
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Abstract— Successful task scheduling is one of the priority

actions to increase energy efficiency, commercial earnings, and

customer satisfaction in cloud computing. On the other hand, since

task scheduling processes are NP-hard problems, it is difficult to

talk about an absolute solution, especially in scenarios with large

task numbers. For this reason, metaheuristic algorithms are

frequently used in solving these problems. This study focuses on

the metaheuristic-based solution of optimization of makespan,

which is one of the important scheduling problems of cloud

computing. The adapted Chimp Optimization Algorithm, with

enhanced exploration and exploitation phases, is proposed for the

first time to solve these problems. The success of the proposed

method has been tested for different simulation scenarios.

According to the simulation results, the proposed method achieved

a makespan improvement of approximately 30% compared to the

standard task scheduling algorithms.

Index Terms— Chimp algorithm, Cloud computing, Makespan,

Metaheuristic, Optimization.

I. INTRODUCTION

LOUD COMPUTING is technology that allows the

dynamic delivery of flexible, scalable, and distributed

computing resources to end-users [1]. Many reasons such as the

development of the Internet infrastructure, the use of the

Internet of Things (IoT) technology, the increase in the need for

big data technologies, and the developments in artificial

intelligence have led to the widespread use of cloud computing.

Cloud computing enables users to access various services and

resources (CPU, RAM, storage) wherever there is internet

access. Thanks to the pay-as-you-go system, both software and

hardware resources become more economical, while

installation and maintenance costs are significantly reduced for

customer companies [2]. Cloud service providers must provide

resources and services to their customers without violating the

EMRULLAH GUNDUZALP, is with Department of Computer Engineering
University of Firat University, Elazig, Turkey, (e-mail: emrullahg@dsi.gov.tr).

https://orcid.org/0000-0001-6418-5663

GUNGOR YILDIRIM, is with Department of Computer Engineering
University of Firat University, Elazig, Turkey,,(e-mail:

gungor.yildirim@firat.edu.tr).

https://orcid.org/0000-0002-4096-4838

YETKIN TATAR is with Department of Computer Engineering University of
Firat University, Elazig, Turkey,,(e-mail: ytatar@firat.edu.tr).

https://orcid.org/0000-0002-7181-0014

Manuscript received September 1, 2021; accepted July 29, 2022.
DOI: 10.17694/bajece.989467

Service Level Agreement (SLA) and guaranteeing Quality of

Service (QoS). Therefore, cloud performance is very important

for both service providers and users. One of the main issues

affecting the performance of cloud systems is task scheduling.

Task scheduling is one of the important problems in cloud

computing. Especially, inefficient task scheduling could cause

loss of performance and revenue, and SLA violation. Efficient

scheduling algorithms can optimize important measurements

such as makespan, traffic volume, computational time,

communication cost, system efficiency and utilization [3].

Virtual machines (VMs), one of the basic mechanisms of

cloud technologies, contribute to the efficient use of

infrastructure resources. The task scheduling process in this

study can be briefly described as follows: Distributing tasks of

different sizes reaching the cloud system to the most suitable

VMs in a way that provides the shortest response time.

Inappropriate scheduling can reveal underloaded

(underutilized) or overloaded (overutilized) of resources,

referred to as resource dilemma. These situations ultimately

lead to wasted cloud resources or reduced service performance

[4]. In solving NP-hard problems, using metaheuristic methods

instead of standard deterministic algorithms may yield more

successful results [1]. In this study, the task scheduling process

in cloud systems is studied with an adapted version of Chimp

Optimization Algorithm (ChOA), which is a metaheuristic

algorithm in use. The makespan problem was taken as a basis

in the scheduling process. To the best of the authors'

knowledge, the proposed adaptive version of the ChOA and its

application on this type of cloud system problem has never been

studied before in the literature. Simulations were carried out by

integrating ChOA into the CloudSim 3.0.3 simulator. First of

all, the Adaptive Chimpanzee Optimization Algorithm

(AChOA) has been proposed, which makes the exploration and

exploitation stages of ChOA more adaptive and uses different

mathematical functions for this purpose. In AChOA,

exploration and exploitation mechanisms, apart from the

standard method, Sigmoid Decreasing Weight (SDW),

Oscillating Weight (OscW) and V-shaped Family (VSW)

functions have been included in the calculation process. Thus,

by using different functions, the efficiency and performance of

the optimization process are comparatively observable. Finally,

the space shared task scheduling approach of both AChOA and

CloudSim, which use different functions, are tested for different

experimental scenarios and the results are discussed. The

original aspects of this study can be briefly summarized as

follows:

Efficient Task Scheduling in Cloud Systems

with Adaptive Discrete Chimp Algorithm

Emrullah Gunduzalp, Gungor Yildirim and Yetkin Tatar

C

328

http://dergipark.gov.tr/bajece
mailto:emrullahg@dsi.gov.tr

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

- The study uses the metaheuristic Chimp algorithm for

the first time for task scheduling problems in cloud

systems.

- Unlike other swarm-based metaheuristic algorithms, the

proposed method adaptively manages exploration and

exploitation processes.

- Compared to the standard scheduling method, the

proposed method achieves an improvement of

approximately 30% in makespan.

- The adaptive method used can be easily adapted to other

optimization problems that uses the Chimp algorithm.

The adaptive method used can be easily adapted to other

problems using the Chimp algorithm. The continuation of this

article is organized as follows. In section II, the task scheduling

problem in cloud systems is introduced and literature studies on

this subject are explained. In Section III, the methodology of

the method applied in this study is presented. Experiments and

analyzes are shared in section IV, and conclusions are given in

section V.

II. TASK SCHEDULING AND LITERATURE SUMMARY IN CLOUD

COMPUTING

Task scheduling is a process that affects the performance and

efficiency of cloud systems. In short, task scheduling can be

expressed as the optimal assignment of 𝑛 tasks {𝑇1, 𝑇2,…, 𝑇𝑛}

to 𝑚 machines{𝑀1, 𝑀2, .., 𝑀𝑚}, taking into account one or more

predefined optimization targets [4]. With virtualization

techniques, which have provided significant advantages in

recent years, physical servers used in cloud systems can be

divided into more than one virtual machine (VM), and each

virtual machine can be used to allocate different tasks. Cloud

service providers (CSPs) may have multiple observer and

control infrastructure services. One of the most important of

these is the broker services that optimally distribute the

incoming tasks to the resources in the system according to their

types and characteristics. While doing this, they use algorithms

that take into account both the task and the resource

characteristics offered.

Task scheduling in cloud computing generally includes three

main operations [6]. These are Strategy Phase, Planning Phase,

and Deployment Phase. In Strategy Phase, all shared resources

in the data center and their properties are made discoverable and

questionable. In Planning Phase, a suitable resource is

determined according to the task requirements, while in

Deployment Phase, the selected resources are allocated to the

relevant tasks. It is a complex process to carry out the planning

process in a heterogeneous and dynamic environment such as

the cloud environment. It is quite difficult to find the optimum

planning method in this process, which is carried out with

different optimization objectives such as cost, energy

consumption, makespan, and execution variability. Target

strategies are generally grouped under four headings [7]. The

scheduling strategies are dynamism, target architecture and

scheduling algorithms.

Task scheduling can be single-objective or multi-objective.

While optimizing the scheduling process, one of the goals, such

as makespan, computational cost, or several goals contradicting

with each other can be taken as a basis. At the same time, the

scheduling process can be done statically or dynamically. Static

algorithms can produce successful and fast results in small-

scale cloud systems where prior knowledge of incoming tasks

and available resources is not required, the workload does not

change frequently. However, cloud systems are by nature

dynamic systems with a lot of variation in workload. Therefore,

dynamic algorithms give more successful results. [4,7]. The

target system architecture is another issue that affects the

scheduling strategy to be implemented. Suitable solution

algorithms are determined during the planning process. The

algorithms used here are classified as heuristics, metaheuristics,

and hybrid algorithms. Heuristic algorithms are often preferred

for static scheduling. These algorithms are fast, but they are

insufficient for cloud systems with a large-scale dynamic

environment. Metaheuristic strategies are effective methods for

solving NP-hard optimization problems with high efficiency.

These algorithms can be expressed as Heuristic +

Randomization. Another approach to solving the task

scheduling problem is the use of hybrid methods in which two

or more algorithms are combined. [4]. In Fig.1, examples of

algorithms used in the literature according to this classification

are given.

Fig.1. Various scheduling algorithms [6,7]

Many problems encountered in cloud computing attract the

attention of researchers. One of these problems is the task

scheduling process. In [8], the authors use the minimum

completion time (MCT) and longest job to fastest processor

(LJFP) to initialize the PSO. The goal is to minimize the

makespan, total energy consumption and execution time, and

degree of imbalance. In [9], the authors used the gray wolf

optimization (GWO) technique to solve the task scheduling

problem. The authors aimed to minimize the makespan. In [10],

the authors proposed a whale optimization algorithm (WOA)-

based method that aims to improve the performance of task

scheduling with a multi-objective optimization model. They

claimed that they improved their ability to search for optimum

solutions with the approach they named IWC. In another study

[11], the authors proposed Electromagnetism Metaheuristic

Algorithm (EMA) in order to improve QoS in the cloud. They

achieved this by scheduling tasks on virtual machines (VMs) to

optimize completion time. In [12], the authors analyzed it with

a time-shared and space-shared genetic algorithm. The study

states that the method used outperforms competitive scheduling

methods in terms of completion time and cost. In [13], the

authors introduced an ACO-based load balancing algorithm for

329

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

task scheduling. A hybrid approach using PSO and ACO

algorithms for task scheduling was proposed in [14]. Another

hybrid approach is introduced in [15]. In this approach, the

genetic algorithm uses its global search capability to minimize

the task execution time and then transforms the obtained results

into the initial pheromone of ACO to achieve more successful

optimization. In [16], the authors proposed a hyper-heuristic

scheduling algorithm using a framework including GA, PSO,

and ACO in order to optimize makespan.

III. PROBLEM DEFINITION AND METHODOLOGY

Tasks submitted by users are put into task queues before they

are assigned to the respective virtual machines. Tasks waiting

in the queue are sent to the task planner by the VMM (Virtual

Machine Manager). The task planner determines the resources

that will execute the tasks and makes the assignments to the

relevant VMs in a way as to use the resources efficiently [9]. In

this study, this process was performed with AChOA. Task

assignment is usually performed using the tabulation technique.

In this technique, first of all, it is determined which task will be

executed by which virtual machines. For example, mapping 10

tasks, belonging to a specific application and not dependent on

each other's output, to 𝑚=5 virtual machines can be shown in

Fig.2.

VM5 VM1 VM2 VM3 VM1 VM5 VM5 VM1 VM2 VM2

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Fig.2. An example task scheduling representation

The task group, T={𝑇1, 𝑇3, . . , 𝑇𝑛}, is a set of independent tasks

containing million instructions (MI). Each task in T is limited

to the specified number of commands. The V cluster contains

VMs, and each VM has a metric that shows how many million

instructions per second (MIPS) it can process. The MIPS value

of the VMs is also within the specified limits. Assume that the

sizes of the tasks are as in Fig.3 after they have been assigned

to the VMs as in the example in Fig.2. In this case, the

makespan value for this task set will be the total time that VM5

will spend executing T1, T6, and T7.

Fig.3. Tasks assigned to VMs according to an example scenario

In the representation of these types of assignment operations,

it is usually used a matrix model that shows which task is

assigned to which VM. This matrix is as follows.

𝑋 = [

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

] , here

{
𝑥𝑖𝑗 = 1, 𝑖𝑓 𝑇𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

 𝑥𝑖𝑗 = 0, 𝑖𝑓 𝑇𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑉𝑀𝑗

(1)

As a result of the above-mentioned definitions, the estimated

execution time for the ith task in jth VM is calculated by Eq.2.

Since the tasks are independent, each task can only be assigned

to one VM, and this is expressed as ∑ 𝑥𝑖𝑗 = 1, (1 ≤ 𝑖 ≤𝑚
𝑗=0

 𝑛). Thus, the execution time (VETj) of jth VM is calculated as

in Eq.3.

𝐸𝐶𝑇𝑖𝑗 =
𝑇𝑖

𝑉𝑀𝑗

(2)

𝑉𝐸𝑇𝑗 = ∑ 𝑥𝑖𝑗 ∗ 𝐸𝐶𝑇𝑖𝑗 , 1 ≤ 𝑗 𝑚

𝑛

𝑗=0

(3)

The makespan (MS) in a task group is equal to the maximum

execution time, expressed by Eq 4. The objective function used

is to minimize the MS for all candidate solutions.

𝑀𝑆 = 𝑀𝑎𝑥 {𝑉𝐸𝑇𝑗}, 1 ≤ 𝑗 ≤ 𝑚 (4)

A. Chimp Optimization Algorithm

Metaheuristic algorithms are among the techniques that are

frequently used in solving optimization problems in the

literature. Population-based algorithms using swarm

intelligence constitute an important part of metaheuristic

algorithms. In this section, one of the current algorithms, Chimp

Optimization Algorithm-ChOA will be explained and the

application of this algorithm to task scheduling in cloud systems

will be shown. In the study in [5], the authors developed the

ChOA inspired by the hunting strategies of chimps. According

to this algorithm, there are four different chimps in a colony.

Those are the attacker, chaser, barrier, driver. They all have

different abilities and they use these abilities while hunting. In

this algorithm, the attacker is the candidate that holds the best

result. The hunting mechanism in ChOA consists of two phases.

The first is the exploration phase, in which driving and chasing

the prey are performed. This is expressed by Eq. 5-6.

𝑑 = |𝑐 ° 𝑋⃗⃗⃗⃗ 𝑝𝑟𝑒𝑦(𝑡) − �⃗⃗⃗� ° �⃗�𝑐ℎ𝑖𝑚𝑝(𝑡) (5)

�⃗�𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = �⃗�𝑝𝑟𝑒𝑦(𝑡) − �⃗�. 𝑑 (6)

In this equation, t represents the current iteration, while c, m,

and a are the coefficient vectors calculated by Eq. 7-9. �⃗�𝑝𝑟𝑒𝑦

and �⃗�𝑐ℎ𝑖𝑚𝑝 are the position vectors of prey and predator,

respectively. ° represents the Hadamard product.

�⃗� = 2. 𝑓. 𝑟1⃗⃗⃗ ⃗ − 𝑓 (7)

𝑐 = 2. 𝑟2⃗⃗⃗⃗ (8)

�⃗⃗⃗�(𝑡+1) = {

1, 𝑖𝑓 �⃗⃗⃗�𝑡 = 0
1

𝑚𝑜𝑑(�⃗⃗⃗�𝑡 , 1)
 , 𝑖𝑓 �⃗⃗⃗�𝑡 ≠ 0

 (9)

330

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Here, the f value is reduced from 2.5 to 0 depending on the

current iteration value. r1 and r2 are random uniform vectors.

The m value is a chaotic vector representing the effect of

chimps' intuitive motivation in the hunting process. In this

study, this chaotic value was calculated by Gauss/Mouse map

[23] method as in Eq. 9. The elements of the vector 𝑐 change

randomly in the interval [0,2]. It also improves the ChOA’s

stochastic behaviour and reduce the likelihood of being caught

at the local minimum.

The second stage is the exploitation (attack stage). In this

stage, the attacker, chaser, barrier, and driver have information

about the prey location. Thus, the four best solutions obtained

so far are retained, and the other chimpanzees update their

positions to these four best chimp positions, as in Eqs. 10-12.

𝑑𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = |𝑐1 ° �⃗�𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − �⃗⃗⃗�1 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |,

𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = |𝑐2 ° �⃗�𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − �⃗⃗⃗�2 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |,

𝑑𝑐ℎ𝑎𝑠𝑒𝑟 = |𝑐3 ° �⃗�𝑐ℎ𝑎𝑠𝑒𝑟 − �⃗⃗⃗�3 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |,

𝑑𝑑𝑟𝑖𝑣𝑒𝑟 = |𝑐4 ° �⃗�𝑑𝑟𝑖𝑣𝑒𝑟 − �⃗⃗⃗�4 ° �⃗�𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 |

(10)

𝑥1 = 𝑥𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝑎1(𝑑𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟) ,

𝑥2 = 𝑥𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − 𝑎2(𝑑𝑏𝑎𝑟𝑟𝑖𝑒𝑟),

𝑥3 = 𝑥𝑐ℎ𝑎𝑠𝑒𝑟 − 𝑎3(𝑑𝑐ℎ𝑎𝑠𝑒𝑟) ,

𝑥4 = 𝑥𝑑𝑟𝑖𝑣𝑒𝑟 − 𝑎4(𝑑𝑑𝑟𝑖𝑣𝑒𝑟)

(11)

𝑥(𝑡 + 1) =
𝑥1 + 𝑥2 + 𝑥3 + 𝑥4

4
 (12)

It is assumed that the chimps have a 50% probability of

choosing between the normal update or the chaotic update

mechanism. This is modeled is by Eq.13. In this equation, μ is

a random variable between 0 and 1.

�⃗�𝑐ℎ𝑖𝑚𝑝(𝑡 + 1) = {
�⃗�𝑝𝑟𝑒𝑦(𝑡) − �⃗�. 𝑑, 𝑖𝑓 𝜇 < 0.5

𝑚(𝑡) , 𝑖𝑓 𝜇 > 0.5
 (13)

On the other hand, there is an approach in the literature where

the next positions of the candidate solutions are calculated with

the weighted values of 𝑥1, 𝑥2, 𝑥3 𝑎𝑛𝑑 𝑥4 [24]. However, the

method proposed in this study uses traditional Eq.11 and 12.

B. Adapted Chimp Optimization Algorithm (AChOA)

In the ChOA algorithm, |a|<1 forces chimpanzees to attack the

prey (exploitation), while |a|>1 causes chimpanzees to scatter in

search of better prey (exploration). This parameter depends on

two important sub-parameter changes. The first of these is the

random vector 𝑟1 and can be obtained as either uniform or

chaotic. The second subparameter is f. In classical ChOA, this

value is calculated to be reduced from 2.5 to 0. The adaptability

of this sub-parameter will also make the exploration and

exploitation mechanisms adaptive. Adaptive metaheuristic

approaches are known to provide performance improvement in

solving different problems in the literature [17,22]. This study

has implemented the ChOA and its adaptive version to the task

scheduling problem in cloud systems. As far as is known, this

is the first time in the literature. In AChOA, three different

mathematical methods given below are suggested for

calculating the f coefficient.

Sigmoid Decreasing Weight (SDW): SDW uses a sigmoid

function [17, 22]. This function, given in Eq.14, generates a

value by using the upper(U), lower(L) bounds, and the current

iteration (t). In this equation, Tmax is the maximum iteration,

and u is calculated with u = 10(log(Tmax)−2).

𝑓(𝑡) = 𝑈 +
𝑈 − 𝐿

(1 + 𝑒𝑢(0.5.𝑇𝑚𝑎𝑥−𝑡))

(14)

Oscillating weight (OscW): In this method, a waveform is

used for discovery and exploitation processes [18, 22]. The

main function of this waveform is given in Eq.15. In this

equation, S depends on S1 and they are calculated by S1 =
3Tmax

4

and S =
2S1

3+2k
. The k value is a predefined constant.

𝑓(𝑡) =
𝑈 + 𝐿

2
+

U − 𝐿

2
𝐶𝑜𝑠(

2𝜋𝑡

𝑆
)

(15)

V-shape Family (VSW): This function, which is frequently

used in binary search PSO algorithms, is not compelling in the

displacement of solutions [19, 22]. The general expression of

VSW is as in Eq.16.

𝑓(𝑡) = |
𝜋

2
Tan−1(

𝜋

2
𝑡)| (16)

C. Discrete AChOA and Application to the Task Scheduling

Problem

The fact that virtual machine representation formats are

generally integer encoded allows task scheduling algorithms to

be discrete. This study also uses discrete value representation

for the task scheduling optimization algorithm. For this reason,

the discrete form of AChOA was developed. The discrete

optimization of AChOA, which will assign tasks to m VMs with

certain MIPS values that have been created before, consists of

five steps.

Fig.4. A sample initial population

Step 1: Initializing the population: In the first step, n tasks are

generated with random MI values within the maximum and

minimum limits. According to the number of tasks (n), the

initial positions of all chimpanzees are determined. In this step,

random candidate solutions are generated for the population of

size p as in Figure 4.

331

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

Step 2: Creation of Expected Time to Compute Matrix (ETC):

In a candidate solution as in Figure 4, the ETC matrix is created

by checking the assignment of the tasks to the VM as in Eq.2.

Step 3: Calculation of the maximum makespan: In a

population where an ETC matrix is created as in Eq. 2, the

maximum makespans are calculated for each candidate

solution, as in Eqs. 1-4. The best value found is compared with

the scores of the attacker, chaser, barrier, and driver chimps.

Then the information of the chimp with the best position and

the best score are updated accordingly.

Step 4: Updating the search location: The coefficients are

recalculated according to Eqs.7-9. The search position of the

entire population is updated by Eqs.10-12. As a result, a new

candidate solution is created, replacing the tasks initially

randomly assigned to the VMs.

Step 5: Finalizing the iteration: Steps 2-4 are repeated until

the maximum number of iterations is reached. As a result of

iterations, the attacker score gives the optimum makespan and

VM-task match according to AChOA. The pseudocode of the

task scheduling process with AChOA is given in Fig. 5.

Task scheduling with AChOA
Set initial positions of attacker, barrier, chaser and driver chimps
Generate random tasks and virtual machines based on MI and MIPS

boundaries

Start chimp population xi (i=1,2, …,n)
Set f, m, a and c values

Xattacker= best search agent, Pattacker= best position

Xbarrier= second best search agent, Pbarrier= second best position
Xchaser= third best search agent, Pchaser= third best position

Xdriver= fourth best search agent, Pdriver= fourth best position

 while (t < maximum number of iterations)
 for each chimp:

 Check boundary conditions

 Calculate the fit (max makespan) value based on the objective
function

 if(fitness value < Xattacker)

 Xattacker = fitness value
 Pattacker = chimp position

 if(Xbarrier < fitness value > Xattacker)

 Xbarrier = fitness value
 Pbarrier = chimp position

 if(Xchaser < fitness value > Xattacker, Xbarrier)

 Xchaser = fitness value
 Pchaser = chimp position

 if(Xdriver < fitness value > Xattacker, Xbarrier, Xchaser)

 Xdriver = fitness value

 Pdriver = chimp position

 end for

 update f value

 for each chimp:

 calculate a, c, m values (Eqs. 7-9)
 update chimp position (Eqs. 10-14)

 end for

 t=t+1

 end while

return Xattacker

Fig.5. Task scheduling pseudocode with AChOA

a) Standard-ChOA and Cloudsim makespan results

b) SDW-AChOA and Cloudsim makespan results

c) OscW-AChOA and Cloudsim makespan results

d) VSW-AChOA and Cloudsim makespan results

Figure 6. Comparison of time to completion (makespan) performance for all

methods

332

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

IV. EXPERIMENTS

CloudSim simulator was used to prove the accuracy of

AChOA proposed for task scheduling. To be compatible with

this simulator, ChOA is written in the JAVA programming

language. CloudSim is one of the most popular simulators used

by researchers and engineers doing research and development

for cloud-related problems [20]. CloudSim simulator enables

the modelling of main cloud system entities (data centers,

mainframes, VMs, and cloudlets, etc.). Besides, it allows

examining scheduling approaches in the created cloud

environment [21]. The parameters used for the simulations are

as in Table I.

TABLE I

SIMULATION PARAMETERS

Parameter Value

Population size 50

Number of iterations 500

Number of tasks 100-1000

Number of VMs 20

Task command length (MI) 5000-20000

VM processing capacity (MIPS) 1000-5000

Task scheduling can be made on a real cloud system or a user-

defined virtual system on the cloud. In the simulations, custom

task scheduling scenarios, which are carried out on a user-

defined virtual system on the cloud, have been considered. In

the experiments, simulations of AChOA using both standard

ChOA and different adaptive functions were run separately.

Obtained results are also discussed in comparison with

CloudSim default task scheduling results. To observe the

performances in different scenarios, each experiment carried

out with 100, 250, 500, 750, and 1000 tasks were run 20 times,

and statistical results were obtained. In practice, customers

generally purchase cloud services on a pay-as-you-go model.

Although nowadays there are more advanced server and virtual

machine specifications (>100000MIPS, >2GB memory),

economical specifications of the hardware used have been

chosen according to realistic customer scenario suitability. For

this reason, MIPS values are generally close to the standard

Intel Pentium specifications, and the task sizes are chosen

according to the traditional image processing and scientific

algorithms (>5000) used in the literature. First, two main

physical servers for VMs were created in the data center, each

with 16 GB ram, 10 TB storage, 1 GB/s bandwidth, and time-

sharing VM scheduling.

a) Optimization approach changes for 100 tasks

b) Optimization approach changes for 250 tasks

c) Optimization approach changes for 500 tasks

d) Optimization approach changes for 750 tasks

e) Optimization approach changes for 1000 tasks

Figure 7. Optimization approach changes for different number of tasks

333

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

All VMs are equally shared on these physical servers. The

first of these computers has a 4-core CPU and the second has a

dual-core X86 architecture CPU. The processing capacity of

each processor core is 10000 MIPS. The computers have Linux

operating system and Xen VMM. VMs have 512 MB ram, 10

GB storage, 10 MB/s bandwidth, and time-sharing task

scheduling configuration. The processing capacity of the VMs

varies between 1000 and 5000 MIPS. The instruction length of

the tasks varies between 5000 and 20000 MI. On the CloudSim

side, the standard task scheduling method

CloudletSchedulerSpaceShared is used.

In the experimental results, firstly, the makespan

performances of all methods were examined. In Fig.6, the

simulation results of each method and CloudSim are given.

Since the task MI values are randomly determined in each

simulation, the same task types in that simulation are also given

to CloudSim for accurate evaluation. Therefore, comparisons

are given separately in the four charts. The general evaluation

between the methods is presented with the statistical data in

Table II.

While SDW found the minimum makespan in three of the

experiments performed with five different task numbers, the

Standard method caught the best makespan in the other two. In

all experiments performed, it was seen that all variations of

ChOA achieved better results than CloudSim's standard space

shared task scheduling process. Considering all the task

numbers in this experiment, SDW-AChOA 35.5%, standard

ChOA 32.2%, OscW-AChOA 27.2%, and VSW-AChOA 32%

improved according to CloudSim. According to these average

values, it is seen that the SDW method is better in performance.

Another result obtained from the experiments is that as the

number of tasks increases, the percentage of success decreases

according to CloudletSchedulerSpaceShared. For example,

while the improvement rate compared to CloudSim was 48.5%

in the experiment with 100 tasks, which is performed by the

Standard method, this rate decreased to 24.5% in the

experiment with 1000 tasks. As the number of tasks increased,

the most significant decrease was 50.6% in VSW-AChOA

compared to CloudSim. While the improvement rate was

45.44% in the 100-tasks experiment performed with VSW-

AChOA, this value decreased to 22.43% in the 1000-tasks

simulation. However, while the decrease in the amount of

improvement due to the increase in the number of tasks in

OscW-AChOA was 49.18%, this rate was 49.46% in the

Standard method. When this example was evaluated on an

experimental basis, the consistent method was seen as SDW-

AChOA.

To discuss the performance of all methods relative to each

other in a more general perspective, it is necessary to evaluate

the statistical results obtained from 20 independent experiments

and given in Table II. Considering all the experimental results,

it is seen that SDW -AChOA is more successful in reaching the

minimum value for 100 and 250 tasks. However, this

performance decreased as the number of tasks increased, even

worse than other results. It has been seen that Standard ChOA

is more successful at high task numbers. Another method that

performs well for high tasks is VSW-AChOA. In fact, based on

the mean value criterion, VSW-AChOA can be seen as

relatively more successful than standard ChOA. As a result,

SDW-AChOA performed better on small task numbers, while

Standard and VSW-AChOA were successful in experiments

involving a high number of tasks. Although all methods were

more successful than standard scheduling methods, OscW had

the lowest performance among AChOA variations.

A large number of candidate variables (tasks) also affected the

approach to the best solution in the optimization process. The

convergence to the best in all methods generally occurred after

the 70th iteration, and the best was reached after about 50

iterations. Fig.7 shows the Standard, SDW, OscW, and VSW

approximation results in the experiments.

TABLE II
STATISTICAL RESULTS OF EXPERIMENTS FOR DIFFERENT TASK NUMBERS

Method 100 tasks 250 tasks 500 tasks 750 tasks 1000 tasks

Standard-ChOA

Minimum 44,4 109,5 227,4 349,3 480,1

Maximum 74,1 177,7 346,8 511,8 680,4

Mean 51,2 126,4 261,5 399,4 538,8

Standard Deviation 2,3 4,2 5,5 8,3 9,0

Median 47,8 119,3 249,2 381,9 515,6

SDW-AChOA

Minimum 42,5 103,7 238,2 350,8 471,9

Maximum 71,8 172,4 349,7 530,1 705,8

Mean 50,9 128,1 262,1 397,8 534,9

Standard Deviation 1,8 4,0 4,9 10,1 12,0

Median 48,5 121,2 247,3 377,8 507,6

OscW-AChOA

Minimum 44,4 120,0 245,4 370,0 515,0

Maximum 73,6 178,8 347,9 518,5 683,5

Mean 52,5 136,1 280,1 420,7 571,8

Standard Deviation 1,6 4,4 7,2 8,0 13,5

Median 49,0 131,6 268,3 406,6 554,8

VSW-AChOA

Minimum 43,6 111,9 230,9 351,1 483,5

Maximum 72,7 181,4 353,8 520,1 695,2

Mean 50,8 127,3 263,5 393,8 538,8

Standard Deviation 2,5 4,3 5,6 9,6 9,2

Median 47,8 122,2 248,7 375,4 514,7

334

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

V. CONCLUSION

This study focused on task scheduling optimization, which is

one of the most important problems in cloud computing. The

solution to this problem was realized with AChOA, which is an

improved adapted version of ChOA that is a new metaheuristic

algorithm. AChOA uses functions that could make the

exploration and exploitation mechanisms of the standard ChOA

more flexible. Thus, this adapted metaheuristic algorithm can

run in three different states: SDW-AChOA, OscW-AChOA,

VSW-AChOA. The success of all methods was also proven in

CloudSim, a well-known and successful cloud simulator in the

literature. All metaheuristic methods achieved about 30%

improvement over the standard scheduling method. Although

the improvement decreased with the increase in the number of

tasks, this rate was over 20%. In comparisons among

themselves, it was observed that the results of SDW-AChOA in

low task numbers and standard ChOA and VSW-AChOA in

scheduling with high task numbers were more successful.

Cloud systems will continue to be a research area where

different problems will arise for a long time. For this reason, the

authors will focus on the solutions of different optimization

methods in cloud systems in their future studies.

REFERENCES

[1] Strumberger, I., Tuba, E., Bacanin, N., & Tuba, M. (2019, June). Dynamic

tree growth algorithm for load scheduling in cloud environments. In 2019

IEEE Congress on Evolutionary Computation (CEC) (pp. 65-72). IEEE.
[2] Avram, M. G. (2014). Advantages and challenges of adopting cloud

computing from an enterprise perspective. Procedia Technology, 12, 529-

534.
[3] Abdullahi, M., & Ngadi, M. A. (2016). Symbiotic organism search

optimization based task scheduling in cloud computing environment.

Future Generation Computer Systems, 56, 640-650.
[4] Houssein, E. H., Gad, A. G., Wazery, Y. M., & Suganthan, P. N. (2021).

Task scheduling in cloud computing based on meta-heuristics: review,

taxonomy, open challenges, and future trends. Swarm and Evolutionary
Computation, 62, 100841.

[5] Khishe, M., & Mosavi, M. R. (2020). Chimp optimization algorithm.

Expert systems with applications, 149, 113338,
https://doi.org/10.1016/j.eswa.2020.113338

[6] Pradhan, A., Bisoy, S. K., & Das, A. (2021). A survey on pso based meta-

heuristic scheduling mechanism in cloud computing environment. Journal
of King Saud University-Computer and Information Sciences.

[7] Saurav, S. K., & Benedict, S. (2021, January). A Taxonomy and Survey

on Energy-Aware Scientific Workflows Scheduling in Large-Scale
Heterogeneous Architecture. In 2021 6th International Conference on

Inventive Computation Technologies (ICICT) (pp. 820-826). IEEE.
[8] Alsaidy, S. A., Abbood, A. D., & Sahib, M. A. (2020). Heuristic

initialization of PSO task scheduling algorithm in cloud computing.

Journal of King Saud University-Computer and Information Sciences.

[9] Bacanin, N., Bezdan, T., Tuba, E., Strumberger, I., Tuba, M., & Zivkovic,

M. (2019, November). Task scheduling in cloud computing environment

by grey wolf optimizer. In 2019 27th Telecommunications Forum
(TELFOR) (pp. 1-4). IEEE.

[10] [Chen, X., Cheng, L., Liu, C., Liu, Q., Liu, J., Mao, Y., & Murphy, J.

(2020). A woa-based optimization approach for task scheduling in cloud
computing systems. IEEE Systems Journal, 14(3), 3117-3128.

[11] Belgacem, A., Beghdad-Bey, K., & Nacer, H. (2018, October). Task

scheduling optimization in cloud based on electromagnetism
metaheuristic algorithm. In 2018 3rd International Conference on Pattern

Analysis and Intelligent Systems (PAIS) (pp. 1-7). IEEE.

[12] Aziza, H., & Krichen, S. (2018). Bi-objective decision support system for
task-scheduling based on genetic algorithm in cloud computing.

Computing, 100(2), 65-91.

[13] Li, K., Xu, G., Zhao, G., Dong, Y., & Wang, D. (2011, August). Cloud
task scheduling based on load balancing ant colony optimization. In 2011

sixth annual ChinaGrid conference (pp. 3-9). IEEE.

[14] Chen, X., & Long, D. (2019). Task scheduling of cloud computing using

integrated particle swarm algorithm and ant colony algorithm. Cluster
Computing, 22(2), 2761-2769.

[15] Liu, C. Y., Zou, C. M., & Wu, P. (2014, November). A task scheduling

algorithm based on genetic algorithm and ant colony optimization in
cloud computing. In 2014 13th International Symposium on Distributed

Computing and Applications to Business, Engineering and Science (pp.

68-72). IEEE.
[16] Tsai, C. W., Huang, W. C., Chiang, M. H., Chiang, M. C., & Yang, C. S.

(2014). A hyper-heuristic scheduling algorithm for cloud. IEEE

Transactions on Cloud Computing, 2(2), 236-250.
[17] Malik, R. F., Rahman, T. A., Hashim, S. Z. M., & Ngah, R. (2007). New

particle swarm optimizer with sigmoid increasing inertia weight.

International Journal of Computer Science and Security, 1(2), 35-44.
[18] Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., Jadon, S. S., &

Abraham, A. (2011, October). Inertia weight strategies in particle swarm

optimization. In 2011 Third world congress on nature and biologically
inspired computing (pp. 633-640). IEEE.

[19] Mafarja, M., Aljarah, I., Faris, H., Hammouri, A. I., Ala’M, A. Z., &

Mirjalili, S. (2019). Binary grasshopper optimisation algorithm
approaches for feature selection problems. Expert Systems with

Applications, 117, 267-286.

[20] Roth, G., & Dicke, U. (2005). Evolution of the brain and intelligence.
Trends in cognitive sciences, 9(5), 250-257.

[21] Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya,

R. (2011). CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning

algorithms. Software: Practice and experience, 41(1), 23-50.
[22] Yildirim, G., Alatas, B. New adaptive intelligent grey wolf optimizer

based multi-objective quantitative classification rules mining approaches.

J Ambient Intell Human Comput (2021). https://doi.org/10.1007/s12652-
020-02701-9

[23] Koyuncu, H. GM-CPSO: A New Viewpoint to Chaotic Particle Swarm

Optimization via Gauss Map. Neural Process Lett 52, 241–266 (2020).
https://doi.org/10.1007/s11063-020-10247-2Electromagnetic Fields (300

Hz to 300 GHz), Environmental Health Criteria 137, World Health

Organization, Geneva, Switzerland, 1993.
[24] Khishe M, Nezhadshahbodaghi M., Mosavi M.R., Martín D., "A

Weighted Chimp Optimization Algorithm," in IEEE Access, vol. 9, pp.

158508-158539, 2021, doi: 10.1109/ACCESS.2021.3130933.

BIOGRAPHIES

EMRULLAH GUNDUZALP graduated from

Firat University, Department of Computer

Engineering in 2007 with a bachelor's

degree. In 2018, he completed his master's

degree in Firat University. He worked at

the General Directorate of Land Registry

and Cadastre between 2007-2009. Since

2009, he has been working as a computer

engineer at the 9th Regional Directorate of DSI, IT department.

His research interests are the propagation of electromagnetic

waves, machine learning, and optimization.

GUNGOR YILDIRIM received the B.Sc.

degree from Firat University, Turkey, in

electrical and electronic engineering.

He received the M.Sc. and the Ph.D.

degrees from computer engineering of

Firat University, in 2012, and 2017,

respectively. Currently, he is an

assistant professor at the Department of

Computer Engineering at Firat University. He worked as a

project and control engineer in private sectors and a public

institution (DSI). He served as the head of the electric program

at Tunceli MYO for three years. In 2014, he received the Award

335

http://dergipark.gov.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 3, July 2022

Copyright © BAJECE ISSN: 2147-284X http://dergipark.gov.tr/bajece

of Appreciation in DSI. His research interests include wireless

systems, wireless sensor networks and IoT systems.

YETKIN TATAR received the B.Sc. degree

from EDMMA in 1974 and the M.Sc. and

D.Sc. degrees in electrical and electronic

engineering from Firat University, Turkey,

in 1984 and 1994, respectively.

He worked as a Professor with the

Department of Computer Engineering, Firat

University. His research areas are wireless

sensor networks, computer networks, and network security.

336

http://dergipark.gov.tr/bajece

