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Çankaya University

Journal of Science and Engineering
https://dergipark.org.tr/cankujse

A Precise Analytical Method to Solve the Nonlinear
System of Partial Differential Equations with the

Caputo Fractional Operator

Lakhdar Riabi ID1 ID and Mountassir Hamdi Cherif* ID2

1Preparatory Cycle, Oran’s High School of Electrical and Energetics Engineering (ESGEE-Oran), Algeria.
2Laboratory of Complex Systems, Oran’s High School of Electrical and Energetics Engineering (ESGEE-Oran), Algeria.

1,2Laboratory of Mathematics and Its Applications (LAMAP), University of Oran1, Algeria.

Keywords Abstract

Homotopy perturba-
tion method,
Caputo fractional
derivative,
ZZ integral trans-
form,
Nonlinear fractional
differential equa-
tions.

In this paper, we present a new technique by combination the homotopy perturbation
method with ZZ transform method, we get the homotopy perturbation ZZ transform
method to solve systems of nonlinear fractional partial differential equations. The frac-
tional derivative is described in the Caputo sense. The results show that this method is
appropriate and effective to solve the nonlinear system of nonlinear fractional differen-
tial equations and other nonlinear problems.

1. Introduction

For several decades, the analytical approximation methods have experienced considerable enthusiasm for differ-
ential equations which model natural phenomena affecting our environment or scientific problems of societies.
These mathematical models draw their representations from many scientific fields such as physics and chemistry
in all their generality, engineering sciences...

Differential equations flourished considerably with the development of mathematical analysis at the beginning
of the 17th century. With the emergence of nonlinear sciences, the search for analytical solutions of differential
equations became a central interest for mathematicians of the time. As a result, we see the emergence of several
methods that are proposed to respond to such concerns. Among these methods, we mention, for example, the
Adomian decomposition method which has been applied to solve linear and nonlinear boundary problems [1–4].
This method resulted in the development of several variants of analytical resolution methods such as the variational
iteration method [5, 6], the homotopy perturbation method (HPM).

This last method developed by Ji-Huan He [7,8] allowed to solve a great variety of problems modeled by linear
and nonlinear partial differential equations. Subsequently, the homotopy perturbation method was generalized to
the fractional differential equations, to the nonlinear partial differential equations of fractional order according
to the time variable in [9]. Several researches have been done to apply and extend this method to the nonlinear
partial differential equations of fractional order according to the time variable or the dimensional variable or
even according to both, for example, it was applied to the fractional biological population equation in [10], the
fractional Cahn-Hilliard equation in [11], the fractional Fisher’s equation in [12] and the fractional nonlinear
dispersive K(2,2) equations in [13].
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Fractional differential equations are of great interest in many physical problems. The interest of the fractional
derivative is linked to the mechanical modeling of materials which conserve and which memorize past deforma-
tions. The fractional derivation is ideally suited for studying this problem. The fractional calculus approach is a
very attractive tool for studying the properties and characteristics of viscoelastic objects compared to known and
already used methods. Consequently, we find that many researchers have been interested in solving this kind of
differential equations, whether ODEs or PDEs with fractional derivative [14–17].

In order to facilitate the solution of this type of equations, especially nonlinear ones, we find that many
researchers benefit from the combined the homotopy perturbation method with some known transforms, such as:
Laplace transform [18, 19], Sumudu transform [20, 21], Elzaki transform [22], and that ZZ transform [23].

In our paper, we will extend the homotopy perturbation method combined with the ZZ transform which gives
the homotopy perturbation ZZ transform method (HPZZTM) to solve the nonlinear system of partial differential
equations of fractional order. This method will be applied to different types of system of nonlinear fractional
partial differential equations.

2. Basic theory of fractional calculus

In this section, we will present the basics of fractional local calculus, these concepts include: Fractional derivative,
fractional integral, some important results and fractional ZZ transform.

2.1. Fractional calculus

We present some basic definitions and properties of the fractional calculus theory as the Riemann-Liouville frac-
tional integrals and Caputo fractional derivative (see [24, 25]).

Theorem 1. [24,25] Let σ ≥ 0 and let n = [σ] + 1. If ψ(ζ) ∈ ACn [a, b] , then the Caputo fractional derivative
(cDσ

0+ψ)(ζ) exist almost everywhere on [a, b] . If σ /∈ N, (cDσ
0+ψ)(ζ) is represented by

(cDσ
0+ψ)(ζ) =

1

Γ (n− σ)

∫ ζ

0

ψ(n)(τ)dτ

(ζ − τ)σ−n+1
, (1)

where D = d
dζ and n = [σ] + 1.

Remark 1. [24] We consider the time-fractional derivative in the Caputo’s sense. When σ ∈ R+, the time-
fractional derivative is defined as

(cDσ
ζ υ)(κ, ζ) =

∂συ(κ, ζ)
∂ζσ

=

{
1

Γ(m−σ)

∫ ζ
0 (ζ − τ)m−σ−1 ∂

mυ(κ,τ)
∂τm , m− 1 < σ < m,

∂mυ(κ,ζ)
∂ζm , σ = m,

where m ∈ N∗.

Definition 1. [24] Let σ ∈ R+; the operator Iσa defined on L1[a, b] by

(Iσaψ)(ζ) =
1

Γ(σ)

∫ ζ

a
(ζ − τ)σ−1ψ(τ)dτ ; σ > 0, (2)

is called the Riemann-Liouville fractional integral operator of order σ. Here Γ(·) is the gamma function.

Definition 2. [24] The Mittag-Leffler function plays an important role in the solution of differential equations of
fractional order, it’s defined by

Eσ(z) =

∞∑
k=0

zk

Γ(σk + 1)
, ℜ(σ) > 0; z ∈ C. (3)

For σ = 1, we get Eσ(z) = ez .
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2.2. Main result of the ZZ integral transform

In this part, we will give some basic definitions and properties of the ZZ transform (see [26], [27]).

Definition 3. [26] Let υ(ζ) be a function defined for all ζ ≥ 0. The ZZ transform of υ(ζ) is the function T (v, s)
defined by

Z [υ(ζ)] = T (v, s) = s

∫ ∞

0
ψ(vζ)e−sζdζ. (4)

Theorem 2. [27] If ψ(ζ) is piecewise continuous in every finite interval 0 ≤ ζ ≤ K and of exponential order µ
for ζ > K, then its ZZ transform T(v,s) exists for all s > µ, v > µ.

Proof. see [27]

2.2.1. Some properties of the ZZ integral transform

1. The ZZ transform of the nth derivative of υ(ζ) is given by

Z[υ(n)(ζ)] =
sn

vn
Z[υ(ζ)]−

n−1∑
k=0

sn−k

vn−k
υ(k)(0) (5)

2. ZZ transform of some elementary functions
υ(ζ) Z [υ(ζ)]

1 1

ζ v
s

ζn n!v
n

sn , n = 0, 1, 2, . . .

ζσ Γ(σ + 1)v
σ

sσ , σ ≥ 0.

Proposition 1. The ZZ transform of the time-fractional derivative in the Caputo’s sense is defined as

Z
[
(cDσ

0+υ)(ζ); (v, s)
]
=
sσ

vσ
Z[υ(ζ)]−

n−1∑
k=0

sσ−k

vσ−k
υ(k)(0) , n− 1 < σ ≤ n, n = 1, 2, . . . (6)

Proof. See [26]

3. Analysis of the homotopy perturbation ZZ transform method (HPZZTM)

We consider the general nonlinear system of fractional partial differential equations of the form{ cDσ
ζ υ(κ, ζ) +Rω(κ, ζ) +Nυ(κ, ζ) = h1(κ, ζ),

cDδ
ζω(κ, ζ) +Rυ(κ, ζ) +Nω(κ, ζ) = h2(κ, ζ),

(7)

where n− 1 < σ, δ ≤ n, n = 1, 2, ...
and the initial conditions 

[
∂n−1υ(κ,ζ)

∂ζn−1

]
ζ=0

= ψn−1(κ), n = 1, 2, ...[
∂n−1ω(κ,ζ)

∂ζn−1

]
ζ=0

= φn−1(κ), n = 1, 2, ...
(8)

cDσ
ζ υ(κ, ζ), cDδ

ζω(κ, ζ) are the Caputo fractional derivatives of the functions υ(κ, ζ) and ω(κ, ζ) respec-
tively, R is the linear differential operator, N represent the general nonlinear differential operator, and h1(κ, ζ),
h2(κ, ζ) are the source terms.

Theorem 3. The solutions of nonlinear system of partial differential equations with Caputo time-fractional
derivative (7)-(8) by HPZZTM are given in the form of an infinite series which converges rapidly to the exact
solution as follows

υ(κ, ζ) = lim
N→∞

N∑
n=0

υn(κ, ζ) ω(κ, ζ) = lim
N→∞

N∑
n=0

ωn(κ, ζ).
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Proof. By applying the ZZ transform to both sides of (7) and using the differentiation property, we get

{
Z [υ(κ, ζ)] = vσ

sσ
∑n−1

k=0
sσ−k

vσ−k υ
(k)(κ, 0) + vσ

sσZ [h1(κ, ζ)]− vσ

sσZ [Rω(κ, ζ) +Nu(κ, ζ)] ,
Z [ω(κ, ζ)] = vδ

sδ

∑n−1
k=0

sδ−k

vδ−kω
(k)(κ, 0) + vδ

sδ
Z [h2(κ, ζ)]− vδ

sδ
Z [Rυ(κ, ζ) +Nω(κ, ζ)] .

(9)

The inverse ZZ transform of both sides of the equations (9) with the initial conditions (8) gives{
υ(κ, ζ) = G(κ, ζ)− Z−1

(
vσ

sσZ[Rω(κ, ζ) +Nυ(κ, ζ)]
)
,

ω(κ, ζ) = H(κ, ζ)− Z−1
(
vδ

sδ
Z[Rυ(κ, ζ) +Nω(κ, ζ)]

)
,

(10)

where G(κ, ζ) and H(κ, ζ) are representing the terms arising from the non homogeneous terms and the
prescribed initial conditions. Then, the solutions represent as follows

υ(κ, ζ) =
∞∑
n=0

pnυn(κ, ζ) , ω(κ, ζ) =
∞∑
n=0

pnωn(κ, ζ), (11)

and the nonlinear terms can be decomposed as

Nυ(κ, ζ) =
∞∑
n=0

Hn, Nw(κ, ζ) =
∞∑
n=0

Dn (12)

where Hn and Dn are the He polynomials [28], and they can be calculated by

Hn =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piυi

)]
p=0

, Dn =
1

n!

∂n

∂pn

[
N

( ∞∑
i=0

piωi

)]
p=0

, i = 0, 1, 2, · · · (13)

By using (11) and (12), we can rewrite (10) as{ ∑∞
n=0 p

nυn(κ, ζ) = G(κ, ζ)− p
(
Z−1

[
vσ

sσZ [R
∑∞

n=0 p
nωn +

∑∞
n=0 p

nHn]
])∑∞

n=0 p
nωn(κ, ζ) = H(κ, ζ)− p

(
Z−1

[
vδ

sδ
Z [R

∑∞
n=0 p

nυn +
∑∞

n=0Dn]
]) . (14)

We compare the both sides of (14), then we obtain the first terms of the solution

υ0(κ, ζ) = G(κ, ζ),
υ1(κ, ζ) = −Z−1

[
vσ

sσZ [Rω0(κ, ζ) +H0]
]
,

υ2(κ, ζ) = −Z−1
[
vσ

sσZ [Rω1(κ, ζ) +H1]
]
.

...

(15)

And

ω0(κ, ζ) = H(κ, ζ),
ω1(κ, ζ) = −Z−1

[
vδ

sδ
Z [Rυ0(κ, ζ) +D0]

]
,

ω2(κ, ζ) = −Z−1
[
vδ

sδ
Z [Rυ1(κ, ζ) +D1]

]
,

...

(16)

by continuing in the same way, we find the general recursive relations{
υn+1(κ, ζ) = −Z−1

[
vσ

sσZ [Rωn(κ, ζ) +Hn]
]
, n ≥ 1

ωn+1(κ, ζ) = −Z−1
[
vδ

sδ
Z [Rυn(κ, ζ) +Dn]

]
, n ≥ 1.

. (17)

At last, the approximate solution is calculated by

υ(κ, ζ) = lim
N→∞

N∑
n=0

υn(κ, ζ) ω(κ, ζ) = lim
N→∞

N∑
n=0

wn(κ, ζ). (18)
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4. Illustrative examples and results

In this part, we apply the HPZZTM method for solving some nolinear systems of fractional partial differential
equations.

Example 1. First, we consider the nonlinear system of partial differential equations with time-fractional deriva-
tives { cDσ

ζ υ(κ, ζ) + ω(κ, ζ)υκ(κ, ζ) + υ(κ, ζ) = 1, 0 ≤ σ < 1
cDδ

ζω(κ, ζ)− υ(κ, ζ)wκ(κ, ζ)− ω(κ, ζ) = 1, 0 ≤ δ < 1
(19)

subject the initial conditions {
υ(κ, 0) = eκ

ω(κ, 0) = e−κ.
(20)

By taking the ZZ transform on both sides of (19) and using its differentiation property, we obtain{
Z [υ(κ, ζ)] = eκ + vσ

sσZ [1− ω(κ, ζ)υκ(κ, ζ)− υ(κ, ζ)] ,
Z [ω(κ, ζ)] = e−κ + vδ

sδ
Z [1 + υ(κ, ζ)ωκ(κ, ζ) + ω(κ, ζ)] .

(21)

The inverse ZZ transform on both sides of (21) gives{
υ(κ, ζ) = eκ + ζσ

Γ(σ+1) − Z−1
(
vσ

sσZ [ω(κ, ζ)υκ(κ, ζ) + υ(κ, ζ)]
)
,

ω(κ, ζ) = e−κ + ζδ

Γ(δ+1) + Z−1
(
vδ

sδ
Z [υ(κ, ζ)ωκ(κ, ζ) + ω(κ, ζ)]

)
.

(22)

The approximate solution represent as

υ(κ, ζ) =
∞∑
n=0

pnυn(κ, ζ), ω(κ, ζ) =
∞∑

m=0

pnωn(κ, ζ) (23)

Note that these nonlinear terms

ωυκ =
∞∑
n=0

pnHn , υωκ =
∞∑
n=0

pnDn (24)

are the He polynomials [28]. The first few components of these polynomials are given by

H0 = ω0υ0κ,
H1 = ω0υ1κ + ω1υ0κ,
H2 = ω0υ2κ + ω2υ0κ + ω1υ1κ,
...

and

D0 = υ0ω0κ,
D1 = υ0ω1κ + υ1ω0κ,
D2 = υ0ω2κ + υ2ω0κ + υ1ω1κ,
...

Substituting (23) and (24) in (22), we get

{ ∑∞
n=0 p

nυn(κ, ζ) = eκ + ζσ

Γ(σ+1) − p
(
Z−1

(
vσ

sσZ [
∑∞

n=0 p
nHn +

∑∞
n=0 p

nυn(κ, ζ)]
))∑∞

n=0 p
nωn(κ, ζ) = e−κ + ζδ

Γ(δ+1) + p
(
Z−1

(
vδ

sδ
Z [
∑∞

n=0 p
nDn +

∑∞
m=0 p

nωn(κ, ζ)]
)) . (25)

By comparing the both sides of (25), the recursive relations are given by
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p0 : υ0(κ, ζ) = eκ + ζσ

Γ(σ+1)

p1 : υ1(κ, ζ) = −Z−1
(
vσ

sσZ [H0 + υ0(κ, ζ)]
)

p2 : υ2(κ, ζ) = −Z−1
(
vσ

sσZ [H1 + υ1(κ, ζ)]
)

p3 : υ3(κ, ζ) = −Z−1
(
vσ

sσZ [H2 + υ2(κ, ζ)]
)

...
pn+1 : υn+1(κ, ζ) = −Z−1

(
vσ

sσZ [Hn + υn(κ, ζ)]
)
, n ≥ 0,

(26)

and
p0 : ω0(κ, ζ) = e−κ + ζδ

Γ(δ+1)

p1 : ω1(κ, ζ) = Z−1
(
vδ

sδ
Z [D0 + ω0(κ, ζ)]

)
p2 : ω2(κ, ζ) = Z−1

(
vδ

sδ
Z [D1 + ω1(κ, ζ)]

)
p3 : ω3(κ, ζ) = Z−1

(
vδ

sδ
Z [D2 + ω2(κ, ζ)]

)
...

pn+1 : ωn+1(κ, ζ) = Z−1
(
vδ

sδ
Z [Dn + ωn(κ, ζ)]

)
, n ≥ 0.

(27)

The first few components of un(κ, ζ) and wn(κ, ζ) are
υ1(κ, ζ) = − 1 + eκ

Γ(σ + 1)
ζσ − eκ

Γ(σ + δ + 1)
ζσ+δ − ζ2σ

Γ(2σ + 1)

w1(κ, ζ) =
−1 + e−κ

Γ(δ + 1)
ζδ − e−κ

Γ(σ + δ + 1)
ζσ+δ +

ζ2δ

Γ(2δ + 1)

,

and
u2(κ, ζ) = 2+eκ

Γ(2σ+1)ζ
2σ + eκ−1

Γ(σ+δ+1)ζ
σ+δ

+
(
1 + 2eκ + Γ(σ+δ+1)eκ

Γ(σ+1)Γ(δ+1)

)
ζ2σ+δ

Γ(2σ+δ+1)

+ Γ(σ+2δ+1)eκ

Γ(δ+1)Γ(σ+δ+1)Γ(2σ+2δ+1)ζ
2σ+2δ

− eκ

Γ(σ+2δ+1)ζ
σ+2δ + ζ3σ

Γ(3σ+1)

w2(κ, ζ) = −2+e−κ

Γ(2δ+1) ζ
2δ + 1+e−κ

Γ(σ+δ+1)ζ
σ+δ

+
(
2− e−κ + Γ(σ+δ+1)e−κ

Γ(σ+1)Γ(δ+1)

)
ζσ+2δ

Γ(σ+2δ+1)

+ Γ(2σ+δ+1)e−κ

Γ(σ+1)Γ(σ+δ+1)Γ(2σ+2δ+1)ζ
2σ+2δ

+ e−κ

Γ(2σ+δ+1)ζ
2σ+δ + ζ3δ

Γ(3δ+1) .

By continuing in the same way, we find the other components.
At last, the series solution υ(κ, ζ) and ω(κ, ζ) of (19) are given by

υ(κ, ζ) = eκ − eκ

Γ(σ + 1)
ζσ +

1 + eκ

Γ(2σ + 1)
ζ2σ

− 1

Γ(σ + δ + 1)
ζσ+δ +

(
1 + 2eκ +

Γ(σ + δ + 1)eκ

Γ(σ + 1)Γ(δ + 1)

)
ζ2σ+δ

Γ(2σ + δ + 1)

+
Γ(σ + 2δ + 1)eκ

Γ(δ + 1)Γ(σ + δ + 1)Γ(2σ + 2δ + 1)
ζ2σ+2δ

− eκ

Γ(σ + 2δ + 1)
ζσ+2δ +

ζ3σ

Γ(3σ + 1)
+ ...
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ω(κ, ζ) = e−κ +
e−κ

Γ(δ + 1)
ζδ +

−1 + e−κ

Γ(2δ + 1)
ζ2δ +

e−κ

Γ(σ + δ + 1)
ζσ+δ

+

(
2− e−κ +

Γ(σ + δ + 1)e−κ

Γ(σ + 1)Γ(δ + 1)

)
ζσ+2δ

Γ(σ + 2δ + 1)

+
Γ(2σ + δ + 1)e−κ

Γ(σ + 1)Γ(σ + δ + 1)Γ(2σ + 2δ + 1)
ζ2σ+2δ

+
e−κ

Γ(2σ + δ + 1)
ζ2σ+δ +

ζ3δ

Γ(3δ + 1)
+ ...

When σ = 1 and δ = 1, the series solutions of (19) are

 υ(κ, ζ) = u0(κ, ζ) + u1(κ, ζ) + u2(κ, ζ) + ... = eκ
(
1− ζ + ζ2

2! −
ζ3

3! + ...
)
= eκ−ζ

ω(κ, ζ) = ω0(κ, ζ) + ω1(κ, ζ) + ω2(κ, ζ) + ... = e−κ
(
1 + ζ + ζ2

2! +
ζ3

3! + ...
)
= e−κ+ζ ,

they represent the solutions exact solution of (19)-(20) given in [29].

Example 2. Now, we consider the following nonlinear system of partial differential equations with time-fractional
derivatives 

cDσ
ζ υ = −υ − hκwy + hyωκ, 0 ≤ σ < 1

cDδ
ζh = h, 0 ≤ δ < 1

cDµ
ζ ω = ω − υκwκ − uyωy, 0 ≤ µ < 1

(28)

subject the initial conditions

υ(κ, y, 0) = κ + y ; h(κ, y, 0) = 1 + κ − y; ω(κ, y, 0) = −κ + y. (29)

By applying the ZZ transform with its differentiation property on (28) and using the initial conditions (29), we
get 

Z [υ] = κ + y + vσ

sσZ [−υ − hκwy + hyωκ] ,

Z [h] = 1 + κ − y + vδ

sδ
Z [h] ,

Z [ω] = −κ + y + vµ

sµZ [ω − υκωκ − υyωy] .

(30)

The inverse ZZ transform on both sides of (30) gives
υ(κ, y, ζ) = κ + y + Z−1

(
vσ

sσZ [−υ − hκωy + hyωκ]
)
,

h(κ, y, ζ) = 1 + κ − y + Z−1
(
vδ

sδ
Z [h]

)
,

ω(κ, y, ζ) = −κ + y + Z−1
(
vµ

sµZ [ω − υκωκ − υyωy]
)
.

(31)

The solution forms an infinite series represent as

υ(κ, y, ζ) =
∞∑
n=0

pnυn(κ, y, ζ), h(κ, y, ζ) =
∞∑
n=0

pnhn(κ, y, ζ), ω(κ, y, ζ) =
∞∑
n=0

pnωn(κ, y, ζ). (32)

The nonlinear terms

hκωy =
∞∑
n=0

pnAn ; hyωκ =
∞∑
n=0

pnBn ; υκωκ =
∞∑
n=0

pnCn ; υyωy =
∞∑
n=0

pnDn (33)

are the He polynomials. Substituting (32) and (33) in (31), we get
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
∑∞

n=0 p
nυn(κ, y, ζ) = κ + y + pZ−1

(
vσ

sσZ [−
∑∞

n=0 p
nυn −

∑∞
n=0 p

nAn +
∑∞

n=0 p
nBn]

)
,∑∞

n=0 p
nhn(κ, y, ζ) = 1 + κ − y + pZ−1

(
vδ

sδ
Z [
∑∞

n=0 p
nhn]

)
,∑∞

n=0 p
nωn(κ, y, ζ) = −κ + y + pZ−1

(
vµ

sµZ [
∑∞

n=0 p
nωn −

∑∞
n=0 p

nCn −
∑∞

n=0 p
nDn]

)
.

(34)

We compare the both sides of (34), then we get the recursive relations

υ0(κ, y, ζ) = κ + y

υ1(κ, y, ζ) = Z−1
(
vσ

sσZ [−υ0 −A0 +B0]
)

υ2(κ, y, ζ) = Z−1
(
vσ

sσZ [−υ1 −A1 +B1]
)

υ3(κ, y, ζ) = Z−1
(
vσ

sσZ [−υ2 −A2 +B2]
)

...
υn+1(κ, y, ζ) = Z−1

(
vσ

sσZ [−υn −An +Bn]
)
, n ≥ 0,

(35)

and

h0(κ, y, ζ) = 1 + κ − y

h1(κ, y, ζ) = Z−1
(
vδ

sδ
Z [h0]

)
h2(κ, y, ζ) = Z−1

(
vδ

sδ
Z [h1]

)
h3(κ, y, ζ) = Z−1

(
vδ

sδ
Z [h2]

)
...

hn+1(κ, y, ζ) = Z−1
(
vδ

sδ
Z [hn]

)
, n ≥ 0.

(36)

Finally

ω0(κ, y, ζ) = −κ + y

ω1(κ, y, ζ) = Z−1
(
vµ

sµZ [ω0 − C0 −D0]
)

ω2(κ, y, ζ) = Z−1
(
vµ

sµZ [ω1 − C1 −D1]
)

ω3(κ, y, ζ) = Z−1
(
vµ

sµZ [ω2 − C2 −D2]
)

...
ωn+1(κ, y, ζ) = Z−1

(
vµ

sµZ [ωn − Cn −Dn]
)
, n ≥ 0.

(37)

The first few components of υn(κ, y, ζ), hn(κ, y, ζ) and ωn(κ, y, ζ) are

υ1(κ, y, ζ) = Z−1
(
vσ

sσZ [−υ0 − h0κω0y + h0yω0x]
)

= −(κ + y) ζσ

Γ(σ+1)

h1(κ, y, ζ) = Z−1
(
vδ

sδ
Z [h0]

)
= (1 + κ − y) ζδ

Γ(δ+1)

ω1(κ, y, ζ) = Z−1
(
vµ

sµZ [ω0 − υ0κω0κ − υ0yω0y]
)

= (−κ + y) ζµ

Γ(µ+1)

And the second component of the solutions are given by the formulas
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

υ2(κ, y, ζ) = Z−1
(
vσ

sσZ [−υ1 − h0κω1y − h1κω0y + h0yω1κ + h1yω0κ]
)

= (κ + y) ζ2σ

Γ(2σ+1)

h2(κ, y, ζ) = Z−1
(
vδ

sδ
Z [h1]

)
= (1 + κ − y) ζ2δ

Γ(2δ+1)

ω2(κ, y, ζ) = Z−1
(
vµ

sµZ [w1 − υ0κω1κ − υ1κω0κ − υ0yω1y − υ1yω0y]
)

= (−κ + y) ζ2µ

Γ(2µ+1) .

By contination the calculations, we find

υ3(κ, y, ζ) = Z−1
(
vσ

sσZ [−υ2 −A2 +B2]
)

= −(κ + y) ζ2σ

Γ(2σ+1)
...
υn(κ, y, ζ) = (−1)n(κ + y) ζnσ

Γ(nσ+1) ,

et

h3(κ, y, ζ) = Z−1
(
vδ

sδ
Z [h2]

)
= (1 + κ − y) ζ3δ

Γ(3δ+1)
...
hn(κ, y, ζ) = (1 + κ − y) ζnδ

Γ(nδ+1) .

et
ω3(κ, y, ζ) = Z−1

(
vµ

sµZ [ω2 − C2 −D2]
)

= (−κ + y) ζ3µ

Γ(3µ+1)
...
ωn(κ, y, ζ) = (−κ + y) ζnµ

Γ(nµ+1) .

(38)

Finally, the series solutions of (28) are given by

υ(κ, y, ζ) =
∑∞

n=0 υn(κ, y, ζ)
= (κ + y)

(
1− ζσ

Γ(σ+1) +
ζ2σ

Γ(2σ+1) −
ζ3σ

Γ(3σ+1) + ...± ζnσ

Γ(nσ+1) ± ...
)

= (κ + y)
∑∞

n=0
(−ζσ)n

Γ(nσ+1)

= (κ + y)Eσ(−ζσ),

(39)

h(κ, y, ζ) =
∑∞

n=0 hn(κ, y, ζ)
= (1 + κ − y)

(
1 + ζδ

Γ(δ+1) +
ζ2δ

Γ(2δ+1) +
ζ3δ

Γ(3δ+1) + ...+ ζnδ

Γ(nδ+1) + ...
)

= (1 + κ − y)
∑∞

n=0
(ζδ)n

Γ(nδ+1)

= (1 + κ − y)Eδ(ζ
δ),

(40)

ω(κ, y, ζ) =
∑∞

n=0wn(κ, y, ζ)
= (−κ + y)

(
1 + ζµ

Γ(µ+1) +
(ζµ)2

Γ(2µ+1) +
(ζµ)3

Γ(3µ+1) + ...+ (ζµ)n

Γ(nµ+1) + ...
)

= (−κ + y)
∑∞

n=0
(ζµ)n

Γ(nµ+1)

= (−κ + y)Eµ(ζ
µ).

(41)

When σ = 1, δ = 1 and µ = 1, we get
υ(κ, y, ζ) = (κ + y)Eσ(−ζ) = (κ + y)e−ζ .
h(κ, y, ζ) = (1 + κ − y)Eδ(ζ) = (1 + κ − y)eζ .
ω(κ, y, ζ) = (−κ + y)Eµ(ζ) = (−κ + y)eζ ,

(42)

which are the solutions of our nonlinear system (28)-(29) presented in [29]).
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5. Conclusions

In this work, we applied a precise analytical method called the homotopy perturbation ZZ transform method
(HPZZTM) to solve the nonlinear system of fractional partial differential equations. This method is a combination
of two methods: the homotopy perturbation method and the ZZ transform method. In our main study, we extend
the study of the work presented in [23], which deals with the solution of some nonlinear fractional differential
equations. Where we have extending the HPZZTM method to obtain analytical solutions of nonlinear systems
of fractional partial differential equations. This algorithm is easy to apply and effective in reaching the desired
results, as illustrated by the examples of coupled and triple nonlinear systems that we have solved. These results
lead us to say that this algorithm is powerful and effective to apply to this type of systems, and thus can be applied
to the others nonlinear system of fractional partial differential equations without or with variable coefficients of
engineering or medical sciences as: Rotavirus epidemic system and Susceptible-Infected-Recovered (SIR) and
other nonlinear problems [30].
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