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Abstract

In this paper, we consider the Le Roy-type Mittag-Leffler function. Our main focus is to
establish some sufficient conditions so that the normalized Le-Roy type Mittag-Leffler func-
tion posses some geometric properties such as starlikeness, convexity, close-to-convexity
(univalency) and uniformly convexity inside the unit disk. Using these results, geometric
properties of the normalized Mittag-Leffler function are derived as application. Results
obtained in this paper are new. Interesting consequences, corollaries and examples are
provided to support that these results are better and improve several results available in
the literature.
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1. Introduction
1.1. Preliminaries

Suppose that H denotes the class of analytic functions in the unit disk D = {z : |z| < 1}.
Let A be the class of all functions f € H such that f(0) = f/(0) — 1 = 0 with the following
form

f(z)=2z+ Zakzk, z € D.
k=2

Assume that S denotes the class of all functions in A which are univalent in the unit disc
D. A function f € A is called starlike (with respect to the origin 0) in D, if f is univalent
in D and f(D) is a star-like domain with respect to 0 in C. The class of starlike functions
is denoted by S*. The analytic characterization of S* can be found in [5], which is given

below:
zf'(2)
f(z)

fes — §R( >>OVze]D>.
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Let 0 < a < 1. Then a function f € A is called starlike function of order «, if

R (Z;£i§)> >, VzeD.

This class is denoted by S*(«). A function f € A is called convex in D if f is univalent in
D and f(D) is a convex domain in C. The class of convex functions is denoted by K. The
analytic characterization of this class is given by:

zf"(2)
feK — %<1+ 702) ) >0, Vz € D.
If in addition,
2f"(z)
3%(1+ 70 ) >a, VzeD,

where a € [0,1), then f is called convex function of order cr. We denote the class of convex
functions of order a by K(«).
A function f € A is close-to-convex in D if there exists a starlike function ¢ in D such

that
/!
éR(Zf (Z)> >0, 2eD.
9(2)
It is well known that every close-to-convex function in ID is also univalent in the unit disk
D.

A function f € A is called uniformly convex (starlike) if for any circular arc v contained
in D with center ¢ € D the image arc f(7) is convex (starlike w.r.t. the image f({)). Let
UCV (UST) denote the class of all uniformly convex (starlike) functions [26]. In [9,10], A.
W. Goodman introduced these classes. In [26], F. Rgnning introduced a class of starlike
functions S, in the following way.

Sp:={f:f(z)=2F'(z), FeUCV}.

For further details on geometric properties of analytic functions we refer to [5,13-16] and
references cited therein.

1.2. Motivation

Problems for studying the geometric properties (including univalency, starlikeness or
convexity) of family of analytic functions (in the unit disk) involving special functions
have always been attracted by several researchers [2, 9,10, 15,16, 20, 21]. Mittag-Leffler
functions are important special functions which play important role in fractional calculus,
approximation theory and various branches of science and engineering. These functions
also appear in the solution of fractional order differential equations or fractional order
integral equations. In [25], application of Mittag-Leffler functions in fractional modeling
has been discussed. In 1903, M. G. Mittag-Leffler [17,18] introduced the classical Mittag-
Leffler function, defined as

o0 k
z
Bo(z) =Y =, 0, z € C.
(2) 2 ok + 1) a>0,z€

A famous generalization of E,(z) with two parameters (i.e., two parametric Mittag-Leffler
function) is given by

o Zk;

Ea7ﬁ(2) = kz:%m, a,ﬁ > O, z € C.
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In [2,20,21], several geometric properties of the normalized Mittag-Leffler function E, 5(2),
defined as

k+1

k:—{—ﬁ a,B8>0, ze€C,

Ea,ﬁ('z) = ZF(B) =z+ Z

has been discussed inside the unit disk D.
M. A. Al-Bassam and Yu. F. Luchko [1] introduced multi-index (also known as vector
index) Mittag-Leffler functions of 2m-parameters, defined as

Sk

B (2) = B

i» Bi >0, N, C,
(0[;6 (041,51), ,am,ﬂm) Z mlF(al/{—k/@Z) (e} 6 > m € z e

(1.1)

to solve a Cauchy type problem for a fractional differential equation and obtained explicit
solution in terms of E((Zf)ﬁ) (2).

In [27], Le Roy function was introduced by E. Le Roy, defined as

i 4
= , v>0,z€C,
= ()

to study asymptotic of certain power series. Recently, S. Gerhold [8] and independently
R. Garra-F. Polito [6] introduced Le Roy-type Mittag-Leffler function, defined as

k

Flﬁ(Z):;;JM’ a,B,v>0,z€C. (1.2)

It can be easily noted that ngﬂ) (2) is a generalization of E, 3(2), F()(z) and various other
special functions. For example,

FO(2) = Bap(z), FO () = Ry(2)
sinh /2
F2(712) (Z) = f’ Fl(}l) (Z) — eXp(Z)
F1(12)(Z) = %7 Fg(l)(z) = cosh /2
’ z

F(2) = Jo(2v2), FUN2) = By ap(2)n €N,
FON =20v), F57 () = eal2),

where Jo(z), Z(A,v) and ¢4(2) denote the Bessel function of the first kind [3], COM-
Poisson renormalization constant [4] and aL-exponential function [6] respectively.
In [7], R. Garrappa, S. Rogosin and F. Mainardi derived integral representations, in-

tegral transforms and asymptotic expansion of F (7)( ). Moreover, they posed some open

problems related to the complete monotonicity of F(V)( ) in [7]. These open problems
[7] have been solved by K. Gérska, A. Horzela and R Garrappa in [11]. Definite inte-
gral representation of F (Wﬁ)( ) and COM-Poisson renormalization constants integral forms
have been established by T. K. Pogény in [23]. Recently, T. Simon [28] studied complete
monotonicity property of FC(Y g(z) on the negative half-line and proposed some conjec-
tures related to random variables. The above results motivate us to study the geometric

properties of normalized form of Fgg(z)
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Since, F 0([7/;(2) ¢ A, we consider the following normalization of F 0(713(2)

F)(2) = 2[T(B)) i { Lp) " By >0,2€C

(k—1)+p)

k=1 (1.3)

=z+ Z ar(a
k=2

T

where ag(a, 5,7) = {ﬁp Although, the formula (1.3) holds for a, 8,7 > 0 and

z € C, in this article we will restrict our attention to the case of positive real valued «, 3, v
and z € D.

1.3. Main contributions and methodologies

The main focus of this paper is to study certain geometric properties of IF(W) ( ). The
main contributions along with methodologies are listed below:

Derive sufficient conditions so that F" }5( ) € S* in D.
To solve this problem, we will use the classical definition of stralikeness and the
following lemmas:

Lemma 1.1. [12] For any positive real number s, the digamma function (psi func-

tion) ¥ (s) = (ss) satisfies the following inequality:

log(s) — % < P(s) < log(s) — % (1.4)

Lemma 1.2. [19] Let f(2) € A and |f'(z) — 1| < 2/V/5 Yz € D. Then f(2) is a

starlike function in D.

Obtain sufficient conditions so that FU' )ﬁ( ) € S* in Dy jo.
We will use Lemma 1.1 and the followmg lemma to solve this problem.

Lemma 1.3. [13] Let f € A and |(f(2)/z) — 1| < 1 for each z € D, then f is
univalent and starlike in Dy o = {2 : |z| < 1/2}.

Establish sufficient conditions so that Fg’)ﬁ(z) € Kin D.

To solve this problem, we will use the fact that a function f(z) € Kin D if and only
if zf'(z) € S* in D. Moreover, with the help of Lemma 1.1 and classical definition
of starlikeness, we will obtain the required result.

Find sufficient conditions so that ]ng)ﬁ(z) € Kin Dy 5.
Lemma 1.1 and the following lemma will be applied to solve this problem.

Lemma 1.4. [14] Let f € A and |f'(z) — 1| < 1 for each z € D, then f is convex
in Dy ={z:]z] <1/2}.

Obtain sufficient conditions so that F(V) ( ) belongs to UC'V and S, inside the unit
disk.
Using Lemma 1.1 and the following lemma, we will derive the required result.

Lemma 1.5. [24] Let feA.
(i) If 2 ()) < -, then f € UCV.
2)

1
—1‘< , then f €S,.
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Y

CY23(2) is close-to-convex with respect to certain

e Derive sufficient conditions so that F
functions.

Lemma 1.1 and the following lemmas will be used to solve this problem.

Lemma 1.6. [22] Let f(2) = 2 + 352, ApzF. If 1 < 245 < --- < nd, < (n+
DAt <+ <2 0or1>24 > --->nA, > (n+1)A41 > -+ >0, then fis
close-to-convez with respect to —log(1 — z).

Lemma 1.7. [22] Let f(2) = 2+ Y025 Aoi,_122#71 be analytic in D. If 1 > 3A3 >
Z (2k_1)A2k_1 Z 2 0orl S 3A3 S S (2]€—1)A2k_1 S S 2, then
f is univalent in D.

e Discuss the geometric properties of E, g(z) as application and show that the re-
sults obtained in this paper are better and improve several results available in the
literature.

To do so, we will use numerical computation with the help of mathematical soft-
ware.

2. Starlikness of normalized Le Roy-type Mittag-Leffler function

Theorem 2.1. Let o, 3,7 be positive real numbers such that ay > 1 and oy > B and the
following relation holds:

aylog(a + ) —log(2) — z - 040—?6

(i) If2(e—D[C(P)]" < [['(a+ B)]7, then the function IF(J%(,Z) is starlike in D.
(ii) If 3(e — DILB)] < [T(a+ B, then F)(2) € Sp.

Proof. (i) By definition, to prove that the function IFEY ,)8( ) is starlike in D, it is enough
to show that

for all z € D. Thus, we have

™) - )
(F%(Z))' Fas®) _ 3 ELIACY I

z = [bF(ak: + B (2.1)
=y Wl B
k=1
where (bg)r> is defined by
_ KPR+ DTB)”
br(a, B,7) = T(ah+ A kE>1. (2.2)
We consider the function fi(s) defined by
_ sI(s+ D[I(B)]” s
fi(s) = Tlas+ A > 1. (2.3)
Therefore,
fi(s) = fi(s) fa(s), (2.4)

where fy(s) is defined as

fa(s) = % +Y(s+1) —ayp(as+ F),s > 1.
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With the help of Lemma 1.1, we get
s+ 2 ay

(o) < fals) = logs + 1) — ayloglaas + ) + 5+ o (29)
By differentiation, we get
sy al—ay)s+ (B—a?y) s*4+4s+2 a?y
B = T st B D) 292G+ 12 (ast AP (2:6)

This implies that the function f3(s) is decreasing on (0, 00) if ay > 1 and a2y > .
In addition, it can be verified that f3(1) < 0, under the given conditions. Therefore,
f3(s) is negative on [1,00), which implies that fo(s) < 0 for all s > 1. Consequently,
the function fi(s) is decreasing on [1, 00). Hence, the sequence (by)r>1 is decreasing.
Thus, in view of (2.1), we obtain

) 0o
@ () _ Fas?) b 8,7)
’ (F25) | ° kz::l Kl
00 2.7
S Z bl(aa Ba ’Y) ( )
k!
k=1
=bi(a, B,7)(e = 1).
On the other hand, we have
F(’Y) ~ 00
‘w(>>1—§fﬂiﬁw,zem (2.8)
z = !

where the sequence (c)r>1 is defined by

_ T+ DR
TR >

Since, the sequence (by)r>1 is decreasing, the sequence (c)i>1 is also decreasing.
Then, by (2.8) we obtain

FO)(2)

z

>1—ci(a,B,7)(e—1), z€D. (2.10)

In virtue of (2.7) and (2.10) we get

i@ﬁéﬂl _q| < (@ B)(e—1)
Foy(2) T—ci(oB)e—1)°

zeD. (2.11)

The above inequality needs to be less than 1, this gives the conditions 2[I'(8)]”(e —

1) < [['(a+ B)]7. Hence,
2(F)(2))
oY
(Fa,ﬁ(z)

for all z € D. This implies that the function FEJ}?(Z) is starlike on D. The proof of
part (i) of Theorem 2.1 is complete.
(ii) Proceeding similarly as part (i) and applying part (ii) of Lemma 1.5 in (2.11), part
(ii) of Theorem 2.1 can be proved.
O

—144/ 144+ /2(e—1)

Corollary 2.2. If 5 < B <8, then the function Fg%(z) is starlike in D.
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Proof. Letting o = v = 2 in Theorem 2.1, we get that the function F g%(z) is starlike in
D, if B(B+ 1) —y/2(e — 1) > 0 such that 0 < 8 < 8 and the function f(8) defined by
3 4
£(8) = 4log(2+ §) ~105(2) - T ~

is positive. We observe that the function f(/) is increasing on (0, c0) such that

; (—1+ V1+4v20e—1)

~ 1.53 > 0.
)

This implies that the function f(8) > 0 if
—1+4/1+4y2(e—1
\/ ( ) < B <8

2 —_ 9
which completes the proof. ]

Similarly, we can derive the following corollary.

—144/144+/3(e—1)

Corollary 2.3. If 5 < B <8, then the function F(Qgg(z) €S,.

Example 2.4. (i) The function Fféo (z) is starlike in D.
721
(ii) F) (2) €Sy
710
On setting v = 1 in Theorem 2.1, we get the following result as follows:

Corollary 2.5. Let o, 8 be positive real numbers such that o > 1, a® > 3 and the following
condition holds:

alog(a+5)—log(2)—;—aiﬂ>0

(i) If2(e = 1)I'(B) < I'(a + B), then the function E, g(2) is starlike in .
(ii) If 3(e — 1)I'(B) < T'(av+ B), then E, g(2) € Sp.

Example 2.6. The function E, 10 () is starlike in D and E, 10 (2) € S,,.
710

710

Remark 2.7. Using Corollary 2.5 and proceeding similarly as Corollary 2.2, we can
compute that Eg 3(2) and Ea,% (z) are starlike in Dif 1.9 < 8 < 4 and o > 3.52 respectively.
Furthermore, with the help of numerical computation, we observe that for any a > 2.55,
there exists 5 € (0,1) such that E,, 5(2) is starlike in . Hence, Corollary 2.5 can discusses
the case when 0 < 8 < 1. In [2, Theorem 2.2], it is proved that E, g(z) is starlike in D if

a>1and B> G ~ 356155, In [21, Theorem 2], it is shown that Eq g(z) is starlike
in D if o > 2.67 and § > 1. Moreover, it is also proved in [21, Theorem 6] that E, g(z) is
starlike in D if @ > 1 and > 3.214319744. The results in [2,21] discuss the starlikeness
of Eq 3(2) when o, 8 > 1 but Corollary 2.5 can also consider the case when 0 < 3 < 1
and also provide the sharper lower bound for 5. Hence, Corollary 2.5 improves the results
available in [2, Theorem 2.2] and [21, Theorem 2, Theorem 6.

Theorem 2.8. Let o, 3,y > 0 such that ay > 1,7 > %,,8 < min(ay/27, a%y) and (e —
DN < [M(a+ B Aso, if

1
aylog(a + ) —log(2) + 7 — —1= >0,

4 a+p
then the function F '%(z) is starlike in Dy /9.

a,
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Proof. A simple computation gives

— cr(a, B,y
‘F%(Z))/z - 1‘ <y ’“(k,) zeD, (2.12)
k=1 '

where (c)k>1 is defined in (2.9). Now, we define the function g;(s) by
I'(s+1
7= [F(O(és——:: ﬁ)m’s =t

Then, we have

91(s) = g1(s)g2(s), (2.13)
where

92(s) = P(s +1) —ayip(as + B).

Again, applying Lemma 1.1, we get

g2(s) < g3(s) :==log(s+ 1) — aylog(as + B) — 2(32— 5 n asaz 5 (2.14)
Therefore,
s = 2L—0st oty [o(l = vH)s+ 5 - v3alla(l + v2)s + f + V2ol
’ (s +1)(as+pB) 2(s +1)*(as + B)?

under the given hypotheses. This implies that the function gs(s) is decreasing on [1, 00)
with g3(1) < 0. So, g3(s) < 0 for all s > 1. Consequently, the function g;(s) is decreasing
with the aid of (2.13) and (2.14). Hence, the sequence (cy)r>1 is decreasing. Therefore,
using (2.12), we obtain

FO)(2)

z

-1l <cae—1)<1, zeD,

under the given conditions of Theorem 2.8. Finally, using Lemma 1.3, the desired result
can be obtained. O

Corollary 2.9. If Ve —1 < 8 < 2, then the function F?% is starlike in Dy /.

Proof. We set @ = 1 and v = 2 in Theorem 2.8, we deduce that the function F? s

1718
starlike in Dy /9 if v/e — 1 < 8 <2 and the function g(3) defined by
1 2
=2log(1 + B) — log(2) + — — ———
9(B) = 2log(1 + ) —log(2) + 7 = 57,
is positive. Since the function g(f) is increasing on (0,00) and g(ve — 1) ~ 0.37 > 0, we
get the desired result. ([l

Example 2.10. The function ngg) /2 is starlike in Dy /5.

Upon setting v = 1 in Theorem (2.8), we establish the following result:

Corollary 2.11. Let a, 3 > 0 such that a > 1,8 < min(av/2,a?) and (e — 1)['(B) <
I'(a+ B). Also, if

@
a4+

1
alog(a+ B) —log(2) + i >0,
then the function B, g(2) is starlike in Dy .

Example 2.12. The function E, 10(z) is starlike in Dy /5.
711

<0,
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Remark 2.13. Using Corollary 2.11 and following similar techniques as Corollary 2.9, we
can verify that Ep 5(2) is starlike in Dy /5 if %(1) ~ 0.909091 < 8 < 2/2. Moreover, using
numerical computation we can verify that for any o > 2.4, there exists § € (0,1) such
that B, 5(z) is starlike in Dy /5. In [2, Theorem 2.4], it is shown that E, g(2) is starlike in

Dyjpifa>1and g > Ogﬂ ~ 1.61803. Moreover, the results proved in [2, Theorem 2.4]
consider the case a, 8 > 1. But Corollary 2.11 discusses the case for 0 < 8 < 1 and also
provides sharper lower bound for 8. Hence, Corollary 2.11 improves the results available
in [2, Theorem 2.4].

7/ \\
// \

N\ / AN
\\ / AN / AN

(a) Mapping of F;Q)LO (z) (b) Mapping of IEZ%(Z) (¢) Mapping of IF?); (2) (d) Mapping of E, %(z)
21 2 ’

over D over D over Dy /5 over Dy

Figure 1. Mapping ]Fg)ﬁ (2) and E, g(2) over D and Dy /5.

3. Convexity of normalized Le Roy-type Mittag-LefHler function

Theorem 3.1. Let o, 8,y > 0 be such that oy > 1 and 202y > B. If

aylog(a+ ) — log(3) — g - % >0 and 4(e — 1)[T(B)]" < [[(a+ B)]7,

then the function IF‘(Oj)ﬁ(z) is convez in D.

Proof. Tt is well known that a function f(z) is convex in D if and only if z f/(z) is starlike

()

in D. So, in order to prove F,/ B(z) is convex it is sufficient to prove that the function

is starlike in . Therefore,

/ 0 a Sk
(€0)) -6z = Y BBz (31)

where (dj)>1 is defined by

_ _ [LB)]"KT (K +2)
dk = dk(a,ﬁ,’y) = [F(ak‘ +ﬁ)]7 y k Z 1.
Let us define the function hi(s) by
_ s(s+2)
") = Tas s pF

Then, we have
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where .
ha(s) = — + (s +2) — avi(as + B).

Using Lemma 1.1, we have

ha(s) < ha(s) :=log(s + 2) — aylog(as + ) + 2sis++42) + asaz 5
Hence,
h,()_a(l—a’y)s+ﬁ—2a2’y s(s+2)—2(s+1)(s+4) a?y <0
3 = T s 1 2)(as + B) 252(s + 2)2 (s +p eta)?

for all s > 1,y > 1 and 2a23 > B. This implies that the function h3(s) is decreasing
n [1,00). As h3(1) < 0, we deduce that the function hi(s) is decraesing on [1,00) and
consequently, the sequence (dj)x>1 is decreasing. Then for all z € D we get

> a 2k
< Zdl(’]f!’w:dl(e—l). (3.2)

k=1

(69)) - 6z

However, for z € D, we obtain

/ i k
’G(v (z )/Z‘ - ‘( 23(2)) >1- Z ek(a,]f'm)z ’ (3.3)
k=1 :
where (ex)r>1 is defined by
er = ex(a, B,7) = d’“(“,’f 2 gs 1 (3.4)

We observe that the sequence (ey)r>1 is decreasing because (dj)r>1 is decreasing. There-
fore, using (4.2) we have

COh(=)/2] > 1= er(a By (e —1). (3.5)
In view of (3.2) and (3.5), we have

H(E0) | diepe-1

3.6
0| S Tmala -1 = (36)
This shows that the function IF((J)B(Z) is convex in D. O

Corollary 3.2. If (—1+4/1+8Ve—1)/2 < < 16, then the function IF( )( ) is convex
in D.
2)

Proof. Setting o = v = 2 in Theorem 3.1, we observe that the function Fé 5(2) is convex
in D, if 8 < 16,52 + B —2ve — 1> 0 and the function h(3) defined by

h(B) = 4log(2 + B) —log(3) —

C?A\Ul
-

2

|vQ

_|_
is positive. The condition 5% + 3 — 2v/e — 1 > 0 holds true if 8 > 3; : = iV Itsverl HB . In
addition, we see that the function h(f) is increasing on (0, 00) such hat h(ﬁl) > 0. This
completes the proof of Corollary 3.2. O

Example 3.3. The function Fé2)§( ) is convex in D.
’5

Taking v = 1 in Theorem 3.1, we obtain the following result:
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Corollary 3.4. Let o, 8 > 0 such that o > 1 and 20% > 3. Also, if
amga+m—mga—2—aiﬁ

then the function Eq g(z) is convex in D.

>0 and 4(e — 1)T'(B) < T(a + B),

Setting o = 2 in Corollary 3.4, we get the following result:
Corollary 3.5. If (—1+4+/16e — 15)/2 < 3 < 8, then the function Eg g(2) is convex in D.

Example 3.6. The function E, o (2) is convex in D.
4

Remark 3.7. In [21, Theorem 7], it is proved that E, g(z) is convex in D if o > 1
and f > 3.56155281. From Corollary 3.5, we can verify that Eg g(2) is convex in D if
2.16893 < B < 8. Further, setting 5 = 1/2 in Corollary 3.5, we can see that ]Ea%(z) is
convex in D if &« > 4.04. Moreover, numerical computation shows that for any o > 3.2,
there exists 8 € (0,1) such that E, g(z) is convex in D. Therefore, Corollary 3.5 can also

discuss the case when 0 < < 1. Hence, Corollary 3.5 improves the results in [21, Theorem
7.

Theorem 3.8. Let o, 5 > 0,y > % such that ary > 1 and B < min(2a2y, 2¢/27a) and the
following condition holds:

1 o
aylog(a + f) —log(3) + g~ a—gﬁ > 0.

(i) If2[I'(B)]"(e — 1) < [I'(ac+ B)]7, then the function Fﬁz)ﬁ(z) is convez in Dy /.
(ii) If VB[L(B)] (e — 1) < [[(a + B)], then the function F((J,)B(Z) is starlike in D.

Proof. Direct computation gives

() / . s ek(aa67’7)zk
(FOZB(Z)) -1= Z —n (3.7)
k=1 ’
where (ey);>1 is defined in (3.4). We define the function I;(s) by
I'(s+2)
1 = ——F—,5s>1.
1(8) [F(as + ,3)]’7’8 =

Then, we get
I1(s) = Ii(s)Ia(s) =: Tu(s)[(s + 2) — ayip(as + B)].
Hence, by Lemma 1.1, we have
1
+ S
2(s4+2)  as+p

Ir(s) < I3(s) :=log(s + 2) — aylog(as + 3) —

Then
I(s) = a(l —ay)s+ B —2a%y  (as+ ()% —2a2y(s + 2)?

3 (s+2)(as+B) 2(s +2)%(as + B)?
It follows that the function I3(s) is decreasing on [1, 00) such that I3(1) < 0. This implies
that the function I;(s) is decreasing on [1,00) and consequently the sequence (e)r>1 is
decreasing. Thus, for all z € D, we obtain

!/
(F2E) — 1| < exfasmie -1 (3.8)
Under the given condition (i), we have
/
\(Mé(z)) -1

Now, using Lemma 1.4, part (i) of this theorem can be proved.

< 1.
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Again, under the given condition (ii), we get

(F0) =1 < =

Finally, using Lemma 1.2, the desired result can be obtained. O

Corollary 3.9. If \/2(e — 1) < 8 < 4, then the function IF( )( ) is convex in Dy /.

Proof. Setting & = 1 and v = 2 in part (i) of Theorem 3.8, we observe that ]F(Q)( ) is
convex in Dy 5 if \/2(e — 1) < 8 < 4 and T(B) := 2log(B + 1) — log3+ ¢ — 1 > 0.
It can be easily seen that T'(/3) is increasing on (0,00) and T( 2(e — 1)) > 0, which

completes the proof of the corollary.

Example 3.10. The function IF‘§2

)1 (2) is convex in Dy /5.
If we set v =1 in Theorem 3.8, we conclude the following result:

Corollary 3.11. Let o, 3 > 0 such that o > 1, f < min(2a2,2v2a) and following
condition holds:

alog(a + B) —log(3) + é - ib’ >0
(i) If2r'(B)(e — 1) < T'(a + B), then the function Eq g(2) is convez in Dy 5.

(ii) If VBI(B)(e — 1) < T(a + B), then the function E, p(2) is starlike in D.

Corollary 3.12. If (=1 + /8¢ — 7)/2 < B < 4V/2, then the function Es g(z) is convez in
Dl/?-

Proof. Setting o = 2 in part (i) of Corollary 3.11, we compute that the function Es 5( ) is

convex in Dy /o if (=14++/8e = 7)/2 < 8 < 4v/2 and L(B) := 2log(5+2)—log 3+ ¢ — +2 > 0.
A simple computation shows that L(f) is increasing on (0,00) and L ((—1 + /8¢ — 7)/2) >
0, which completes the proof of this corollary. O

Similarly, we can prove the following corollary.

Corollary 3.13. (i) If (—1+ 1+4\/5(e—1)) /2 < B < 442, then the function

Ey () is starlike in D.
(ii) If 0.78 < B < 6/2, then the function Eg g(2) is starlike in D.
(iil) If 0.73 < B < 6v/2, then the function Es 5(2) is convex in Dy /5.

Example 3.14. (i) The function E, 3(z) is convex in Dy 5.
3
(ii) The function E, s(z) is starlike in D.
’5

Remark 3.15. In [2, Theorem 2.4], it is shown that E, g(2) is convex in Dy /5 if @ > 1 and
8> (3+‘/ﬁ) ~ 3.56155. Moreover, In [2, Example 2.1], it is proved that Es 5, and Ej g,

are Starhke in D if By > H\ﬁ) ~ 1.56155 and (3 > 1 respectively. In [21, Theorem
2], it is shown that E, 5(2) 1s starlike in D if o > 2.67 and 5 > 1. Moreover, it is also
proved in [21, Theorem 6] that E, g(z) is starlike in D if & > 1 and § > 3.214319744.
Also, starlikeness of E, g(z) in D is discussed in [2,21] for the case & > 1 and § > 1.
From Corollary 3.12 and Corollary 3.13, we see that Eyg,(2) and Ejg,(2) are convex
in ]]])1/2 if 1.43 < By < 4v/2 and 0.73 < B3 < 62 respectively; and starlike in D if
1.53 < 2 < 4v/2 and 0.78 < B3 < 6v/2 respectively. Furthermore, setting f = % in
Corollary 3.11, we observe that Ea%(z) is convex in Dy if @ > 3.55. Moreover, using
numerical computation, we can show that for any a; > 2.55 and as > 2.66, there exist
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B1, B2 € (0,1) such that E,, g, (2) is convex in Dy 5 and Eq, s, (2) is starlike in D. Therefore,
Corollary 3.11 can discusses the case when 0 < 8 < 1 and provides sharper lower bound

for 8. Hence, Corollary 3.11 improves the results available in [2, Theorem 2.1, Theorem
2.2, Theorem 2.4] and [21, Theorem 2, Theorem 6.

(a) Mapping of F;Q)ﬁ (2) (b) Mapping of EZ’%(Z) (¢) Mapping of IFEQ)LQ (2) (d) Mapping of EQ%(Z)
5 710

over D over D over Dy /5 over Dy /o

Figure 2. Mapping ]F((f)ﬁ (2) and E, g(z) over D.

Theorem 3.16. Let o, 8 > 0,y > % be such that ay > 1 and B < min(2a%y,2+/27a). In
addition, if
) ay

aylog(a+ f) —log(3) — & — — 5

>0 and 3(e — D[T(B)]" < [T(a+ B)]7,

()

then the function I, 5(2) s uniformly convex in D.

Proof. Simple computation gives

rx wp(a, B,y) 2
Z(]ng/)ﬁ(z)) :k_l k( k‘ ) ’ (39)

where the sequence (xj)x>0 is defined by
KILA)T(k +2)

_ Ck>1.
) R
We define the function J;(s) by
sI'(s+2)
J =—"“— s>1.
)= Faspp °2

Therefore, we have
Ti(5) = 1s) [ + 05 +2) — avlos + 5)| 1= Ji(s) ().

In view of Lemma, 1.1, we obtain

1 1
J2(5) < Ja(s) = log(s +2) — aylog(as + f) + T = 5= + afzﬁ'

By differentiation, we get
Ji(s) = a(l —ay)s+ B —2a%y  (as+ B)? —2a2y(s +2)? B i
(s +2)(as+3) 2(s +2)2(as + B)2 52
This leads to

J5(s) <0 and Js3(s) < J3(1) <0,
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which implies that the function J3(s) is decreasing on [1,00), and consequently the se-
quence (z)r>1 is decreasing. Hence, for z € D, we have

"
()
Moreover, for all z € D, we have
() ! = yk(aaﬁvv)

(F7(2) >>1—-g%44475447, (3.11)
where y; = xp/k,k > 1. Since the sequence (z)r>1, we conclude that the sequences
(yk)k>1 is decreasing. Then, by (3.11) we have

(F74(2)) > 1= y(e B,7)(e = 1), 2 €D, (3.12)
In view of (3.10) and (3.12), we obtain

(FE) | e ma,80)
(FO2)) | 1= (= Dyl B’

a7/3

< i n@fy) _ (e = Dai(a, B,7). (3.10)

!
= k!

and this is less or equal % under the given hypotheses. By means of Lemma 1.5, we deduce

that the function ngzg(z) is uniformly convex in . O

Corollary 3.17. If% < B < 4, then the function F?%(Z) s uniformly convex in D.

Proof. Setting « = 1 and v = 2 in Theorem 3.16, we observe that FSQ%(,Z) is uniformly

convex in D if \/3(e — 1) < 8 < 4 and p(B) = 2log(B+1) —log3 — 2 — % > (. It can be
easily shown that p(/3) is increasing in (0, 00) and p(5/2) > 0. But p(1/3(e — 1)) < 0 and
V3(e — 1) < 5/2, which leads to the required result. O

Example 3.18. The function Fiz)é (z) is uniformly convex in D.
12
Upon setting v = 1 in Theorem 3.16, we compute the following result:

Corollary 3.19. Let o, 3 > 0 such that a > 1 and 8 < min(2a?,2v/2a). In addition, if

alog(a + 8) - log(3) - 2 -~

then the function Eq g(2) is uniformly convex in D.

Corollary 3.20. If 5 € {(71 + v12e — 11)/2,4\@} , then the function Eg g(2) is uni-
formly convex in D.

>0 and 3(e — 1)I'(B) < T(a + B),

Proof. Assuming a = 2 in Corollary 3.19, we see that Ey g(2) is uniformly convex in D if
(-1++/12e —11)/2 < B < 4v/2 and ¢(B) = 2log(2 + B) — log(3) — 2 — ﬁ > 0. A simple
computation shows that ¢(3) is increasing in (0,00) with ¢((—1 + /12e — 11)/2) > 0,
which yields the required result. O

Example 3.21. The function E, 17 () is uniformly convex in D.
’9

Remark 3.22. In [20, Theorem 2.6}, it is proved that E, g(z) uniformly convex in ID if

a>1land > 9.1112597744. From Corollary 3.19, we see that Ey 5(2) is uniformly convex

in D if %7 < B < 4. Moreover, setting = % in Corollary 3.19, we observe that E_ 1(2)
2

uniformly convex in D if & > 3.88. Numerical computation shows that for any o > 2.9,
there exists 3 € (0, 1) such that E, g(z) uniformly convex in ID. Therefore, Corollary 3.19
can also discusses the case 0 < # < 1. Hence, Corollary 3.19 improves the result available
in [20, Theorem 2.6].
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N % N 5% N —

1z (z) over

(a) Mapping of ]F?)é (z) over (b) Mapping of Ez%(z) (¢) Mapping of E
D e over D D

Figure 3. Mapping IFf)ﬁ (2) and E, g(z) over D.

4. Close-to-convexity of normalized Le Roy-type Mittag-Leffler function
with respect to certain starlike functions

Theorem 4.1. Suppose that o, f and v are positive real numbers such that the following
condition holds:
ary
avylog(p) — 5 1>0.

Then the function FEJ;(Z) is close-to-convex with respect to the function —log(1l — z) in
D.

)

Proof. We will use Lemma 1.6 to prove this theorem. To show that Fgﬁ(z) is close-to-
convex with respect to the function —log(1l — 2) in D, it is sufficient to prove that the
sequence {kay}x>1 is decreasing, where (ay)g>1 is defined in (1.3).
Now, we define the function K (s) by
s

) = rasv a2t

Differentiation gives
1
Ki(s) = K1(s)Ka(s) := Ki(s) 57 ayplas+ 4 —a)l.
In view of Lemma 1.1, we obtain

Ks(s) < K3(s) := E + “

s m—a’ylog(as—f-ﬁ—a)

Thus, we have

K} = oy 1 1
3(5)——§—m{a(3— )+ (B+1)}.
We observe that the function Kj3(s) is decreasing on [1,00) for any s > 1, under the
given condition. According to the given hypothesis K3(1) < 0, which yields K3(s) < 0
for all s > 1. This implies that the function Ki(s) is deceasing on [1,00) for any s > 1.
Consequently, the sequence (kay)x>1 is decreasing. Hence, Lemma 1.6 completes the proof
of Theorem 4.1. 0

Corollary 4.2. Let o, 3> 0. Ifay=1 and § > %, then the function IF((;%(Z) is close-to-
convex with respect to the function —log(l — z) in D.

Corollary 4.3. Let a, 5 > 0. If § > %, then the function Fg%(z) is close-to-conver with
respect to the function —log(1l — z) in D.
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Setting v = 1 in Theorem 4.1, we obtain the following result.

ath
Corollary 4.4. Let o and [ be positive real numbers such that 8 > e o8 . Then the
function E, g(2) is close-to-convex with respect to the function —log(l — z) in D.
Example 4.5. The function E1 17(z) is close-to-convex with respect to the function
272

—log(1 — z) in D.

Remark 4.6. In [21, Theorem 4], it is proved that E, g(z) is close-to-convex with respect
to the function —log(1l — 2) if @ > 1 and > 1. Using Corollary 4.4, with the help of
numerical computation, we can show that for any 8 > 3.6, there exists a € (0,1) such

that E, g(2) is close-to-convex with respect to the function —log(1 — z). Hence, Corollary
4.4 consider the case 0 < o < 1 and consequently, improves the results in [21, Theorem 4].

Theorem 4.7. Assume that the hypotheses of Theorem 2.1 are valid. Further, suppose

that o > 1,57 > 2(e—1) and > 1—a* ~ 0.55, where x* is the abscissa of the minimum of
)

the Gamma function. Then the function I, ﬂ(z) is close-to-convex with respect to starlike

function ]F(lvg(z) in D.

Proof. From Theorem 2.1, we observe that the function Fﬁ;(z) is starlike in D. Then,
from the definition, we need to show that

® (|2 (E94)] /() ) >0, toranz e,

which is equivalent to

= (E@) ] /(@) —1 <1 oraliz e .

In view of (2.10), we have

™),
Flvi()‘ > BB — (e — 1)). (4.1)
Moreover, we have
(E)0) - B9 < Spp| AL
o8 . P [T(ak+B)  [T(k+B)
— kLB
<> R+ T +
0o b 17 ,
_ Z k( k'ﬁ 7)7

where the sequence (by)x>1 is defined in (2.2). Since, the sequence (by),>1 is monotonically
decreasing under the given hypotheses. Therefore,
F) (2) 1
M (,y) _ 118 (e—1)
(F)) - 5 < 5
Combining the above inequality with (4.1), we obtain the following bound

[z (FEZ%(@)'] /(F(gg(z)) _ 1‘ < m <1, forall z € D.

This completes the proof of Theorem 4.7. O

for all z € D. (4.3)

Setting v = 1 in Theorem 4.7, we obtain the following result.
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Corollary 4.8. Suppose that the hypotheses of Corollary 2.5 are valid. Also assume that
a>1,8>2(e—1). Then the function E, g(z) is close-to-convex with respect to starlike
function Eq g(z) in D.

Theorem 4.9. Let o, 5 and v be positive real numbers such that the following condition

holds:
avylog(p) — %Y -2>0.

Then the function ?(%( ) = zFV(,B)Fo(iﬁ) (22) is close-to-convez with respect to the function

1 log (ifj) in D.

Proof. We have,

_ /B) K 2k—1 .__ — 2k—1
Z+Z< )—I—B)) z .—;Agkflz

First, we show that {(2k —1)Agk_1}r>1 is a decreasing sequence. To do so, let us consider
the function
(2s—1)

Lu(s) = {T(as+ B —a)}’

s> 1.

Differentiation gives us

Ly(s) = La(s)

2s—1 ayplas+ f —a)| = Li(s)La(s).

Using Lemma 1.1, we obtain

2 ay

Lals) < La(s) = 59 + 55— o)

— aylog(as + 8 — a),

which leads to

4 a’y a’y
Li(s) = — - - > 1.
) = "1 T st B-a? (asthoa) " 52

Therefore, L3(s) is decreasing on [1,00) for s > 1 with L3(1) < 0, under given hypothesis.
This shows that L3(s) < 0 for any s > 1, which yields that L;(s) is decreasing on [1, co) for
s > 1. Consequently, {(2k — 1)Agi_1}x>1 is a decreasing sequence. Hence, the hypothesis
of Lemma 1.7 is satisfied. It is well-known that [3, p. 55] if a function f : D — C
satisfies the hypothesis of Lemma 1.7, then it is close-to-convex with respect to the function

1 1
log (1 tz ) This completes the proof of the theorem. O

Setting v = 1 in Theorem 4.9, we obtain the following result.

Corollary 4.10. Let a and B be positive real numbers such that the following condition
holds:

alog(B) — % -2>0.

Then the function €, 5(z) = 21(B)Eap (2%) is close-to-convex with respect to the function
1 5 log (Hz)




1102 K. Mehrez, S. Das

5. Conclusion

In this paper, normalized Le Roy type Mittag-Leffler function F&V)ﬁ(z) has been con-

sidered and several geometric properties such as starlikeness, convexity, close-to-convexity

(univalency) and uniformly convexity have been studied inside the unit disk for positive

real numbers «, 5 and «. It can be noted that ng)ﬁ(z) reduces to the normalized Mittag-

Leffler function E, g(2) for v = 1. As applications, geometric properties of E, g(z) are
also obtained. In literature, several geometric properties of E, g(z) are discussed [2,20,21]
with the hypothesis that & > 1 and 5 > 1. Results obtained in this paper can discuss
certain geometric properties of E,, g(z) for the cases 0 < v < 1 and 0 < # < 1 with sharper
lower bounds of « and (. Interesting consequences and examples are provided to support
that these results are better and improve several results available in the literature.

Acknowledgment. The authors wish to thank the reviewers for suggestions that helped
to improve the paper.
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