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Abstract
The present work proposes a special integer-valued bilinear time series model based on the
thinning operators. Basic probabilistic and statistical properties of this class of models are
discussed. Moreover, parameter estimation methods in the time and frequency domains
and forecasting are addressed. Finally, the performances of the estimation methods are
illustrated through a simulation study and an empirical application to two data sets.
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1. Introduction
Bilinear models have attracted much attention and been widely used to model nonlinear

phenomena in medical, economic and financial fields. The evidence of nonlinearity which
is usually found in the dynamic behavior of such data imply that classical linear models
are not appropriate for modelling these series. Bilinear model was first introduced by
[7] with the applications to seismological and financial data. The bilinear process {Xt}
satisfies the stochastic difference equation

Xt =
p∑

i=1
aiXt−i +

q∑
j=1

cjet−j +
P∑

k=1

Q∑
l=1

bklXt−ket−l + et.

Bilinear time series models have received great attention and discussed by many authors,
among them we refer to [1, 4, 12,13,16].

In recent years, many developments have been done in the modelling and analysis of
count time series. On modelling the non-linear phenomena of counts, Doukhan et al. [5]
extended the bilinear models to integer-valued bilinear model, INBL(p, q, P, Q), as

Xt =
p∑

i=1
ai ◦ Xt−i +

q∑
j=1

cj ◦ et−j +
P∑

k=1

Q∑
l=1

bkl ◦ Xt−ket−l + et,
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where “◦” is the thinning operator that is defined as

a ◦ X =
X∑

i=1
Yi,

where X is a non-negative integer valued random variable, a > 0 and {Yi} is a sequence of
i.i.d non-negative integer valued random variables called counting series [11]. In the field of
integer-valued time series modeling, limited research has been carried out so far to develop
models to non-linear time series. Doukhan et al. [5] obtained the sufficient condition
for stationarity of the INBL(1,0,1,1) process, estimated the parameters by Yule-Walker
method and obtained the asymptotic distribution of estimators. Drost et al. [6] determined
the existence of stationary solution for super diagonal INBL model. Recently, Bentarzi
and Bentarzi [2] introduced the periodic INBL(1,0,1,1) model and Mohammadpour et al.
[8] worked on the new class of INBL(1,0,1,1) model by mixing the thinning and Pegram
operators.

On modelling the non-linear phenomena of counts, the worked models are only appli-
cable to integer-valued time series with significant sample PACF only at lag 1. In this
paper, we propose a new class of INBL process where the sample PACF is virtually only
significant at lag 2, see Figure 1. We propose a class of INBL(2,0,2,1) model as

Xt = a ◦ Xt−2 + b ◦ Xt−2et−1 + et

and discuss some properties of the model such as strictly stationarity, the existence of the
moments, spectral density, parameters estimation methods. We estimate the parameters
via Yule-Walker, conditional least square and Whittle criterion methods. The performance
of the methods is assessed by a simulation study. We apply the proposed model to two
real count data sets. Consequently, forecasting of the data sets is considered.

Figure 1. Sample path, sample ACF and PACF for the simulated data of the
model.

2. The model and its properties
Consider the INBL(2,0,2,1) process {Xt}t∈Z as follows:

Xt = a ◦ Xt−2 + b ◦ Xt−2et−1 + et, (2.1)
where “◦” stands for the thinning operator, {et} is a sequence of i.i.d non-negative integer-
valued random variables with finite mean µ and finite variance σ2 and it is independent
of {Xs}s<t and a, b ∈ (0, 1). Also, the counting sequences {Yi} and {Ỹi} associated with
the operators a◦ and b◦ have the means a and b and variances α and β.
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First, we give a sufficient condition under which the process {Xt}t∈Z is strictly station-
ary.

Theorem 2.1. A sufficient condition for the INBL(2,0,2,1) process {Xt}t∈Z defined in
(2.1) to be stationary is that (a + bµ)2 + b2σ2 < 1.

Proof. Let {Xn
t }t∈Z be a sequence of random variables as

Xn
t =


0 n < 1
et n = 1

a ◦ Xn−2
t−2 + b ◦ Xn−2

t−2 et−1 + et n > 1.


where sequence {Xn

s }s<t is independent of et.

C1. The process {Xn
t }t∈Z is strictly stationary for any n ∈ N .

It is enough to show that the two vectors (Xn
2 , ..., Xn

k )T and (Xn
2+h, ..., Xn

k+h)T are iden-
tically distributed. It is clear that the process {Xn

t }t∈Z is strictly stationary for n = 1.
Now, we suppose process {Xm

t }t∈Z is strictly stationary for all 1 ≤ m ≤ n − 1. Hence we
have for m = n;Xn

2
...

Xn
k

 =

a◦ · · · 0◦
... . . . ...

0◦ · · · a◦




Xn−2
0
...

Xn−2
k−2

 +

b◦ · · · 0◦
... . . . ...

0◦ · · · b◦




Xn−2
0 e1

...
Xn−2

k−2 ek−1

 +

e2
...

ek


andXn

2+h
...

Xn
k+h

 =

a◦ · · · 0◦
... . . . ...

0◦ · · · a◦




Xn−2
h
...

Xn−2
k+h−2

 +

b◦ · · · 0◦
... . . . ...

0◦ · · · b◦




Xn−2
h eh+1

...
Xn−2

k+h−2ek+h−1

 +

eh+2
...

ek+h

 .

According to the induction hypothesis and the random variables involved in the right
expressions, it is deduced that the vectors (Xn

2 , ..., Xn
k )T and (Xn

2+h, ..., Xn
k+h)T are iden-

tically distributed.

C2. The sequence {Xn
t }t∈Z belongs to the space £2 = {X|EX2 < ∞}.

Let µn = E(Xn
t ). We have

µn = (a + bµ)µn−2 + µ = · · · = (a + bµ)[n/2]µ + µ

[ n
2 ]∑

i=1
(a + bµ)i−1,

and under the strictly stationary condition, µn < ∞ for all n. Now we show that E(Xn
t )2 <

∞ for all n,
E(Xn

t )2 = [(a + bµ)2 + b2σ2]E(Xn−2
t−2 )2 + ((α + βµ) + 2(a + bµ)µ)E(Xn−2

t−2 ) + E(e2
t )

=
(
(a + bµ)2 + b2σ2

)[n/2]
E(e2

t−2[n/2])

+ ((α + βµ) + 2(a + bµ)µ)

[n/2]∑
i=1

((a + bµ)2 + b2σ2)i−1E(Xn−2i
t−2i )

+ E(e2
t )

[n/2]∑
i=1

((a + bµ)2 + b2σ2)i−1

 .

So under the strictly stationary condition, E(Xn
t )2 < ∞ for all n.
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C3. The sequence {Xn
t } is Cauchy.

Let Ψ(t, n, m) = |Xn
t − Xn−m

t |, m = 1, 2, .... Using the definition of {Xn
t }, we have

EΨ(t, n, m) ≤ E|a ◦ (Xn−2
t−2 − Xn−m−2

t−2 )| + E|b ◦ (Xn−2
t−2 − Xn−m−2

t−2 )et−1|
≤ E|a ◦ (Xn−2

t−2 − Xn−m−2
t−2 )| + E|b ◦ (Xn−2

t−2 − Xn−m−2
t−2 )|E(et−1)

≤ |a + bµ|EΨ(t − 2, n − 2, m) = |a + bµ|2EΨ(t − 4, n − 4, m)
≤ |a + bµ|3EΨ(t − 6, n − 6, m)

...
≤ |a + bµ|[

n
2 ]EΨ(t − 2[n

2
], 0, m) = |a + bµ|[

n
2 ]E|X0

t−2[ n
2 ]| = |a + bµ|[

n
2 ]µ|e|.

As n → ∞, under the strictly stationary condition, EΨ(t, n, m) converges to 0.
Similarly, we can obtain that

EΨ2(t, n, m) ≤ ((a + bµ)2 + b2σ2)EΨ2(t − 2, n − 2, m) + (α + βµ)EΨ(t − 2, n − 2, m)
...

≤ ((a + bµ)2 + b2σ2)[ n
2 ]EΨ2(t − 2[n

2
], 0, m)

+ (α + βµ)
[ n

2 ]∑
i=1

((a + bµ)2 + b2σ2)i−1EΨ(t − 2i, n − 2i, m).

As n → ∞, it easily can be seen that EΨ2(t, n, m) converges to 0. So {Xn
t } is a Cauchy

sequence, [10]. Let Xt = limn→∞ Xn
t , then Xt ∈ L2.

C4. The process {Xt} satisfies Eqn. (2.1).

Since Xn
t → Xt, so by applying the properties of thinning operators we have

E|a ◦ Xn−2
t−2 − a ◦ Xt−2|2 = a2E|Xn−2

t−2 − Xt−2|2 + αE|Xn−2
t−2 − Xt−2|

and

E|b ◦ (Xn−2
t−2 − b ◦ Xt−2)et−1|2 = b2(µ2 + σ2)E|Xn−2

t−2 − Xt−2|2 + βµE|(Xn−2
t−2 − Xt−2)|

converge to zero. Hence the process {Xt} satisfies Eqn. (2.1).

C5. Uniqueness.

To show the uniqueness of the process {Xt}, assume that there exists another process
{X∗

t } such that X
(n)
t → X∗

t . By Minkowski inequality, we have

E1/2(|Xt − X∗
t |2) ≤ E1/2(|Xn

t − X∗
t |2) + E1/2(|Xn

t − Xt|2).

Hence Xt = X∗
t a.s.

C6. Strictly stationarity.

Since the process {Xn
t } is strictly stationary and Xn

t
L2
→ Xt, using Cramer-Wold device

[3], it can be concluded that

(Xn
0 , ..., Xn

k ) ⇒ (X0, ..., Xk)

and
(Xn

h , ..., Xn
k+h) ⇒ (Xh, ..., Xk+h).
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Since (Xn
0 , ..., Xn

k ) and (Xn
h , ..., Xn

k+h) have the same distribution, hence (X0, ..., Xk) and
(Xh, ..., Xk+h) have the same distribution. This completes the proof. □

In the following, we investigate some properties of the process {Xt}t∈Z .

Theorem 2.2. Suppose the INBL(2,0,2,1) process {Xt}t∈Z is stationary. Then we obtain
the following properties
(i) E(Xt) = µ

1−(a+bµ) .

(ii) E(X2
t ) = (µ2+σ2)+[2µ(a+bµ)+(α+βµ)]E(Xt)

1−[(a+bµ)2+b2σ2] .

(iii) E(Xp
t ) < ∞.

Proof. (i) The first moment obtains easily by Eqn. (2.1).
(ii) To obtain E(X2

t ), we have

E(X2
t ) = E(S2

t−2) + E(e2
t ) + 2E(St−2)E(et),

where St−2 = a ◦ Xt−2 + b ◦ Xt−2et−1. Using the properties of the thinning operator, we
have

E(S2
t−2) = (α + βµ)E(Xt) + ((a + bµ)2 + b2σ2)E(X2

t ).
Therefore

E(X2
t ) = (µ2 + σ2) + [2µ(a + bµ) + (α + βµ)]E(Xt)

1 − [(a + bµ)2 + b2σ2]
.

(iii) Let Ip = ||Xt||p = E1/p(Xp
t ). Obviously, we have

Ip = ||Xt||p ≤ ||a ◦ Xt−2||p + ||b ◦ Xt−2et−1||p + ||et||p.

Using the counting sequences {Yi} and {Ỹj} in operators a◦ and b◦ and the convexity of
the function f(l) = lp, for p > 4 we have [5]

||a ◦ Xt−2||pp = E(a ◦ Xt−2)p = E[
Xt−2∑
i=1

Yi]p ≤ E(Y p)E(Xp
t−2)

and

||b ◦ Xt−2et−1||pp = E(b ◦ Xt−2et−1)p = E[
Xt−2et−1∑

i=1
Ỹi]p ≤ E(Ỹ p)E(Xp

t−2)E(ep
t−1).

Hence
Ip ≤ E1/p(Y p)Ip + E1/p(Ỹ p)E1/p(ep

t )Ip + E1/p(ep
t ).

Therefore

Ip ≤ E1/p(ep
t )

1 − (E1/p(Y p) + E1/p(Ỹ p)E1/p(ep
t ))

,

which completes the proof. □

Theorem 2.3. The autocovariance functions of INBL(2,0,2,1) process are obtained as
follows:

γX(1) = bσ2µ

(1 − (a + bµ))2 , (2.2)

γX(2h) = (a + bµ)hγX(0), (2.3)

and
γX(2h + 1) = (a + bµ)hγX(1).
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Proof. Multiplying (2.1) by Xt and Xt−1et, taking expectation on both sides and using
the stationarity of the process, we obtain

E(Xt+1Xt) = aE(XtXt−1) + bE(XtXt−1et) + E(Xt)E(et+1) (2.4)

and
(1 − bµ)E(XtXt−1et) = aµE(Xt−1Xt−2) + E(Xt)E(e2

t ). (2.5)
Substituting (2.5) to (2.4), we get

(1 − bµ)E(Xt+1Xt) = a(1 − bµ)E(XtXt−1) + abµE(Xt−1Xt−2) + bE(e2
t )E(Xt) + µ(1 − bµ)E(Xt).

So
(1 − (a + bµ))E(Xt+1Xt) = bE(e2

t )E(Xt) + µ(1 − bµ)E(Xt).
Consequently, by a simple substitution and using E(Xt) in Theorem 2.1, we have the
above expression for γX(1). Also γX(2h) and γX(2h + 1) will be obtained in a similar
manner. □

By applying the autocovariance function, the spectral density function of the process
{Xt}t∈Z which is applied in frequency domain approaches obtained as follows:

fX(ω) = 1
2π

∞∑
k=−∞

γX(k)e−iωk = 1
2π

(γX(0) +
∑
k ̸=0

γX(k)e−iωk) (2.6)

= 1
2π

(1 − (a + bµ))[γX(0)(1 + (a + bµ)) + 2γX(1) cos ω]
1 + (a + bµ)2 − 2(a + bµ) cos 2ω

. (2.7)

The conditional expectations of the process are obtained as follows:

E(Xt+1|t) = (a + bet)Xt−1 + µ

E(Xt+2|t) = (a + bµ)Xt + µ,

where E(.|t) is the conditional expectation with respect to the σ-field Fe
t which is generated

by random variables es, s ≤ t. By induction, we can conclude that

E(Xt+k|t) = (a + bµ)k/2Xt + µ

k/2∑
i=1

(a + bµ)i−1, k = 2h

E(Xt+k|t) = (a + bµ)[k/2]E(Xt+1|t) + µ

[k/2]∑
i=1

(a + bµ)i−1, k = 2h + 1. (2.8)

Also

E(X2
t+1|t) = (a + bet)2X2

t−1 + [(α + βet) + 2µ(a + bet)]Xt−1 + (µ2 + σ2),
E(X2

t+2|t) = [(a + bµ)2 + b2σ2]X2
t + [(α + βµ) + 2µ(a + bµ)]Xt + (µ2 + σ2),

and for even and odd k, respectively

E(X2
t+k|t) = Hk/2X2

t + [(α + βµ) + 2µ(a + bµ)]
∑k/2

i=1 H i−1E(Xt+k−2i|t) + (µ2 + σ2)
∑k/2

i=1(H i−1),

and

E(X2
t+k|t) = H [k/2]E(X2

t+1|t) + [(α + βµ) + 2µ(a + bµ)]
∑[k/2]

i=1 H i−1E(Xt+k−2i|t) + (µ2 + σ2)
∑[k/2]

i=1 (H i−1),
(2.9)

where H = [(a + bµ)2 + b2σ2].

Note 1. From Eqns. (2.8) and (2.9), limk→∞ E(Xt+k|t) → E(Xt) and limk→∞ E(X2
t+k|t) →

E(X2
t ).
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3. Estimation and simulation
In this section, we will investigate several methods for parameter estimation of the

stationary INBL(2,0,2,1) model based on a realization X1, ..., Xn of this process. In the
estimation procedure, we assume that the distribution of {et} is Poisson with parameter
µ.

3.1. Yule-Walker method
We investigate the Yule-Walker (YW) estimators of the unknown parameters a, b and µ.

Using Theorem 2.2, Eqns. (2.2) and (2.3) and also the sample first moment (X̄), second
moment (X̄2) and autocovariance function (γ̂X(·)), the YW estimators are obtained as

b̂Y W = γ̂X(1)
X̄2

µ̂Y W = X̄(1 − M̂)
âY W = M̂ − b̂µ̂,

where M̂ = γ̂X(2)
γ̂X(0) .

The asymptotic distribution of the YW estimators âY W , b̂Y W and µ̂Y W is(
âY W , b̂Y W , µ̂Y W

)
∼ N((a, b, µ) , n−1VΣVT ),

where

VT =


γX(1)

µ2 (1 − γX(2)
γX(0)) −2γX(1)

µ3 1 − γX(2)
γX(0)

−γX(2)
γ2

X(0) [γX(1)
µ + 1] 0 γX(2)µ

γ2
X(0)

− 1
µ(1 − γX(2)

γX(0)) 1
µ2 0

1
γX(0)(1 + γX(1)

µ ) 0 − µ
γX(0)

 ,

and Σ is the variance-covariance matrix of the random vector
(
X̄, γ̂X(0), γ̂X(1), γ̂X(2)

)
,

for more details of the matrix Σ see [5].

3.2. Conditional least squares method
The conditional least squares (CLS) estimators of the parameters a, b and µ are obtained

by minimizing the squares of the conditional errors

Q(Θ) =
n∑

t=3
(Xt − (a + bet−1)Xt−2 − µ)2,

where Θ = (a, b, µ) and et = Xt − aXt−2 − bXt−2et−1. The minimization is achieved
through Newton Raphson (NR) algorithm as

θ(j+1) = θ(j) − S−1(θ(j))G(θ(j)),
where G and S are Gradient vector and Hessian matrix, respectively. Also, the partial
derivations of Q with respect to the parameters are as

∂Q

∂a
= 2

n∑
t=3

(et − µ)(−Xt−2 − bXt−2
∂et−1

∂a
)

∂Q

∂b
= 2

n∑
t=3

(et − µ)(−Xt−2et−1 − bXt−2
∂et−1

∂b
)

∂Q

∂µ
= 2

n∑
t=3

(et − µ)(−1 − bXt−2
∂et−1

∂µ
)
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and
∂2Q

∂θi∂θj
= 2

n∑
t=3

∂et

∂θi

∂et

∂θj
+ 2

n∑
t=3

∂2et

∂θi∂θj
.

Since that the terms e1 and e2 can not be computed, without loss of generality we can
choose the conditions e1 = e2 = 1 and ∂et

∂θi
= ∂2et

∂θi∂θj
= 0 for t = 1, 2 and i, j = 1, 2, 3. The

NR algorithm requires initial values to estimate the parameters. The CLS or YW estimates
of INAR(2) model is used as an initial estimates, because the structure of INBL(2,0,2,1)
model in terms of its ACF and PACF is similar to INAR(2) model. Given the database
of Xt, the iteration procedure can be continued until |θ(n+1)

i − θ
(n)
i | < 10−3.

Note 2. The CLS estimators of the parameters M = (a + bµ) and µ have the closed form
by minimizing the squares of the conditional errors as

Q(a, b, µ) =
n∑

i=3
(Xt − E(Xt|t − 2)) =

n∑
i=3

(Xt − (a + bµ)Xt−2 − µ)2

and they will be derived as the following form:

M̂CLS = (n − 2)
∑n

t=3 XtXt−2 −
∑n

t=3 Xt
∑n

t=3 Xt−2
(n − 2)

∑n
t=3 X2

t−2 − (
∑n

t=3 Xt−2)2

and

µ̂CLS =
∑n

t=3 Xt − M̂CLS
∑n

t=3 Xt−2
n − 2

.

Theorem 3.1. The CLS and YW estimators of the parameters M and µ are asymptoti-
cally equivalent.

Proof. The proof follows by showing the two conditions

µ̂CLS − µ̂Y W = o(n− 1
2 )

M̂CLS − M̂Y W = o(n− 1
2 ).

Using the definition of µ̂CLS and µ̂Y W , we have

lim
n→∞

[
√

n − 2(µ̂CLS − µ̂Y W )] = lim
n→∞

[M(Xn−1 + Xn) − (X1 + X2)√
n − 2

] = 0,

and

lim
n→∞

[
√

n(M̂CLS − M̂Y W )] = lim
n→∞

H(Xn, Xn−1, X̄)√
n

∑n
t=3 XtXt−2 −

∑n

t=3
Xt

n−2

∑n

t=3
Xt−2

n−2

[
∑n

t=3
X2

t−2
n−2 − (

∑n

t=3
Xt−2

n−2 )2][
∑n

t=1
X2

t

n − X̄2]
= 0,

where H(Xn, Xn−1, X̄) = X2
n + X2

n−1 − 2(Xn + Xn−1)X̄ + (Xn+Xn−1)2

n , which give the
results. □

3.3. Whittle method
We describe a frequency domain estimation procedure based on Whittle criterion. This

approach was originally proposed by [14,15]. The main motivation for the Whittle criterion
is the fact that the spectral density function of a process may not be easy obtain whereas
an exact likelihood. Now for INBL(2,0,2,1) process, we obtain the Whittle (W) estimator
of parameters Θ = (a, b, µ) by minimizing the function

l̂n(Θ) = 1
n

[n/2]∑
j=1

(logfX(ωj) + In(ωj)
fX(ωj)

),
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where fX(ωj) is the spectral density function of INBL(2,0,2,1) process in (2.6), ωj = 2πj
n

is the Fourier frequency and In(ωj) is the periodogram. The numerical minimization is
achieved using the function nlm in statistical package. The initial values of nlm function
is obtained by the YW estimates.

3.4. Simulation study
The performance of the estimates is checked by a small Monte Carlo simulation using

different sample sizes over 1000 replications. In the simulation procedure, we assume that
“◦” is the binomial thinning operator. Based on these simulations, Table 1 gives the bias
and mean square error (MSE) for the estimates for different values of the parameters a, b
and µ with different sample sizes. Based on Table 1, we find that increasing the sample
size implies smaller MSE and Whittle estimates converge faster to the true values of the
parameters.

4. Applications
Here, we investigate an application for the INBL(2,0,2,1) process by using two real count

data that obtained from the Forecasting Principles site†. The first data set represents the
monthly counts of crimes, reported in the 21th aggregation of police car beat and the
second data set represents the monthly counts of drug calls, reported in the 2508th of
police carbeat in Pittsburgh. The sample paths, autocorrelation functions (ACFs) and
partial autocorrelation functions (PACFs) of the two data sets are displayed in Figures 2
and 3, respectively. Moreover, the stationarity of the data series is justified by using the
Phillips-Perron test. The test rejected the null hypothesis of non-stationarity, the p-value
for the test for both data sets being 0.01 (with a significance level at 0.05). Also, we apply
Keenan test for the non-linearity test. The p-value of the Keenan test for the data sets
are 0.00015 and 0.015. Consequently, we reject linearity hypothesis with a significance
level at 0.05. Therefore, the data can not be described by linear time series models. The
Figures 2 and 3 suggest that INBL(2, 0, 2, 1) model is appropriate for modeling the data
sets. The parameters of INBL model are estimated by Whittle method. The results are
presented in Table 2.
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Figure 2. Sample path, sample ACF and PACF for crime data.

†http://www.forecastingprinciples.com
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Figure 3. Sample path, sample ACF and PACF for drug call data.

Table 2. Estimated parameters for the two data sets.

Model âW b̂W µ̂W

Crime data 0.213 0.008 1.419
Drug call data 0.152 0.148 1.019

4.1. The residual analysis and model adequacy
In the following, we assess the adequacy of the model proposed and fitted to data. Tools

in the diagnostic checking of dynamic structure can be based on the standardized Pearson
residuals given by

rt = Xt − E(Xt|t − 1)√
V ar(Xt|t − 1)

,

where the population quantities are replaced by their estimated counterparts in
INBL(2,0,2,1) model. The residual analysis are shown in Figures 4 and 5. We depict
the sample ACF and cumulative periodogram plots of the Pearson residuals for both data
series. Figures 4 and 5, plots the ACF of the Pearson residuals. There is no evidence
of any correlation within the residuals and findings are confirmed by p-values 0.22 and
0.65 of Ljung-Box test for both data sets. Based on cumulative periodogram plots in
Figures 4 and 5, it is clearly shown that the residuals are randomly distributed and do not
have specified trend. The right panel in the figures shows the results of the parametric
resampling method. We generate 1000 artificial data sets of length 144 using the fitted
INBL(2,0,2,1) model with Poisson innovations. Based on these bootstrap data sets, 1000
autocorrelation functions are computed. For each fixed lag of the ACF, 100(1 − α/2)%
and 100(α/2)% (α = 0.05) quantiles of the ACFs are obtained to constitute the bounds
of an acceptance region. These bounds are shown as ” + ” symbols in the figure with the
sample ACF presented by ”o”. Based on Figures 4 and 5, the adequacy of the fitted model
is concluded.
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Figure 4. Cumulative periodogram, ACF plots of the Pearson residuals and para-
metric bootstrap result for crime data.
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Figure 5. Cumulative periodogram, ACF plots of the Pearson residuals and para-
metric bootstrap result for drug data.

4.2. Forecasting
Here, we discuss the classical and bootstrap methods for forecasting the model.

4.2.1. Classical prediction. One of the most common procedures for classical predic-
tion in time series models is to use conditional expectation. Based on (2.8), the k-step
ahead predictors are given by

X̂t+1 = (a + bet)Xt−1 + µ

and
X̂t+k = (a + bµ)X̂t+k−2 + µ.

In practice, the parameters a, b and µ are replaced by their corresponding Whittle esti-
mates.
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4.2.2. Sieve bootstrap prediction. The classical predictions do not preserve the integer-
valued nature of the data in generating forecasts when the time series is integer-valued.
To preserve the integer-valued nature of data, we use a bootstrap approach as a distribu-
tion free alternative. Some bootstrap approaches have been proposed. Among others, we
employ the bootstrap method proposed by [9] after some modifications to INBL(2,0,2,1)
model as the following steps.

(1) Estimate the parameters (a, b, µ) using Whittle method.
(2) Compute residuals êt = xt − âxt−2 − b̂xt−2êt−1 for t = 3, ..., n.
(3) Construct the empirical distribution for modified residuals ẽt defined by ẽt = [êt]

as êt > 0 else ẽt equal zero. Also [·] represents the value rounded to the nearest
integer.

(4) For b = 1, ..., B define the bootstrap series Xb
t by

Xb
t = â◦Xb

t−2 + b̂◦Xb
t−2eb

t−1 + eb
t ,

where eb
t for t = 1, 2, ..., n is an i.i.d. sample from the residuals computed previ-

ously.
(5) Based on Xb

t , compute the Whittle estimates of the parameters (âb, b̂b, µ̂b) as in
step 1.

(6) Estimates of (a, b, µe) can be obtained using sample mean: â∗ =
∑B

b=1 âb

B ,

b̂∗ =
∑B

b=1 b̂b

B and µ∗ =
∑B

b=1 µ̂b

B .
(7) Compute future observations from k-step ahead prediction by recursion;

Xb
t+k = âb◦Xb

t+k−2 + b̂b◦Xb
t+k−2eb

t+k−1 + eb
t+k. k ⩾ 1

The classic and sieve bootstrap forecasts of the real data series are presented in Table 3,
where the Whittle parameter estimates of the data sets are given in Table 2.

Table 3. k-step ahead predictions of the two data sets.

Crime data Drug call data
k Data Classic Bootstrap Data Classic Bootstrap
1 5 1.630 0 2 1.599 0
2 1 1.419 1 1 1.951 0
3 0 1.773 1 1 1.535 4
4 1 1.727 2 0 1.640 2
5 0 1.804 2 0 1.516 0
6 1 1.794 2 0 1.548 1
7 1 1.810 1 2 1.511 1
8 0 1.808 0 1 1.520 1
9 1 1.812 1 1 1.509 1
10 2 1.811 3 0 1.512 0

SMAPE 0.971 0.773 1.038 0.986

In order to evaluate and compare the different prediction methodologies, we compute
k-step ahead predictions (k = 1, 2, ..., 10) and use the symmetric mean absolute percentage
error (SMAPE) as follows:

SMAPE = 1
H

H∑
k=1

2 | Xn+k − X̂n+k |
Xn+k + X̂n+k

,

where H represents the number of predictions realized. The classic and sieve bootstrap
predictions are presented in Table 3. As it expects, it can be noted that SMAPE values
of bootstrap predictions are smaller than classic predictions, also bootstrap predictors are
integer, same as the nature of the real data.
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5. Conclusion
In this paper, we have considered INBL(2,0,2,1) model for modelling nonlinear counts.

The practical prominence of the model was also confirmed by two real data sets. As
the classical predictions do not coherently preserve the integer nature of the data, the
bootstrap approach is also used as a distribution free alternative.

References
[1] B. Basrak, R.A. Davis and T. Mikosch, The sample ACF of a simple bilinear process,

Stoch. Process. Their Appl. 83 (9), 1-14, 1999.
[2] M. Bentarzi and W. Bentarzi, Periodic integer-valued bilinear time series model,

Comm. Statist. Theory Methods 46 (3), 1184-1201, 2017.
[3] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, 2nd ed., Springer,

1991.
[4] R.A. Davis and S.I. Resnick, Limit theory for bilinear processes with heavy-tailed

noise, Ann. Appl. Probab. 6 (4), 1191-1210, 1996.
[5] P. Doukhan, A. Latour and D. Oraichi, Simple integer-valued bilinear time series

model, Adv. in Appl. Probab. 38 (2), 559-578, 2006.
[6] F.C. Drost, R. van den Akker and B.J.M. Werker, Note on integer-valued bilinear

time series, Statist. Probab. Lett. 38 (8), 559-578, 2008.
[7] C.W.J. Granger and A.P. Andersen, An Introduction to Bilinear Time Series Models,

Vandenhoeck and Ruprecht, Gottingen, 1978.
[8] M. Mohammadpour, H.S. Bakouch and S. Ramzani, An integer-valued bilinear time

series model via two random operators, Math. Comput. Model. Dyn. Syst. 25 (4),
429-446, 2019.

[9] L. Pascual, J. Romo and E. Ruiz, Bootstrap predictive inference for ARIMA processes,
J. Time Series Anal. 25 (4), 449-465, 2004.

[10] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1976.
[11] F.W. Steutel and K. van Harn, Discrete analogues of self-decomposability and stability,

Ann. Probab. 7 (5), 893-899, 1979.
[12] T. Subba Rao, On the theory of bilinear time series models, J. R. Stat. Soc. Ser. B.

Stat. Methodol. 43 (2), 244-255, 1981.
[13] K.F. Turkman and M.A.A. Turkman, Extremes of bilinear time series models, J. Time

Series Anal. 18 (3), 305-319, 1997.
[14] P. Whittle, Estimation and information in stationary time series, Ark. Mat. 2 (5),

423-434, 1953.
[15] P. Whittle, A Study in the Analysis of Stationary Time Series, Almquist and Wiksell,

Stockholm, 1954.
[16] Z. Zhang and H. Tong, Some distributional properties of a first-order nonnegative

bilinear time series model, J. Appl. Probab. 38 (3), 659-671, 2001.


