verify that E2,β(z) is convex in D if
2.16893 < β ≤ 8. Further, setting β = 1/2 in Corollary 3.5, we can see that Eα, 1

2
(z) is

convex in D if α ≥ 4.04. Moreover, numerical computation shows that for any α ≥ 3.2,
there exists β ∈ (0, 1) such that Eα,β(z) is convex in D. Therefore, Corollary 3.5 can also
discuss the case when 0 < β < 1. Hence, Corollary 3.5 improves the results in [21, Theorem
7].

Theorem 3.8. Let α, β > 0, γ ≥ 1
2 such that αγ ≥ 1 and β ≤ min(2α2γ, 2

√
2γα) and the

following condition holds:

αγ log(α+ β) − log(3) + 1
6

− αγ

α+ β
> 0.

(i) If 2[Γ(β)]γ(e− 1) < [Γ(α+ β)]γ , then the function F(γ)
α,β(z) is convex in D1/2.

(ii) If
√

5[Γ(β)]γ(e− 1) < [Γ(α+ β)]γ , then the function F(γ)
α,β(z) is starlike in D.

Proof. Direct computation gives(
F(γ)

α,β(z)
)′

− 1 =
∞∑

k=1

ek(α, β, γ)zk

k!
, (3.7)

where (ek)k≥1 is defined in (3.4). We define the function I1(s) by

I1(s) = Γ(s+ 2)
[Γ(αs+ β)]γ

, s ≥ 1.

Then, we get
I ′

1(s) = I1(s)I2(s) =: I1(s)[ψ(s+ 2) − αγψ(αs+ β)].
Hence, by Lemma 1.1, we have

I2(s) < I3(s) := log(s+ 2) − αγ log(αs+ β) − 1
2(s+ 2)

+ αγ

αs+ β
.

Then
I ′

3(s) = α(1 − αγ)s+ β − 2α2γ

(s+ 2)(αs+ β)
+ (αs+ β)2 − 2α2γ(s+ 2)2

2(s+ 2)2(αs+ β)2 .

It follows that the function I3(s) is decreasing on [1,∞) such that I3(1) < 0. This implies
that the function I1(s) is decreasing on [1,∞) and consequently the sequence (ek)k≥1 is
decreasing. Thus, for all z ∈ D, we obtain∣∣∣∣(F(γ)

α,β(z)
)′

− 1
∣∣∣∣ < e1(α, β, γ)(e− 1). (3.8)

Under the given condition (i), we have∣∣∣∣(F(γ)
α,β(z)

)′
− 1

∣∣∣∣ < 1.

Now, using Lemma 1.4, part (i) of this theorem can be proved.
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Again, under the given condition (ii), we get∣∣∣∣(F(γ)
α,β(z)

)′
− 1

∣∣∣∣ < 2√
5
.

Finally, using Lemma 1.2, the desired result can be obtained. �

Corollary 3.9. If
√

2(e− 1) < β ≤ 4, then the function F(2)
1,β(z) is convex in D1/2.

Proof. Setting α = 1 and γ = 2 in part (i) of Theorem 3.8, we observe that F(2)
1,β(z) is

convex in D1/2 if
√

2(e− 1) < β ≤ 4 and T (β) := 2 log(β + 1) − log 3 + 1
6 − 2

β+1 > 0.
It can be easily seen that T (β) is increasing on (0,∞) and T

(√
2(e− 1)

)
> 0, which

completes the proof of the corollary. �

Example 3.10. The function F(2)
1, 19

10
(z) is convex in D1/2.

If we set γ = 1 in Theorem 3.8, we conclude the following result:

Corollary 3.11. Let α, β > 0 such that α ≥ 1, β ≤ min(2α2, 2
√

2α) and following
condition holds:

α log(α+ β) − log(3) + 1
6

− α

α+ β
> 0.

(i) If 2Γ(β)(e− 1) < Γ(α+ β), then the function Eα,β(z) is convex in D1/2.

(ii) If
√

5Γ(β)(e− 1) < Γ(α+ β), then the function Eα,β(z) is starlike in D.

Corollary 3.12. If (−1 +
√

8e− 7)/2 < β ≤ 4
√

2, then the function E2,β(z) is convex in
D1/2.

Proof. Setting α = 2 in part (i) of Corollary 3.11, we compute that the function E2,β(z) is
convex in D1/2 if (−1+

√
8e− 7)/2 < β ≤ 4

√
2 and L(β) := 2 log(β+2)−log 3+ 1

6 − 2
β+2 > 0.

A simple computation shows that L(β) is increasing on (0,∞) and L
(
(−1 +

√
8e− 7)/2

)
>

0, which completes the proof of this corollary. �
Similarly, we can prove the following corollary.

Corollary 3.13. (i) If
(

−1 +
√

1 + 4
√

5(e− 1)
)
/2 < β ≤ 4

√
2, then the function

E2,β(z) is starlike in D.
(ii) If 0.78 ≤ β ≤ 6

√
2, then the function E3,β(z) is starlike in D.

(iii) If 0.73 ≤ β ≤ 6
√

2, then the function E3,β(z) is convex in D1/2.

Example 3.14. (i) The function E2, 3
2
(z) is convex in D1/2.

(ii) The function E2, 8
5
(z) is starlike in D.

Remark 3.15. In [2, Theorem 2.4], it is shown that Eα,β(z) is convex in D1/2 if α ≥ 1 and
β ≥ (3+

√
17)

2 ≈ 3.56155. Moreover, In [2, Example 2.1], it is proved that E2,β2 and E3,β3

are starlike in D if β2 ≥ (−1+
√

17)
2 ≈ 1.56155 and β3 ≥ 1 respectively. In [21, Theorem

2], it is shown that Eα,β(z) is starlike in D if α ≥ 2.67 and β ≥ 1. Moreover, it is also
proved in [21, Theorem 6] that Eα,β(z) is starlike in D if α ≥ 1 and β ≥ 3.214319744.
Also, starlikeness of Eα,β(z) in D is discussed in [2, 21] for the case α ≥ 1 and β ≥ 1.
From Corollary 3.12 and Corollary 3.13, we see that E2,β2(z) and E3,β3(z) are convex
in D1/2 if 1.43 ≤ β2 ≤ 4

√
2 and 0.73 ≤ β3 ≤ 6

√
2 respectively; and starlike in D if

1.53 ≤ β2 ≤ 4
√

2 and 0.78 ≤ β3 ≤ 6
√

2 respectively. Furthermore, setting β = 1
2 in

Corollary 3.11, we observe that Eα, 1
2
(z) is convex in D1/2 if α ≥ 3.55. Moreover, using

numerical computation, we can show that for any α1 ≥ 2.55 and α2 ≥ 2.66, there exist
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β1, β2 ∈ (0, 1) such that Eα1,β1(z) is convex in D1/2 and Eα2,β2(z) is starlike in D. Therefore,
Corollary 3.11 can discusses the case when 0 < β < 1 and provides sharper lower bound
for β. Hence, Corollary 3.11 improves the results available in [2, Theorem 2.1, Theorem
2.2, Theorem 2.4] and [21, Theorem 2, Theorem 6].

(a) Mapping of F(2)
2, 6

5
(z)

over D
(b) Mapping of E2, 9

4
(z)

over D
(c) Mapping of F(2)

1, 19
10

(z)
over D1/2

(d) Mapping of E2, 3
2

(z)
over D1/2

Figure 2. Mapping F(2)
α,β(z) and Eα,β(z) over D.

Theorem 3.16. Let α, β > 0, γ ≥ 1
2 be such that αγ ≥ 1 and β ≤ min(2α2γ, 2

√
2γα). In

addition, if

αγ log(α+ β) − log(3) − 5
6

− αγ

α+ β
> 0 and 3(e− 1)[Γ(β)]γ < [Γ(α+ β)]γ ,

then the function F(γ)
α,β(z) is uniformly convex in D.

Proof. Simple computation gives

z
(
F(γ)

α,β(z)
)′′

=
∞∑

k=1

xk(α, β, γ)zk

k!
, (3.9)

where the sequence (xk)k≥0 is defined by

xk = k[Γ(β)]γΓ(k + 2)
[Γ(αk + β)]γ

, k ≥ 1.

We define the function J1(s) by

J1(s) = sΓ(s+ 2)
[Γ(αs+ β)]γ

, s ≥ 1.

Therefore, we have

J ′
1(s) = J1(s)

[1
s

+ ψ(s+ 2) − αγψ(αs+ β)
]

:= J1(s)J2(s).

In view of Lemma 1.1, we obtain

J2(s) < J3(s) := log(s+ 2) − αγ log(αs+ β) + 1
s

− 1
2(s+ 2)

+ αγ

αs+ β
.

By differentiation, we get

J ′
3(s) = α(1 − αγ)s+ β − 2α2γ

(s+ 2)(αs+ β)
+ (αs+ β)2 − 2α2γ(s+ 2)2

2(s+ 2)2(αs+ β)2 − 1
s2 .

This leads to
J ′

3(s) ≤ 0 and J3(s) ≤ J3(1) < 0,
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which implies that the function J3(s) is decreasing on [1,∞), and consequently the se-
quence (xk)k≥1 is decreasing. Hence, for z ∈ D, we have∣∣∣∣(F(γ)

α,β(z)
)′′

∣∣∣∣ < ∞∑
k=1

x1(α, β, γ)
k!

= (e− 1)x1(α, β, γ). (3.10)

Moreover, for all z ∈ D, we have(
F(γ)

α,β(z)
)′
> 1 −

∞∑
k=1

yk(α, β, γ)
k!

, (3.11)

where yk = xk/k, k ≥ 1. Since the sequence (xk)k≥1, we conclude that the sequences
(yk)k≥1 is decreasing. Then, by (3.11) we have

(F(γ)
α,β(z))′ > 1 − y1(α, β, γ)(e− 1), z ∈ D. (3.12)

In view of (3.10) and (3.12), we obtain∣∣∣∣∣∣∣
z

(
F(γ)

α,β(z)
)′′

(
F(γ)

α,β(z)
)′

∣∣∣∣∣∣∣ <
(e− 1)x1(α, β, γ)

1 − (e− 1)y1(α, β, γ)
,

and this is less or equal 1
2 under the given hypotheses. By means of Lemma 1.5, we deduce

that the function F(γ)
α,β(z) is uniformly convex in D. �

Corollary 3.17. If 5
2 ≤ β ≤ 4, then the function F(2)

1,β(z) is uniformly convex in D.

Proof. Setting α = 1 and γ = 2 in Theorem 3.16, we observe that F(2)
1,β(z) is uniformly

convex in D if
√

3(e− 1) < β ≤ 4 and p(β) = 2 log(β+ 1) − log 3 − 5
6 − 2

β+1 > 0. It can be
easily shown that p(β) is increasing in (0,∞) and p(5/2) > 0. But p(

√
3(e− 1)) < 0 and√

3(e− 1) < 5/2, which leads to the required result. �
Example 3.18. The function F(2)

1, 5
2
(z) is uniformly convex in D.

Upon setting γ = 1 in Theorem 3.16, we compute the following result:
Corollary 3.19. Let α, β > 0 such that α ≥ 1 and β ≤ min(2α2, 2

√
2α). In addition, if

α log(α+ β) − log(3) − 5
6

− α

α+ β
> 0 and 3(e− 1)Γ(β) < Γ(α+ β),

then the function Eα,β(z) is uniformly convex in D.

Corollary 3.20. If β ∈
[
(−1 +

√
12e− 11)/2, 4

√
2
]
, then the function E2,β(z) is uni-

formly convex in D.
Proof. Assuming α = 2 in Corollary 3.19, we see that E2,β(z) is uniformly convex in D if
(−1 +

√
12e− 11)/2 ≤ β ≤ 4

√
2 and q(β) = 2 log(2 + β) − log(3) − 5

6 − 2
β+2 > 0. A simple

computation shows that q(β) is increasing in (0,∞) with q((−1 +
√

12e− 11)/2) > 0,
which yields the required result. �
Example 3.21. The function E2, 17

9
(z) is uniformly convex in D.

Remark 3.22. In [20, Theorem 2.6], it is proved that Eα,β(z) uniformly convex in D if
α ≥ 1 and β ≥ 9.1112597744. From Corollary 3.19, we see that E2,β(z) is uniformly convex
in D if 17

9 ≤ β ≤ 4. Moreover, setting β = 1
2 in Corollary 3.19, we observe that Eα, 1

2
(z)

uniformly convex in D if α ≥ 3.88. Numerical computation shows that for any α ≥ 2.9,
there exists β ∈ (0, 1) such that Eα,β(z) uniformly convex in D. Therefore, Corollary 3.19
can also discusses the case 0 < β < 1. Hence, Corollary 3.19 improves the result available
in [20, Theorem 2.6].
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(a) Mapping of F(2)
1, 5

2
(z) over

D
(b) Mapping of E2, 17

9
(z)

over D
(c) Mapping of E 1

2 , 17
2

(z) over
D

Figure 3. Mapping F(2)
α,β(z) and Eα,β(z) over D.

4. Close-to-convexity of normalized Le Roy-type Mittag-Leffler function
with respect to certain starlike functions

Theorem 4.1. Suppose that α, β and γ are positive real numbers such that the following
condition holds:

αγ log(β) − αγ

β
− 1 > 0.

Then the function F(γ)
α,β(z) is close-to-convex with respect to the function − log(1 − z) in

D.

Proof. We will use Lemma 1.6 to prove this theorem. To show that F(γ)
α,β(z) is close-to-

convex with respect to the function − log(1 − z) in D, it is sufficient to prove that the
sequence {kak}k≥1 is decreasing, where (ak)k≥1 is defined in (1.3).

Now, we define the function K1(s) by

K1(s) = s

[Γ(αs+ β − α)]γ
, s ≥ 1.

Differentiation gives

K ′
1(s) = K1(s)K2(s) := K1(s)

[1
s

− αγψ(αs+ β − α)
]
.

In view of Lemma 1.1, we obtain

K2(s) < K3(s) := 1
s

+ αγ

(αs+ β − α)
− αγ log(αs+ β − α).

Thus, we have

K ′
3(s) = − 1

s2 − α2γ

(αs+ β − α)2 {α(s− 1) + (β + 1)} .

We observe that the function K3(s) is decreasing on [1,∞) for any s ≥ 1, under the
given condition. According to the given hypothesis K3(1) < 0, which yields K3(s) < 0
for all s ≥ 1. This implies that the function K1(s) is deceasing on [1,∞) for any s ≥ 1.
Consequently, the sequence (kak)k≥1 is decreasing. Hence, Lemma 1.6 completes the proof
of Theorem 4.1. �
Corollary 4.2. Let α, β > 0. If αγ = 1 and β ≥ 18

5 , then the function F(γ)
α,β(z) is close-to-

convex with respect to the function − log(1 − z) in D.

Corollary 4.3. Let α, β > 0. If β ≥ 5
2 , then the function F(2)

1,β(z) is close-to-convex with
respect to the function − log(1 − z) in D.
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Setting γ = 1 in Theorem 4.1, we obtain the following result.

Corollary 4.4. Let α and β be positive real numbers such that β > e
α+β
αβ . Then the

function Eα,β(z) is close-to-convex with respect to the function − log(1 − z) in D.

Example 4.5. The function E 1
2 , 17

2
(z) is close-to-convex with respect to the function

− log(1 − z) in D.

Remark 4.6. In [21, Theorem 4], it is proved that Eα,β(z) is close-to-convex with respect
to the function − log(1 − z) if α ≥ 1 and β ≥ 1. Using Corollary 4.4, with the help of
numerical computation, we can show that for any β ≥ 3.6, there exists α ∈ (0, 1) such
that Eα,β(z) is close-to-convex with respect to the function − log(1 − z). Hence, Corollary
4.4 consider the case 0 < α < 1 and consequently, improves the results in [21, Theorem 4].

Theorem 4.7. Assume that the hypotheses of Theorem 2.1 are valid. Further, suppose
that α ≥ 1, βγ > 2(e−1) and β > 1−x∗ ≈ 0.55, where x∗ is the abscissa of the minimum of
the Gamma function. Then the function F(γ)

α,β(z) is close-to-convex with respect to starlike
function F(γ)

1,β(z) in D.

Proof. From Theorem 2.1, we observe that the function F(γ)
1,β(z) is starlike in D. Then,

from the definition, we need to show that

ℜ
([
z

(
F(γ)

α,β(z)
)′

] /(
F(γ)

1,β(z)
))

> 0, for all z ∈ D,

which is equivalent to∣∣∣∣[z (
F(γ)

α,β(z)
)′

] /(
F(γ)

1,β(z)
)

− 1
∣∣∣∣ < 1, for all z ∈ D.

In view of (2.10), we have ∣∣∣∣∣∣F
(γ)
1,β(z)
z

∣∣∣∣∣∣ > β−γ(βγ − (e− 1)). (4.1)

Moreover, we have∣∣∣∣∣∣
(
F(γ)

α,β(z)
)′

−
F(γ)

1,β(z)
z

∣∣∣∣∣∣ <
∞∑

k=1
[Γ(β)]γ

∣∣∣∣ k + 1
[Γ(αk + β)]γ

− 1
[Γ(k + β)]γ

∣∣∣∣
≤

∞∑
k=1

k[Γ(β)]γ

[Γ(k + β)]γ

=
∞∑

k=1

bk(1, β, γ)
k!

,

(4.2)

where the sequence (bk)k≥1 is defined in (2.2). Since, the sequence (bk)k≥1 is monotonically
decreasing under the given hypotheses. Therefore,∣∣∣∣∣∣

(
F(γ)

α,β(z)
)′

−
F(γ)

1,β(z)
z

∣∣∣∣∣∣ < (e− 1)
βγ

, for all z ∈ D. (4.3)

Combining the above inequality with (4.1), we obtain the following bound∣∣∣∣[z (
F(γ)

α,β(z)
)′

] /(
F(γ)

1,β(z)
)

− 1
∣∣∣∣ < (e− 1)

βγ − e+ 1
< 1, for all z ∈ D.

This completes the proof of Theorem 4.7. �
Setting γ = 1 in Theorem 4.7, we obtain the following result.
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Corollary 4.8. Suppose that the hypotheses of Corollary 2.5 are valid. Also assume that
α ≥ 1, β > 2(e − 1). Then the function Eα,β(z) is close-to-convex with respect to starlike
function E1,β(z) in D.

Theorem 4.9. Let α, β and γ be positive real numbers such that the following condition
holds:

αγ log(β) − αγ

β
− 2 > 0.

Then the function F
(γ)
α,β(z) = zΓγ(β)F (γ)

α,β

(
z2)

is close-to-convex with respect to the function
1
2 log

(
1+z
1−z

)
in D.

Proof. We have,

F
(γ)
α,β(z) = z +

∞∑
k=2

( Γ(β)
Γ(α(k − 1) + β)

)γ

z2k−1 :=
∞∑

k=1
A2k−1z

2k−1.

First, we show that {(2k− 1)A2k−1}k≥1 is a decreasing sequence. To do so, let us consider
the function

L1(s) = (2s− 1)
{Γ(αs+ β − α)}γ

, s ≥ 1.

Differentiation gives us

L′
1(s) = L1(s)

[ 2
2s− 1

− αγψ(αs+ β − α)
]

:= L1(s)L2(s).

Using Lemma 1.1, we obtain

L2(s) < L3(s) := 2
2s− 1

+ αγ

(αs+ β − α)
− αγ log(αs+ β − α),

which leads to

L′
3(s) = − 4

(2s− 1)2 − α2γ

(αs+ β − α)2 − α2γ

(αs+ β − α)
< 0, s ≥ 1.

Therefore, L3(s) is decreasing on [1,∞) for s ≥ 1 with L3(1) < 0, under given hypothesis.
This shows that L3(s) < 0 for any s ≥ 1, which yields that L1(s) is decreasing on [1,∞) for
s ≥ 1. Consequently, {(2k− 1)A2k−1}k≥1 is a decreasing sequence. Hence, the hypothesis
of Lemma 1.7 is satisfied. It is well-known that [3, p. 55] if a function f : D → C
satisfies the hypothesis of Lemma 1.7, then it is close-to-convex with respect to the function
1
2

log
(1 + z

1 − z

)
. This completes the proof of the theorem. �

Setting γ = 1 in Theorem 4.9, we obtain the following result.

Corollary 4.10. Let α and β be positive real numbers such that the following condition
holds:

α log(β) − α

β
− 2 > 0.

Then the function Eα,β(z) = zΓ(β)Eα,β

(
z2)

is close-to-convex with respect to the function
1
2 log

(
1+z
1−z

)
.
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5. Conclusion
In this paper, normalized Le Roy type Mittag-Leffler function F(γ)

α,β(z) has been con-
sidered and several geometric properties such as starlikeness, convexity, close-to-convexity
(univalency) and uniformly convexity have been studied inside the unit disk for positive
real numbers α, β and γ. It can be noted that F(γ)

α,β(z) reduces to the normalized Mittag-
Leffler function Eα,β(z) for γ = 1. As applications, geometric properties of Eα,β(z) are
also obtained. In literature, several geometric properties of Eα,β(z) are discussed [2,20,21]
with the hypothesis that α ≥ 1 and β ≥ 1. Results obtained in this paper can discuss
certain geometric properties of Eα,β(z) for the cases 0 < α < 1 and 0 < β < 1 with sharper
lower bounds of α and β. Interesting consequences and examples are provided to support
that these results are better and improve several results available in the literature.

Acknowledgment. The authors wish to thank the reviewers for suggestions that helped
to improve the paper.
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