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Abstract— Successful task scheduling is one of the priority 

actions to increase energy efficiency, commercial earnings, and 

customer satisfaction in cloud computing. On the other hand, since 

task scheduling processes are NP-hard problems, it is difficult to 

talk about an absolute solution, especially in scenarios with large 

task numbers. For this reason, metaheuristic algorithms are 

frequently used in solving these problems. This study focuses on 

the metaheuristic-based solution of optimization of makespan, 

which is one of the important scheduling problems of cloud 

computing. The adapted Chimp Optimization Algorithm, with 

enhanced exploration and exploitation phases, is proposed for the 

first time to solve these problems. The success of the proposed 

method has been tested for different simulation scenarios. 

According to the simulation results, the proposed method achieved 

a makespan improvement of approximately 30% compared to the 

standard task scheduling algorithms. 

 
Index Terms— Chimp algorithm, Cloud computing, Makespan, 

Metaheuristic, Optimization. 

I. INTRODUCTION 

LOUD COMPUTING is technology that allows the 

dynamic delivery of flexible, scalable, and distributed 

computing resources to end-users [1]. Many reasons such as the 

development of the Internet infrastructure, the use of the 

Internet of Things (IoT) technology, the increase in the need for 

big data technologies, and the developments in artificial 

intelligence have led to the widespread use of cloud computing. 

Cloud computing enables users to access various services and 

resources (CPU, RAM, storage) wherever there is internet 

access. Thanks to the pay-as-you-go system, both software and 

hardware resources become more economical, while 

installation and maintenance costs are significantly reduced for 

customer companies [2]. Cloud service providers must provide 

resources and services to their customers without violating the  
 

EMRULLAH GUNDUZALP, is with Department of Computer Engineering 
University of Firat University, Elazig, Turkey, (e-mail: emrullahg@dsi.gov.tr). 

https://orcid.org/0000-0001-6418-5663 
 

GUNGOR YILDIRIM, is with Department of Computer Engineering 
University of Firat University, Elazig, Turkey,,(e-mail: 

gungor.yildirim@firat.edu.tr). 

https://orcid.org/0000-0002-4096-4838 
 

YETKIN TATAR is with Department of Computer Engineering University of 
Firat University, Elazig, Turkey,,(e-mail: ytatar@firat.edu.tr). 

https://orcid.org/0000-0002-7181-0014 
 

Manuscript received September 1, 2021; accepted July 29, 2022.  
DOI: 10.17694/bajece.989467 

Service Level Agreement (SLA) and guaranteeing Quality of 

Service (QoS). Therefore, cloud performance is very important 

for both service providers and users. One of the main issues 

affecting the performance of cloud systems is task scheduling. 

Task scheduling is one of the important problems in cloud 

computing. Especially, inefficient task scheduling could cause 

loss of performance and revenue, and SLA violation. Efficient 

scheduling algorithms can optimize important measurements 

such as makespan, traffic volume, computational time, 

communication cost, system efficiency and utilization [3]. 

Virtual machines (VMs), one of the basic mechanisms of 

cloud technologies, contribute to the efficient use of 

infrastructure resources. The task scheduling process in this 

study can be briefly described as follows: Distributing tasks of 

different sizes reaching the cloud system to the most suitable 

VMs in a way that provides the shortest response time. 

Inappropriate scheduling can reveal underloaded 

(underutilized) or overloaded (overutilized) of resources, 

referred to as resource dilemma. These situations ultimately 

lead to wasted cloud resources or reduced service performance 

[4]. In solving NP-hard problems, using metaheuristic methods 

instead of standard deterministic algorithms may yield more 

successful results [1]. In this study, the task scheduling process 

in cloud systems is studied with an adapted version of Chimp 

Optimization Algorithm (ChOA), which is a metaheuristic 

algorithm in use. The makespan problem was taken as a basis 

in the scheduling process. To the best of the authors' 

knowledge, the proposed adaptive version of the ChOA and its 

application on this type of cloud system problem has never been 

studied before in the literature. Simulations were carried out by 

integrating ChOA into the CloudSim 3.0.3 simulator. First of 

all, the Adaptive Chimpanzee Optimization Algorithm 

(AChOA) has been proposed, which makes the exploration and 

exploitation stages of ChOA more adaptive and uses different 

mathematical functions for this purpose. In AChOA, 

exploration and exploitation mechanisms, apart from the 

standard method, Sigmoid Decreasing Weight (SDW), 

Oscillating Weight (OscW) and V-shaped Family (VSW) 

functions have been included in the calculation process. Thus, 

by using different functions, the efficiency and performance of 

the optimization process are comparatively observable. Finally, 

the space shared task scheduling approach of both AChOA and 

CloudSim, which use different functions, are tested for different 

experimental scenarios and the results are discussed. The 

original aspects of this study can be briefly summarized as 

follows:  
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- The study uses the metaheuristic Chimp algorithm for 

the first time for task scheduling problems in cloud 

systems. 

- Unlike other swarm-based metaheuristic algorithms, the 

proposed method adaptively manages exploration and 

exploitation processes. 

- Compared to the standard scheduling method, the 

proposed method achieves an improvement of 

approximately 30% in makespan. 

- The adaptive method used can be easily adapted to other 

optimization problems that uses the Chimp algorithm. 

The adaptive method used can be easily adapted to other 

problems using the Chimp algorithm. The continuation of this 

article is organized as follows. In section II, the task scheduling 

problem in cloud systems is introduced and literature studies on 

this subject are explained. In Section III, the methodology of 

the method applied in this study is presented. Experiments and 

analyzes are shared in section IV, and conclusions are given in 

section V. 

II. TASK SCHEDULING AND LITERATURE SUMMARY IN CLOUD 

COMPUTING 

Task scheduling is a process that affects the performance and 

efficiency of cloud systems. In short, task scheduling can be 

expressed as the optimal assignment of 𝑛 tasks {𝑇1, 𝑇2,…, 𝑇𝑛} 

to 𝑚 machines{𝑀1, 𝑀2, .., 𝑀𝑚}, taking into account one or more 

predefined optimization targets [4]. With virtualization 

techniques, which have provided significant advantages in 

recent years, physical servers used in cloud systems can be 

divided into more than one virtual machine (VM), and each 

virtual machine can be used to allocate different tasks. Cloud 

service providers (CSPs) may have multiple observer and 

control infrastructure services. One of the most important of 

these is the broker services that optimally distribute the 

incoming tasks to the resources in the system according to their 

types and characteristics. While doing this, they use algorithms 

that take into account both the task and the resource 

characteristics offered.   

Task scheduling in cloud computing generally includes three 

main operations [6]. These are Strategy Phase, Planning Phase, 

and Deployment Phase. In Strategy Phase, all shared resources 

in the data center and their properties are made discoverable and 

questionable. In Planning Phase, a suitable resource is 

determined according to the task requirements, while in 

Deployment Phase, the selected resources are allocated to the 

relevant tasks. It is a complex process to carry out the planning 

process in a heterogeneous and dynamic environment such as 

the cloud environment. It is quite difficult to find the optimum 

planning method in this process, which is carried out with 

different optimization objectives such as cost, energy 

consumption, makespan, and execution variability. Target 

strategies are generally grouped under four headings [7]. The 

scheduling strategies are dynamism, target architecture and 

scheduling algorithms. 

Task scheduling can be single-objective or multi-objective. 

While optimizing the scheduling process, one of the goals, such 

as makespan, computational cost, or several goals contradicting 

with each other can be taken as a basis. At the same time, the 

scheduling process can be done statically or dynamically. Static 

algorithms can produce successful and fast results in small-

scale cloud systems where prior knowledge of incoming tasks 

and available resources is not required, the workload does not 

change frequently. However, cloud systems are by nature 

dynamic systems with a lot of variation in workload. Therefore, 

dynamic algorithms give more successful results.  [4,7]. The 

target system architecture is another issue that affects the 

scheduling strategy to be implemented. Suitable solution 

algorithms are determined during the planning process. The 

algorithms used here are classified as heuristics, metaheuristics, 

and hybrid algorithms. Heuristic algorithms are often preferred 

for static scheduling. These algorithms are fast, but they are 

insufficient for cloud systems with a large-scale dynamic 

environment. Metaheuristic strategies are effective methods for 

solving NP-hard optimization problems with high efficiency. 

These algorithms can be expressed as Heuristic + 

Randomization. Another approach to solving the task 

scheduling problem is the use of hybrid methods in which two 

or more algorithms are combined. [4]. In Fig.1, examples of 

algorithms used in the literature according to this classification 

are given. 

 

 
 

Fig.1. Various scheduling algorithms [6,7] 
 

Many problems encountered in cloud computing attract the 

attention of researchers. One of these problems is the task 

scheduling process. In [8], the authors use the minimum 

completion time (MCT) and longest job to fastest processor 

(LJFP) to initialize the PSO. The goal is to minimize the 

makespan, total energy consumption and execution time, and 

degree of imbalance. In [9], the authors used the gray wolf 

optimization (GWO) technique to solve the task scheduling 

problem. The authors aimed to minimize the makespan. In [10], 

the authors proposed a whale optimization algorithm (WOA)-

based method that aims to improve the performance of task 

scheduling with a multi-objective optimization model. They 

claimed that they improved their ability to search for optimum 

solutions with the approach they named IWC. In another study 

[11], the authors proposed Electromagnetism Metaheuristic 

Algorithm (EMA) in order to improve QoS in the cloud. They 

achieved this by scheduling tasks on virtual machines (VMs) to 

optimize completion time.  In [12], the authors analyzed it with 

a time-shared and space-shared genetic algorithm. The study 

states that the method used outperforms competitive scheduling 

methods in terms of completion time and cost. In [13], the 

authors introduced an ACO-based load balancing algorithm for 
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task scheduling. A hybrid approach using PSO and ACO 

algorithms for task scheduling was proposed in [14]. Another 

hybrid approach is introduced in [15]. In this approach, the 

genetic algorithm uses its global search capability to minimize 

the task execution time and then transforms the obtained results 

into the initial pheromone of ACO to achieve more successful 

optimization. In [16], the authors proposed a hyper-heuristic 

scheduling algorithm using a framework including GA, PSO, 

and ACO in order to optimize makespan. 

III. PROBLEM DEFINITION AND METHODOLOGY 

Tasks submitted by users are put into task queues before they 

are assigned to the respective virtual machines. Tasks waiting 

in the queue are sent to the task planner by the VMM (Virtual 

Machine Manager). The task planner determines the resources 

that will execute the tasks and makes the assignments to the 

relevant VMs in a way as to use the resources efficiently [9].  In 

this study, this process was performed with AChOA. Task 

assignment is usually performed using the tabulation technique. 

In this technique, first of all, it is determined which task will be 

executed by which virtual machines. For example, mapping 10 

tasks, belonging to a specific application and not dependent on 

each other's output, to 𝑚=5 virtual machines can be shown in 

Fig.2. 

 
VM5 VM1 VM2 VM3 VM1 VM5 VM5 VM1 VM2 VM2 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
 

Fig.2. An example task scheduling representation 

 

The task group, T={𝑇1, 𝑇3, . . , 𝑇𝑛}, is a set of independent tasks 

containing million instructions (MI). Each task in T is limited 

to the specified number of commands. The V cluster contains 

VMs, and each VM has a metric that shows how many million 

instructions per second (MIPS) it can process. The MIPS value 

of the VMs is also within the specified limits. Assume that the 

sizes of the tasks are as in Fig.3 after they have been assigned 

to the VMs as in the example in Fig.2. In this case, the 

makespan value for this task set will be the total time that VM5 

will spend executing T1, T6, and T7. 

 

 
Fig.3. Tasks assigned to VMs according to an example scenario 

 

In the representation of these types of assignment operations, 

it is usually used a matrix model that shows which task is 

assigned to which VM. This matrix is as follows. 

 

𝑋 = [

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

] , here 

 

{
𝑥𝑖𝑗 = 1,        𝑖𝑓 𝑇𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

        

   𝑥𝑖𝑗 = 0,      𝑖𝑓 𝑇𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

 

(1) 

 

As a result of the above-mentioned definitions, the estimated 

execution time for the ith task in jth VM is calculated by Eq.2. 

Since the tasks are independent, each task can only be assigned 

to one VM, and this is expressed as ∑ 𝑥𝑖𝑗 = 1, (1 ≤ 𝑖 ≤𝑚
𝑗=0

 𝑛). Thus, the execution time (VETj) of jth VM is calculated as 

in Eq.3. 

 

𝐸𝐶𝑇𝑖𝑗 =
𝑇𝑖

𝑉𝑀𝑗

 
(2) 

𝑉𝐸𝑇𝑗 = ∑ 𝑥𝑖𝑗 ∗  𝐸𝐶𝑇𝑖𝑗  , 1 ≤ 𝑗  𝑚

𝑛

𝑗=0

 
(3) 

 

The makespan (MS) in a task group is equal to the maximum 

execution time, expressed by Eq 4. The objective function used 

is to minimize the MS for all candidate solutions.   

 

𝑀𝑆 = 𝑀𝑎𝑥 {𝑉𝐸𝑇𝑗},   1 ≤ 𝑗 ≤  𝑚 (4) 

 

A. Chimp Optimization Algorithm 

Metaheuristic algorithms are among the techniques that are 

frequently used in solving optimization problems in the 

literature. Population-based algorithms using swarm 

intelligence constitute an important part of metaheuristic 

algorithms. In this section, one of the current algorithms, Chimp 

Optimization Algorithm-ChOA will be explained and the 

application of this algorithm to task scheduling in cloud systems 

will be shown. In the study in [5], the authors developed the 

ChOA inspired by the hunting strategies of chimps. According 

to this algorithm, there are four different chimps in a colony. 

Those are the attacker, chaser, barrier, driver. They all have 

different abilities and they use these abilities while hunting. In 

this algorithm, the attacker is the candidate that holds the best 

result. The hunting mechanism in ChOA consists of two phases. 

The first is the exploration phase, in which driving and chasing 

the prey are performed. This is expressed by Eq. 5-6.   

 

𝑑 = |𝑐 ° 𝑋⃗⃗⃗⃗ 𝑝𝑟𝑒𝑦(𝑡) − �⃗⃗⃗� ° �⃗�𝑐ℎ𝑖𝑚𝑝(𝑡) (5) 

�⃗�𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = �⃗�𝑝𝑟𝑒𝑦(𝑡) − �⃗�. 𝑑 (6) 

 

In this equation, t represents the current iteration, while c, m, 

and a are the coefficient vectors calculated by Eq. 7-9. �⃗�𝑝𝑟𝑒𝑦 

and �⃗�𝑐ℎ𝑖𝑚𝑝 are the position vectors of prey and predator, 

respectively. ° represents the Hadamard product.  

 

�⃗� = 2. 𝑓. 𝑟1⃗⃗⃗ ⃗ − 𝑓 (7) 

𝑐 = 2. 𝑟2⃗⃗⃗⃗    (8) 

�⃗⃗⃗�(𝑡+1) = {

1,           𝑖𝑓 �⃗⃗⃗�𝑡 = 0   
1

𝑚𝑜𝑑(�⃗⃗⃗�𝑡 , 1)
 , 𝑖𝑓 �⃗⃗⃗�𝑡 ≠ 0

 (9) 
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Here, the f value is reduced from 2.5 to 0 depending on the 

current iteration value. r1 and r2 are random uniform vectors. 

The m value is a chaotic vector representing the effect of 

chimps' intuitive motivation in the hunting process. In this 

study, this chaotic value was calculated by Gauss/Mouse map 

[23] method as in Eq. 9. The elements of the vector 𝑐 change 

randomly in the interval [0,2]. It also improves the ChOA’s 

stochastic behaviour and reduce the likelihood of being caught 

at the local minimum. 

The second stage is the exploitation (attack stage). In this 

stage, the attacker, chaser, barrier, and driver have information 

about the prey location. Thus, the four best solutions obtained 

so far are retained, and the other chimpanzees update their 

positions to these four best chimp positions, as in Eqs. 10-12.   

𝑑𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = |𝑐1 ° �⃗�𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − �⃗⃗⃗�1 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |, 

𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = |𝑐2 ° �⃗�𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − �⃗⃗⃗�2 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |, 

𝑑𝑐ℎ𝑎𝑠𝑒𝑟 = |𝑐3 ° �⃗�𝑐ℎ𝑎𝑠𝑒𝑟 − �⃗⃗⃗�3 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |,  

𝑑𝑑𝑟𝑖𝑣𝑒𝑟 = |𝑐4 ° �⃗�𝑑𝑟𝑖𝑣𝑒𝑟 − �⃗⃗⃗�4 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 | 

(10) 

𝑥1 = 𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑎1(𝑑𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟) , 

𝑥2 = 𝑥𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑎2(𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟), 

𝑥3 = 𝑥𝑐ℎ𝑎𝑠𝑒𝑟 − 𝑎3(𝑑𝑐ℎ𝑎𝑠𝑒𝑟) , 

𝑥4 = 𝑥𝑑𝑟𝑖𝑣𝑒𝑟 − 𝑎4(𝑑𝑑𝑟𝑖𝑣𝑒𝑟) 

(11) 

𝑥(𝑡 + 1) =
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

4
 (12) 

It is assumed that the chimps have a 50% probability of 

choosing between the normal update or the chaotic update 

mechanism. This is modeled is by Eq.13. In this equation, μ is 

a random variable between 0 and 1. 

�⃗�𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = {
�⃗�𝑝𝑟𝑒𝑦(𝑡) − �⃗�. 𝑑, 𝑖𝑓 𝜇 < 0.5

𝑚(𝑡)                  , 𝑖𝑓  𝜇 > 0.5
 (13) 

On the other hand, there is an approach in the literature where 

the next positions of the candidate solutions are calculated with 

the weighted values of 𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4 [24]. However, the 

method proposed in this study uses traditional Eq.11 and 12.  

B. Adapted Chimp Optimization Algorithm (AChOA) 

In the ChOA algorithm, |a|<1 forces chimpanzees to attack the 

prey (exploitation), while |a|>1 causes chimpanzees to scatter in 

search of better prey (exploration). This parameter depends on 

two important sub-parameter changes. The first of these is the 

random vector 𝑟1 and can be obtained as either uniform or 

chaotic. The second subparameter is f. In classical ChOA, this 

value is calculated to be reduced from 2.5 to 0. The adaptability 

of this sub-parameter will also make the exploration and 

exploitation mechanisms adaptive. Adaptive metaheuristic 

approaches are known to provide performance improvement in 

solving different problems in the literature [17,22]. This study 

has implemented the ChOA and its adaptive version to the task 

scheduling problem in cloud systems. As far as is known, this 

is the first time in the literature. In AChOA, three different 

mathematical methods given below are suggested for 

calculating the f coefficient. 

Sigmoid Decreasing Weight (SDW): SDW uses a sigmoid 

function [17, 22]. This function, given in Eq.14, generates a 

value by using the upper(U), lower(L) bounds, and the current 

iteration (t). In this equation, Tmax is the maximum iteration, 

and u is calculated with u =  10(log(Tmax)−2). 

𝑓(𝑡) = 𝑈 +
𝑈 − 𝐿

(1 +  𝑒𝑢(0.5.𝑇𝑚𝑎𝑥−𝑡))
 

                                     

(14) 

 

Oscillating weight (OscW): In this method, a waveform is 

used for discovery and exploitation processes [18, 22]. The 

main function of this waveform is given in Eq.15. In this 

equation, S depends on S1 and they are calculated by S1 =
3Tmax

4
 

and S =
2S1

3+2k
. The k value is a predefined constant. 

 

𝑓(𝑡) =
𝑈 + 𝐿

2
+

U − 𝐿

2
𝐶𝑜𝑠(

2𝜋𝑡

𝑆
) 

                                   

(15) 

 

V-shape Family (VSW): This function, which is frequently 

used in binary search PSO algorithms, is not compelling in the 

displacement of solutions [19, 22]. The general expression of 

VSW is as in Eq.16. 

 

𝑓(𝑡) = |
𝜋

2
Tan−1(

𝜋

2
𝑡)| (16) 

C. Discrete AChOA and Application to the Task Scheduling 

Problem 

The fact that virtual machine representation formats are 

generally integer encoded allows task scheduling algorithms to 

be discrete. This study also uses discrete value representation 

for the task scheduling optimization algorithm. For this reason, 

the discrete form of AChOA was developed. The discrete 

optimization of AChOA, which will assign tasks to m VMs with 

certain MIPS values that have been created before, consists of 

five steps.   

Fig.4. A sample initial population 

Step 1: Initializing the population: In the first step, n tasks are 

generated with random MI values within the maximum and 

minimum limits. According to the number of tasks (n), the 

initial positions of all chimpanzees are determined. In this step, 

random candidate solutions are generated for the population of 

size p as in Figure 4. 
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Step 2: Creation of Expected Time to Compute Matrix (ETC): 

In a candidate solution as in Figure 4, the ETC matrix is created 

by checking the assignment of the tasks to the VM as in Eq.2. 

Step 3: Calculation of the maximum makespan: In a 

population where an ETC matrix is created as in Eq. 2, the 

maximum makespans are calculated for each candidate 

solution, as in Eqs. 1-4. The best value found is compared with 

the scores of the attacker, chaser, barrier, and driver chimps. 

Then the information of the chimp with the best position and 

the best score are updated accordingly. 

Step 4: Updating the search location: The coefficients are 

recalculated according to Eqs.7-9. The search position of the 

entire population is updated by Eqs.10-12. As a result, a new 

candidate solution is created, replacing the tasks initially 

randomly assigned to the VMs.  

Step 5: Finalizing the iteration: Steps 2-4 are repeated until 

the maximum number of iterations is reached. As a result of 

iterations, the attacker score gives the optimum makespan and 

VM-task match according to AChOA. The pseudocode of the 

task scheduling process with AChOA is given in Fig. 5. 

 

Task scheduling with AChOA 
Set initial positions of attacker, barrier, chaser and driver chimps 
Generate random tasks and virtual machines based on MI and MIPS 

boundaries 

Start chimp population xi (i=1,2, …,n) 
Set f, m, a and c values 

Xattacker= best search agent, Pattacker= best position 

Xbarrier= second best search agent, Pbarrier= second best position 
Xchaser= third best search agent, Pchaser= third best position 

Xdriver= fourth best search agent, Pdriver= fourth best position 

   while (t < maximum number of iterations) 
          for each chimp: 

                Check boundary conditions 

                Calculate the fit (max makespan) value based on the objective 
function 

                if(fitness value < Xattacker) 

                           Xattacker = fitness value 
                           Pattacker = chimp position 

                if(Xbarrier < fitness value > Xattacker) 

                           Xbarrier = fitness value 
                           Pbarrier = chimp position 

                if(Xchaser < fitness value > Xattacker, Xbarrier) 

                           Xchaser = fitness value 
                           Pchaser = chimp position 

               if(Xdriver < fitness value > Xattacker, Xbarrier, Xchaser) 

                           Xdriver = fitness value 

                           Pdriver = chimp position 

          end for 

          update f value 

         for each chimp: 

               calculate a, c, m values (Eqs. 7-9) 
              update chimp position (Eqs. 10-14)  

       end for 

      t=t+1 

    end while 

return  Xattacker 

Fig.5. Task scheduling pseudocode with AChOA 

 

a) Standard-ChOA and Cloudsim makespan results 

 

 
b) SDW-AChOA and Cloudsim makespan results 

 

c) OscW-AChOA and Cloudsim makespan results 

 

d) VSW-AChOA and Cloudsim makespan results 

Figure 6. Comparison of time to completion (makespan) performance for all 

methods 
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IV. EXPERIMENTS 

CloudSim simulator was used to prove the accuracy of 

AChOA proposed for task scheduling. To be compatible with 

this simulator, ChOA is written in the JAVA programming 

language. CloudSim is one of the most popular simulators used 

by researchers and engineers doing research and development 

for cloud-related problems [20]. CloudSim simulator enables 

the modelling of main cloud system entities (data centers, 

mainframes, VMs, and cloudlets, etc.). Besides, it allows 

examining scheduling approaches in the created cloud 

environment [21]. The parameters used for the simulations are 

as in Table I. 

TABLE I 

SIMULATION PARAMETERS 

Parameter Value 

Population size 50 

Number of iterations 500 

Number of tasks 100-1000 

Number of VMs 20 

Task command length (MI) 5000-20000 

VM processing capacity (MIPS) 1000-5000 

Task scheduling can be made on a real cloud system or a user-

defined virtual system on the cloud. In the simulations, custom 

task scheduling scenarios, which are carried out on a user-

defined virtual system on the cloud, have been considered. In 

the experiments, simulations of AChOA using both standard 

ChOA and different adaptive functions were run separately. 

Obtained results are also discussed in comparison with 

CloudSim default task scheduling results. To observe the 

performances in different scenarios, each experiment carried 

out with 100, 250, 500, 750, and 1000 tasks were run 20 times, 

and statistical results were obtained. In practice, customers 

generally purchase cloud services on a pay-as-you-go model. 

Although nowadays there are more advanced server and virtual 

machine specifications (>100000MIPS, >2GB memory), 

economical specifications of the hardware used have been 

chosen according to realistic customer scenario suitability. For 

this reason, MIPS values are generally close to the standard 

Intel Pentium specifications, and the task sizes are chosen 

according to the traditional image processing and scientific 

algorithms (>5000) used in the literature. First, two main 

physical servers for VMs were created in the data center, each 

with 16 GB ram, 10 TB storage, 1 GB/s bandwidth, and time-

sharing VM scheduling.  

 

a) Optimization approach changes for 100 tasks 

 

b) Optimization approach changes for 250 tasks 

 

c) Optimization approach changes for 500 tasks 

 

d) Optimization approach changes for 750 tasks 

 

 

e) Optimization approach changes for 1000 tasks 

Figure 7. Optimization approach changes for different number of tasks 
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All VMs are equally shared on these physical servers. The 

first of these computers has a 4-core CPU and the second has a 

dual-core X86 architecture CPU. The processing capacity of 

each processor core is 10000 MIPS. The computers have Linux 

operating system and Xen VMM. VMs have 512 MB ram, 10 

GB storage, 10 MB/s bandwidth, and time-sharing task 

scheduling configuration. The processing capacity of the VMs 

varies between 1000 and 5000 MIPS.  The instruction length of 

the tasks varies between 5000 and 20000 MI. On the CloudSim 

side, the standard task scheduling method 

CloudletSchedulerSpaceShared is used. 

In the experimental results, firstly, the makespan 

performances of all methods were examined. In Fig.6, the 

simulation results of each method and CloudSim are given.  

Since the task MI values are randomly determined in each 

simulation, the same task types in that simulation are also given 

to CloudSim for accurate evaluation. Therefore, comparisons 

are given separately in the four charts. The general evaluation 

between the methods is presented with the statistical data in 

Table II.  

While SDW found the minimum makespan in three of the 

experiments performed with five different task numbers, the 

Standard method caught the best makespan in the other two. In 

all experiments performed, it was seen that all variations of 

ChOA achieved better results than CloudSim's standard space 

shared task scheduling process. Considering all the task 

numbers in this experiment, SDW-AChOA 35.5%, standard 

ChOA 32.2%, OscW-AChOA 27.2%, and VSW-AChOA 32% 

improved according to CloudSim. According to these average 

values, it is seen that the SDW method is better in performance. 

Another result obtained from the experiments is that as the 

number of tasks increases, the percentage of success decreases 

according to CloudletSchedulerSpaceShared. For example, 

while the improvement rate compared to CloudSim was 48.5% 

in the experiment with 100 tasks, which is performed by the 

Standard method, this rate decreased to 24.5% in the 

experiment with 1000 tasks. As the number of tasks increased, 

the most significant decrease was 50.6% in VSW-AChOA 

compared to CloudSim. While the improvement rate was 

45.44% in the 100-tasks experiment performed with VSW-

AChOA, this value decreased to 22.43% in the 1000-tasks 

simulation. However, while the decrease in the amount of 

improvement due to the increase in the number of tasks in 

OscW-AChOA was 49.18%, this rate was 49.46% in the 

Standard method. When this example was evaluated on an 

experimental basis, the consistent method was seen as SDW-

AChOA. 

To discuss the performance of all methods relative to each 

other in a more general perspective, it is necessary to evaluate 

the statistical results obtained from 20 independent experiments 

and given in Table II. Considering all the experimental results, 

it is seen that SDW -AChOA is more successful in reaching the 

minimum value for 100 and 250 tasks. However, this 

performance decreased as the number of tasks increased, even 

worse than other results. It has been seen that Standard ChOA 

is more successful at high task numbers. Another method that 

performs well for high tasks is VSW-AChOA. In fact, based on 

the mean value criterion, VSW-AChOA can be seen as 

relatively more successful than standard ChOA. As a result, 

SDW-AChOA performed better on small task numbers, while 

Standard and VSW-AChOA were successful in experiments 

involving a high number of tasks. Although all methods were 

more successful than standard scheduling methods, OscW had 

the lowest performance among AChOA variations. 

A large number of candidate variables (tasks) also affected the 

approach to the best solution in the optimization process. The 

convergence to the best in all methods generally occurred after 

the 70th iteration, and the best was reached after about 50 

iterations. Fig.7 shows the Standard, SDW, OscW, and VSW 

approximation results in the experiments. 

 

 

TABLE II 
STATISTICAL RESULTS OF EXPERIMENTS FOR DIFFERENT TASK NUMBERS 

Method  100 tasks 250 tasks 500 tasks 750 tasks 1000 tasks 

Standard-ChOA 

Minimum 44,4 109,5 227,4 349,3 480,1 

Maximum 74,1 177,7 346,8 511,8 680,4 

Mean 51,2 126,4 261,5 399,4 538,8 

Standard Deviation 2,3 4,2 5,5 8,3 9,0 

Median 47,8 119,3 249,2 381,9 515,6 

SDW-AChOA 

Minimum 42,5 103,7 238,2 350,8 471,9 

Maximum 71,8 172,4 349,7 530,1 705,8 

Mean 50,9 128,1 262,1 397,8 534,9 

Standard Deviation 1,8 4,0 4,9 10,1 12,0 

Median 48,5 121,2 247,3 377,8 507,6 

OscW-AChOA 

Minimum 44,4 120,0 245,4 370,0 515,0 

Maximum 73,6 178,8 347,9 518,5 683,5 

Mean 52,5 136,1 280,1 420,7 571,8 

Standard Deviation 1,6 4,4 7,2 8,0 13,5 

Median 49,0 131,6 268,3 406,6 554,8 

VSW-AChOA 

Minimum 43,6 111,9 230,9 351,1 483,5 

Maximum 72,7 181,4 353,8 520,1 695,2 

Mean 50,8 127,3 263,5 393,8 538,8 

Standard Deviation 2,5 4,3 5,6 9,6 9,2 

Median 47,8 122,2 248,7 375,4 514,7 
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V. CONCLUSION 

This study focused on task scheduling optimization, which is 

one of the most important problems in cloud computing. The 

solution to this problem was realized with AChOA, which is an 

improved adapted version of ChOA that is a new metaheuristic 

algorithm. AChOA uses functions that could make the 

exploration and exploitation mechanisms of the standard ChOA 

more flexible. Thus, this adapted metaheuristic algorithm can 

run in three different states: SDW-AChOA, OscW-AChOA, 

VSW-AChOA. The success of all methods was also proven in 

CloudSim, a well-known and successful cloud simulator in the 

literature. All metaheuristic methods achieved about 30% 

improvement over the standard scheduling method. Although 

the improvement decreased with the increase in the number of 

tasks, this rate was over 20%. In comparisons among 

themselves, it was observed that the results of SDW-AChOA in 

low task numbers and standard ChOA and VSW-AChOA in 

scheduling with high task numbers were more successful. 

Cloud systems will continue to be a research area where 

different problems will arise for a long time. For this reason, the 

authors will focus on the solutions of different optimization 

methods in cloud systems in their future studies. 
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