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Abstract 

Aim: A brief overview of the affine processes, namely the Orntein-Uhlenbeck (OU) 

process, the Vasicek process, the Cox-Ingersoll-Ross (CIR) process and the Hull-White 

process, is presented through their important features. The main purpose of this paper 

is to discuss six very recent actuarial applications of these affine processes that focus 

on different problems with different stochastic models and different mathematical 

methods. 

Conclusion and Contributions: On one hand, these applications show how to 

incorporate the corresponding affine processes into the modelling framework. On the 

one hand they give an insight about the advantages of using these affine processes 

through mathematical calculations/data analysis. 

Keywords: Ornstein-Uhlenbeck model, Vasicek model, Cox-Ingersoll-Ross model, Hull-

White model. 

Jel Codes: G22, G13, G12 

1. Introduction 

       Practitioners and researchers have shown many interest in adapting the affine  

processes such as Ornstein-Uhlenbeck (Uhlenbeck and Ornstein, 1930), Vasicek 

(Vasicek, 1977), Cox-Ingersoll-Ross (Cox, Ingersoll and Ross, 1985) and Hull-White 

processes (Hull and White, 1990) into financial and actuarial applications. These 

processes are simple and easy to tackle with as a result of the affine structure they 

have. In particular, it is known that all these processes provided closed-form solutions 

for the zero-coupon price as well as for the European vanilla options in case the 

underlying asset is modelled by these processes. Such features of these processes 

made them very popular among the researchers and therefore they are ubiquitously 

used in the field of actuarial sciences. This paper reviews some very recent publications 

that deal with an actuarial research problem, associated with these affine processes.  

Specifically, they will be used to model the stochastic interest rates, stochastic 

volatility, mortality intensity and the mean growth of an asset in an investment strategy.  

           Section 2-5 gives a brief overview about the affine processes driven by the 

Ornstein-Uhlenbeck, Vasicek, Cox-Ingersoll-Ross and Hull-White models. Section 6 

presents the recent studies incorporating these affine processes to an actuarial 

research problem. Section 7 concludes the paper. 

2. Ornstein-Uhlenbeck Process 

The Ornstein-Uhlenbeck (OU) process is one of the most popular    

Gaussian-Markov  stochastic processes, that is also known for allowing mean-reversion. 

By mean-reversion, it is meant that the process tends to revert to its mean in the long-

run. This mean-reversion property is a result of the following stochastic differential 

equation (SDE): 

 

𝑑𝑆(𝑡) = −𝜃𝑆(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡),                   (1) 
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where 𝑆(𝑡) denotes the value of an OU process at time 𝑡, 𝜃 > 0 is the rate of mean-

reversion,  𝜎 > 0 is the volatility and  𝑊(𝑡) is a standard Brownian motion (Uhlenbeck 

and Ornstein, 1930). Here, the model parameters 𝜃 and 𝜎 are assumed to be constant. 

 

By this stochastic differential equation, one can easily observe that: 

1. The unique solution for 𝑆(𝑡)  is given by 

𝑆(𝑡)  = 𝑆(0) 𝑒−𝜃𝑡 + 𝜎 ∫ 𝑒−𝜃(𝑡−𝑢)𝑑𝑊(𝑢).
𝑡

0

 

This representation explains the Gaussian property of the OU process. Remark 

that the OU model allows negative values, since the probability of having 

negative values is positive for a Gaussian random variable (for a more detailed 

discussion see, e.g., Lamberton and Lapeyre, 2011). 

 

2. The conditional mean 𝔼[ 𝑆(𝑡) | 𝑆(𝑠)  = 𝑥] for 𝑠 < 𝑡 reads: 

 

𝔼[ 𝑆(𝑡) | 𝑆(𝑠)  = 𝑥] = 𝑥𝑒−𝜃(𝑡−𝑠). 

 

This conditional mean function addresses a downward (upward) drift in the 

process when 𝑥 > 0 (𝑥 < 0) since as 𝑡 → ∞, the conditional mean function goes 

to zero. That is, it is likely that the extreme movements are followed by the 

movements that cause the process to move around the average level, pointing 

out a tendency to return to zero (see, e.g., Beekman and Shiu, 1988).  

 

It is worth noting that in the seminal paper of Uhlenbeck and Ornstein (1930),  

this process was indeed used to model the velocity of a Brownian particle. Although 

the model itself was originally used for a physics problem, it with some modifications 

has found many applications in the field of Actuarial sciences. In this paper, we aim to 

give an insight into the actuarial use of a few extensions of OU model. For this purpose, 

we will first present 3 popular models associated with OU processes, i.e. Vasicek, Cox-

Ingersoll-Ross and Hull-White Model, and then review some papers that deal with the 

actuarial application of the corresponding models. It is clear that it is not possible to 

discuss every paper in these contexts, and even within the papers we consider, we 

cannot give the whole mathematical arguments. Instead, we present the models and 

their actuarial applications through a brief description of the methodology and/or 

numerical experiments, but intend to give a clear motivation behind them. 

 

 We start with the Vasicek model (Vasicek, 1977) that is constructed by adding a  

drift term into the OU-SDE given in (1).  

 

3. Vasicek Model 

Vasicek model is originally proposed to describe the term structure of interest  

rates by the following SDE (Vasicek, 1977): 

 

𝑑𝑟(𝑡)  = 𝜃(𝜅 − 𝑟(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡),                   (2) 

 

where 𝑟(𝑡) represents the instantaneous interest rate with 𝑟(0) > 0 , 𝜃 > 0 is the rate of 

mean-reversion,  𝜎 > 0 is the volatility term, 𝜅 > 0 is the long-term mean level and  
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𝑊(𝑡) is a standard Brownian motion.  Here, 𝜃, 𝜎 and 𝜅 are all constant. Note that, as 

mentioned earlier, when 𝜅 = 0, the model is reduced to the OU model in (1). In other 

words, OU model in (1) can be considered a special case of the Vasicek model. 

 

Before continuing with another OU-type model, we find it useful to make a   

few remarks here: The first remark is that there is a unique solution for the interest rate 

process 𝑟(𝑡), which is one of the reasons that makes the model very popular among 

the researchers and practitioners. More precisely (Vasicek, 1977),  

 

𝑟(𝑡) = 𝜅(1 − 𝑒−𝜃𝑡) + 𝑟(0)𝑒−𝜃𝑡 + 𝜎 ∫ 𝑒−𝜃(𝑡−𝑢)𝑑𝑊(𝑢).    (3)
𝑡

0

 

 

The second remark is about a natural consequence of the closed-form solution  

(3). Namely, the interest rate process 𝑟(𝑡) is normally distributed, and therefore, it can 

reach negative values, which have been considered a drawback of the Vasicek 

model before 2008 crisis (Grasselli and Lipton, 2019).  However, as shown empirically in 

the paper of Jackson (2015), negative interest rates have also been observed. Third 

remark is dedicated to the mean-reversion that can be represented by the 

conditional mean function 𝔼[ 𝑟(𝑡)| 𝑟(𝑠) = 𝑥] = 𝑥𝑒−𝜃(𝑡−𝑠) + 𝜅(1 − 𝑒−𝜃(𝑡−𝑠))  (Beekman and 

Shiu, 1988). Note that when 𝑡 → ∞, the conditional mean 𝔼[ 𝑟(𝑡)| 𝑟(𝑠) = 𝑥]  tends to 𝜅.  

This implies that, when 𝑟 > 𝜅  (𝑟 < 𝜅), a negative (positive) drift is observed by means of 

the parameter 𝜃, pushing the process into the long-term mean level 𝜅. Therefore, the 

Vasicek model is said to have the mean-reverting feature. As a fourth remark, the 

attractiveness of the Vasicek model also lies in the fact that it provides an affine 

representation of the zero-coupon bond prices. By using this affine representation, one 

can easily calculate the price of an European option written on a pure discount bond 

(see, Jamshidian, 1985; Zeytun and Gupta, 2007). Finally, we conclude our remarks by 

pointing out that the Vasicek model fails to fit the term structure in the market, which 

is viewed as one of the major drawbacks  of the model. Since it is not the scope of this 

paper to overview all the advantages and limitations of the stochastic models of our 

interest, we refer to Brigo and Mercurio (2007) for a more detailed discussion. 

4. Cox-Ingersoll-Ross (CIR) model 

As mentioned above, the possibility of taking a negative value for interest rates 

that follow a Vasicek model is nonzero. To overcome this drawback (after 2008 crisis it 

is observed that it is not a drawback at all), Cox, Ingersoll and Ross (1985) introduce 

an SDE for modelling short-rate processes 𝑟(𝑡): 

 

𝑑𝑟(𝑡) = 𝜃(𝜅 − 𝑟(𝑡))𝑑𝑡 + 𝜎√𝑟(𝑡)𝑑𝑊(𝑡),                   (4) 

 

extending the Vasicek model into a mean-reverting model with a standard deviation 

term 𝜎√𝑟(𝑡).  Here, 𝜃 > 0 is the rate of mean-reversion,  𝜎 > 0 is the volatility and 𝜅 > 0 

is the long-term mean level with all being constant, and 𝑊(𝑡) is a standard Brownian 

motion. Since the drift term 𝜃(𝜅 − 𝑟(𝑡)) of the CIR process is the same as the one 

defined in the Vasicek model, one can conclude that the mean-reverting property is 

preserved. Importantly, notice that 𝑌(𝑡) = 𝑟2(𝑡) is an OU process of the form (1), 

indicating the relation between these two models. 
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Note that nonnegativity of this interest rate process is a consequence of the 

Feller condition. As shown in Feller (1951), if the condition  2𝜃𝜅 ≥ 𝜎2 is satisfied, the CIR 

process can never hit zero. Otherwise, the interest rate 𝑟(𝑡) can get a zero value. But, 

in Cox, Ingersoll and Ross (1985), it is noted that the interest rate, which is initially 

nonnegative, can never subsequently have a negative value.  That is, the CIR process 

always takes nonnegative values, unlike the Vasicek process. 

 

It is also worth mentioning that, as a result of the standard deviation term 𝜎√𝑟(𝑡),  

the CIR process is not normally distributed anymore, but instead has a noncentral chi-

square distribution.  Although the normality arguments of the Vasicek model are not 

valid for the CIR process, the zero-coupon bond prices still have an affine 

representation under the CIR model.  This affine representation, importantly, yields a 

closed-form solution for the price of an European option written on a zero coupon 

bond price (Cox, Ingersoll and Ross, 1985). 

 

All these properties mentioned above make the CIR model very attractive for the  

researchers and practitioners. However, it does not remedy one drawback of the 

Vasicek model: the CIR model may be inadequate to match the term structure of the 

interest rates. For this issue, Hull and White (1990) propose an extension of the Vasicek 

and CIR models by adapting the time-dependent parameters into the modeling 

framework. In this paper, we give our attention into the extended-Vasicek model,  

which is also referred as the Hull-White model. 

 

5. Hull-White model (Extended Vasicek Model) 

In order to lead a model that carries the nice properties of the Vasicek model as 

well as provides a good fit to the term structure of interest rates, Hull and White (1990) 

introduce the following SDE with time-dependent parameters: 

 

𝑑𝑟(𝑡) = (𝑎(𝑡) + 𝜃(𝑡)(𝜅 − 𝑟(𝑡)))𝑑𝑡 + 𝜎(𝑡)𝑑𝑊(𝑡),       (5) 

 

where 𝑎(𝑡), 𝜃(𝑡)  and  𝜎(𝑡) are all deterministic functions of time, and  𝑊(𝑡) is a 

standard Brownian motion. Here, the deterministic function 𝑎(𝑡) is included in the 

model so as to match the term structure of the interest rates, while the time-dependent 

volatility 𝜎(𝑡) is incorporated into the model to match the current and future volatilities 

of the interest rates.   

Like the Vasicek model, the Hull-White model is mean-reverting and very 

tractable in the sense that there is a closed-form pricing formula for zero-coupon 

bonds and European options written on them. This model also shares with the Vasicek 

model the possibility of negative interest rates, which has been regarded as a 

disadvantage of the Hull-White model (see, e.g., Hull and White, 1990; Hull and White, 

1994; Hull, 1996, as the very first studies on this model and its properties).  

There is one more issue we want to remark on: As already mentioned above, in 

the original paper of Hull and White (1990), all parameters are allowed to be time 

dependent. Hull and White (1996) show that this time-dependency in the parameters 

𝜃(𝑡)  and  𝜎(𝑡) can yield a nonstationary volatility term structure, which is undesirable 

when pricing instruments whose value depends on the term structure of future 
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volatility. They illustrate that a nonstationary term structure of volatility can lead to 

mispricing of such instruments, and the only case to observe a stationary volatility term 

structure is when 𝜃(𝑡)  and  𝜎(𝑡) are constants. Note that by nonstationarity, it is meant 

that the volatility structure today may not be preserved in the future, as already 

addressed in the previous work of authors (Hull and White, 1994). This feature, therefore, 

motivated to use the model also with constant parameters 𝜃(𝑡)  and  𝜎(𝑡). 

The next section presents some recent application of the affine processes 

previously mentioned within the field of the actuarial sciences. It is worth noting that 

although we did not derive anything new in this paper nor carry out a data analysis, 

we find it useful to discuss the recent studies, in order to give an insight to how popular 

these processes are still in this area. 

6. Some Recent Actuarial Applications 

6.1. Pricing Survival Forward and Survival Swap 

           Under the assumption that there is no basis and counterparty default risk, 

Zeddouk and Devolder (2019) examine the valuation of two longevity-linked 

instruments, namely Survival forward (S-forward) and Survival swap (S-swap), by 

proposing a Cost of Capital method in the line of Solvency II.  

For pricing these two instruments, they model the longevity risk through the  

mortality intensity, which is interpreted as the force of mortality for an individual aged 

𝑥 + 𝑡 at time 𝑡. In this paper, longevity has stochastic behaviour since the dynamics of 

the mortality intensity is considered to be driven by two continuous-time stochastic 

models, one of which is the Hull-White model. Denoting 𝜇𝑥(𝑡) as the mortality intensity, 

the corresponding Hull-White dynamics are defined as: 

 

𝑑𝜇𝑥(𝑡) = 𝑏(𝜉(𝑡) − 𝜇𝑥(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡), 

 

where 𝜉(𝑡) =
𝐴𝑒𝐵𝑡

𝑏
 , 𝐴, 𝐵, 𝑏 and 𝜎 are all positive constants, and  𝑊(𝑡) is a standard 

Brownian motion. One advantage of using the Hull-White model in the mortality 

intensity is that it gives an explicit representation of the expectation of survival index, 

resulting from the affine structure of this model. Here, the survival index at time 𝑡 is 

defined as 𝑒− ∫ 𝜇𝑥(𝑢)𝑑𝑢
𝑇

𝑡  for an individual initially aged 𝑥, alive at time 𝑡 and surviving 𝑇 −

𝑡 years more. 

             Since the price of an S-swap is equal to the sum of S-forwards, the authors give 

their attention first to pricing an S-forward contract. To be consistent with Solvency II, 

the price of an S-forward is expressed as the sum of a best estimate and a risk-margin. 

The best estimate is determined by discounting the expectation of the S-forward 

payoff. On the other hand, risk margin  is specified by using a Cost of Capital approach 

that accounts for the future Solvency Capital Requirements. This Solvency Capital 

Requirement is defined as the capital that an insurer should set aside to be able to 

cover unexpected losses with a 99.5% probability. Since these future Solvency Capital 

Requirements are random variables, the computation of the risk margin is performed 

by replacing Solvency Capital Requirements with their estimates.  This estimation is 

done by the VaR (Value at Risk) method. Then, by following some mathematical 

technicalities such as the calculation of 𝑉𝑎𝑅99.5%(𝑒− ∫ 𝜇𝑥(𝑢)𝑑𝑢
𝑖+1

𝑖 ) for time 𝑖, a pricing 
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formula is derived for S-forwards. This price expression relies on the expectation of 

mortality intensity process as well as on the coefficients that appears in the explicit 

expression of the expectation of survival index. 

             After presenting a price formula for S-forwards, the paper continues with the 

valuation of S-swaps. They develop a price expression for S-swaps by summing up the 

price of S-forwards exchanged at 𝑡1, 𝑡2, … , 𝑡𝑛. This pricing problem is easy to tackle with 

when using S-forward price expression.  

Another core of the paper is to discuss the consistency of the Cost of Capital 

approach with three pricing methods: The risk-neutral approach, The Wang transform 

and Sharpe ratio. In order to observe the consistency of the Cost of Capital approach 

with these three methods, the computations are centered around the market price of 

longevity for the risk-neutral approach, Sharpe parameter for the Sharpe ratio and 

Wang parameter for the Wang transform. These parameter values are the ones that 

provide the same price as the Cost of Capital approach.  The reason for focusing on 

these three parameters is that their stability for different ages and maturities is a sign of 

how much the corresponding approach is consistent with the Cost of Capital method. 

            To this end, based on a Belgian population data, numerical experiments are 

first carried out to obtain prices for S-forwards and S-swaps under the Cost of Capital 

approach.  It is assumed that there are 10,000 initial policyholders for each cohort 

aged 65, 70, or 75 years old in 2015.  The models of mortality intensity are calibrated 

on a projected data from the IABE unisex projected generational mortality table, by 

using Least Square Estimation method. After the calibration procedure, prices 

obtained from the Cost of Capital approach are reported for  age groups 65, 70 and 

75 and maturities 𝑇 = 5  and 10. These results are followed by the calculation of the 

market price of longevity, Sharpe parameter and Wang parameter. It is concluded 

that the Cost of Capital method is not so consistent with the three methods mentioned 

above. The method having the worst performance in terms of consistency is revealed 

to be the risk-neutral method.   

 

6.2. Optimal Proportional Reinsurance and Investment 

Li et al. (2020) focus on an optimal proportional reinsurance and investment 

strategy for the insurer through the maximization of the expected utility of terminal 

wealth, when the surplus process follows a compound Poisson model.  

The investment strategy in the paper decides how the insurer can invest the surplus 

in a portfolio of a risky asset and a riskless asset. The dynamics of the risky asset 𝑆(𝑡)  is 

driven by a  continuous-time stochastic model that accounts for the dividend income 

and the transaction cost: 

 

𝑑𝑆(𝑡) = (𝑎(𝑡) + 𝑐 − 𝜃)𝑆(𝑡)𝑑𝑡 + 𝜎𝑆(𝑡)𝑑𝑊(2)(𝑡), 

 

where 𝑐 > 0 is the dividend income,  𝜃 > 0 is the transaction cost, 𝜎 > 0 is the volatility 

term,  and 𝑊(2)(𝑡) is a standard Brownian motion. Herewith, 𝑎(𝑡), the mean growth, is 

assumed to be a Vasicek process of the form: 

 

𝑑𝑎(𝑡) = 𝛼(𝑎̅ − 𝑎(𝑡))𝑑𝑡 + 𝛽𝑑𝑊(3)(𝑡),      𝑎(0) = 𝑎0, 



44 
 

 

where 𝛼, 𝑎̅ and 𝛽 are positive constants, and  𝑊(3)(𝑡)  is a standard Brownian motion 

correlated with 𝑊(2)(𝑡). Here, 𝑎̅ is the mean growth of the risky asset. The reason behind 

the choice of such a model is to determine a realistic risky asset process both in bull 

and bear market. When 𝑎(𝑡) is much larger than 𝑎̅, the risky asset can be viewed as in 

a bull market. If 𝑎(𝑡) is much less than 𝑎̅, then it is considered to be in a bear market. 

The proportional reinsurance, on the other hand, is purchased by the insurer in 

order to hedge against the insurance risks. In the paper, it is described by the retention 

level and the premium payment of the reinsurance, which is computed by the 

variance principle depending on the safety loading of the reinsurer. Along with the 

reinsurance premium payments, the net profit condition is presented, which is required 

to determine the optimal proportional reinsurance strategy.  

The main aim of the paper is to find an optimal proportional reinsurance and 

investment strategy by maximizing the expected utility of terminal wealth 𝑈(𝑇) with 

𝑈(𝑥) = 𝜆1 −
𝜂

𝑛
𝑒−𝑛𝑥 . Here, 𝜆1 > 0, 𝜂 > 0  and 𝑛 > 0 are all constants with  𝑛 denoting the 

constant absolute risk aversion (CARA) parameter. The corresponding optimization 

problem is solved by dynamic programming techniques, which in turn, provide 

analytical expressions for the optimal strategy.  

       It is noted that an increase in the dividend income yields an investment with a  

higher number of shares in the risky asset, whereas an increase in the transaction cost 

and in the value of riskless asset cause a decrease in the risky asset investment. Without 

an attempt to use financial data (they use the parameters reported in another study), 

they also illustrate two numerical experiments to study the impact of risk aversion and 

safety loadings on the reinsurance proportion. They conclude that a higher level of 

risk-aversion addresses a less optimal proportion reinsurance. On the contrary, greater 

safety loadings are followed by a greater retention level. 

6.3. Performance of Affine Processes for the Force of Mortality  

 Zeddouk and Devolder (2020) study 5 affine processes in order to model the  

force of mortality. These are: Ornstein-Uhlenbeck process, Vasicek process, Feller 

process, Hull-White process and extended CIR process. Denoting  𝜇𝑥(𝑡) by the mortality 

intensity of an individual aged 𝑥 + 𝑡 at time 𝑡, the corresponding dynamics are given 

as: 

1. (Orntsein-Uhlenbeck): 

𝑑𝜇𝑥(𝑡) = 𝑎𝜇𝑥(𝑡)𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

 

2. (Feller): 

𝑑𝜇𝑥(𝑡) = 𝑎𝜇𝑥(𝑡)𝑑𝑡 + 𝜎√𝜇𝑥(𝑡)𝑑𝑊(𝑡) 

3. (Vasicek): 

𝑑𝜇𝑥(𝑡) = 𝑏 (
𝑎

𝑏
− 𝜇𝑥(𝑡)) 𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

4. (Hull-White): 

𝑑𝜇𝑥(𝑡) = (𝜉(𝑡) − 𝑏𝜇𝑥(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

5. (Extended-CIR): 

𝑑𝜇𝑥(𝑡) = (𝜉(𝑡) − 𝑏𝜇𝑥(𝑡))𝑑𝑡 + 𝜎√𝜇𝑥(𝑡)𝑑𝑊(𝑡) 
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In this paper, 𝜉(𝑡) is considered as the Gombertz function 𝜉(𝑡) = 𝐴𝑒𝐵𝑡  with 𝐴   and 𝐵 

being positive constants. Since our intention in this review  is to discuss some actuarial 

applications of the models  in 1-4, we  give the dynamics of the Extended-CIR process, 

but not give the results on it (all the numerical results reported for this model are in the 

same line with the ones of Hull-White model). 

           The advantage of choosing these affine processes is that one can obtain the 

closed-form expression for the survival probability. 

The main aim of this paper is to show how appropriate these models in order to  

describe the dynamics of the force of mortality. For this purpose various statistical tests 

are carried out based on a historical data for old generations of Belgian population 

and a projected mortality table for the younger individuals. They start with the 

calibration of the models on the Belgian historical and projected mortality data. It is 

assumed that there are four cohorts of Belgian individuals, namely, 1900, 1915, 1965 

and 1970 generations. For the 1900 and 1915 generations, a historical data from 

Mortality database is used whereas for the 1965 and 1970 generations a projected 

data from the IABE projected generational mortality table is considered. The model 

parameters are calibrated on those datas by the Least Square Estimation method. The 

resulting mean square errors address a poor fit for young individuals under the OU and 

Feller models, but very poor for all four generations under the Vasicek model. The 

results for Hull-White model are, instead, very promising compared with these three 

models. This calibration procedure is then followed by a robustness test to examine the 

quality of calibrations and by a backtesting to predict the mortality. All these results 

implies that Hull-White model  is more successful when modeling mortality, compared 

with OU, Feller and Vasicek model.  

The statistical tests covered in Zeddouk and Devolder (2020) are not limited to 

the ones mentioned in this review, but since the details are beyond the scope of this 

review, they are skipped.  

6.4. Pricing Vulnerable Options 

            Vulnerable option is a financial instrument that takes into account the default 

risk. Here, a default event is interpreted as follows: A default event occurs if the market 

value of the assets of the option writer falls below a default threshold level. In this case, 

only a proportion of the nominal claim is paid. All nominal claim is paid when the 

market value of the assets of the option writer is higher than or equal to this threshold 

level. 

Yoon and Kim (2015) consider the valuation of vulnerable options under    

framework with constant as well as stochastic interest rates. In this paper, the 

stochastic interest rates are assumed to follow the Hull-White model. Since Hull-White 

model is one of the models that we focus on this review, the case of stochastic interest 

rates will be introduced.  

Under the stochastic interest rate framework, the value of the underlying asset,  

𝑆(𝑡), and the market value of the assets, 𝑉(𝑡), are given by: 

𝑑𝑆(𝑡) = 𝑟(𝑡)𝑆(𝑡)𝑑𝑡 + 𝜎𝑠𝑆(𝑡)𝑑𝑊(𝑡)𝑠∗
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𝑑𝑉(𝑡) = 𝑟(𝑡)𝑉(𝑡)𝑑𝑡 + 𝜎𝑣𝑉(𝑡)𝑑𝑊(𝑡)𝑣∗
 

𝑑𝑟(𝑡) = (𝑏(𝑡) − 𝑎𝑟(𝑡))𝑑𝑡 + 𝜎̌𝑑𝑊(𝑡)𝑟∗
 

where 𝜎𝑠, 𝜎𝑣 , 𝜎̌ and 𝑎 are all positive constants that represents the volatility of the 

underlying asset, volatility of the market value of asset, volatility of the interest rate and 

mean reversion rate, respectively. The time-dependent function 𝑏(𝑡) matches the term 

structure of interest rates. 

In this paper, Mellin transform is favored in order obtain a closed-form pricing 

formula for vulnerable options. Although an analytic pricing formula is derived under 

this stochastic interest rate framework, the paper does not include a numerical study 

nor a data analysis.  

Wang et al. (2017) examines vulnerable options with a stochastic volatility  

framework under which the stochastic volatility is decomposed into the long-term and 

short-term volatility. In the paper, the long-term volatility is interpreted with a positive 

constant and the short-term volatility is described by a CIR process. This description of 

the stochastic volatility is incorporated into the model dynamics of the underlying asset 

𝑆(𝑡) as well as the market value of the assets of the option writer 𝑉(𝑡). Precisely:  

𝑑𝑆(𝑡) = 𝜇𝑆𝑆(𝑡)𝑑𝑡 + 𝜎𝑠𝑆(𝑡)𝑑𝑊(1)(𝑡) + √𝑌(1)(𝑡) 𝑆(𝑡)𝑑𝐵(1)(𝑡) 

𝑑𝑌(1)(𝑡) = (𝛾1 − 𝛽1𝑌(1)(𝑡)) 𝑑𝑡 + 𝜎1,𝑌√𝑌(1)(𝑡)𝑑𝐿(1)(𝑡) 

where 𝜇𝑆 is the average appreciation rate, 𝜎𝑠 is the long-term volatility;  𝛾1, 𝛽1  and 𝜎1,𝑌 

are CIR process parameters, 𝑊(1)(𝑡),   𝐵(1)(𝑡)  and 𝐿(1)(𝑡) are standard Brownian 

motions. Here, 𝐵(1)(𝑡)  and 𝐿(1)(𝑡) are correlated with the parameter 𝜌1, on the other 

hand,  𝑊(1)(𝑡) is independent of these two 𝐵(1)(𝑡)  and 𝐿(1)(𝑡). The rationale behind the 

description of short-term and long-term volatility is that short-term volatility considers 

the trading activities of the investors while the economic states and corporate 

performances represent long-term volatility. 

Similarly, the dynamics of the market value of assets are governed by: 

𝑑𝑉(𝑡) = 𝜇𝑉𝑉(𝑡)𝑑𝑡 + 𝜎𝑉𝑉(𝑡)𝑑𝑊(2)(𝑡) + √𝑌(2)(𝑡) 𝑉(𝑡)𝑑𝐵(2)(𝑡) 

𝑑𝑌(1)(𝑡) = (𝛾2 − 𝛽2𝑌(2)(𝑡)) 𝑑𝑡 + 𝜎2,𝑌√𝑌(2)(𝑡)𝑑𝐿(2)(𝑡) 

where 𝜇𝑉 is the average appreciation rate, 𝜎𝑉 is the long-term volatility;  𝛾2, 𝛽2  and 𝜎2,𝑌 

are CIR process parameters, 𝑊(2)(𝑡), 𝐵(2)(𝑡) and 𝐿(2)(𝑡) are standard Brownian motions. 

Furthermore, they assume that 𝐵(2)(𝑡) and 𝐿(2)(𝑡) are correlated with the parameter 𝜌2, 

and the pairs (𝑊(1)(𝑡) , 𝑊(2)(𝑡)),  (𝐵(1)(𝑡) , 𝐿(1)(𝑡)), (𝐵(2)(𝑡) , 𝐿(2)(𝑡)) have mutual 

independence. 

The core of the paper is to investigate the effects of short-term and long-term  

volatility on the vulnerable option price.  Therefore, following the structural approach, 

a price formula is obtained for the special case 𝜌1 = 𝜌2 = 0 and, based on this price 

formulation, several numerical experiments are performed to illustrate the 

corresponding effects. For instance, the sensitivity of price of the at-the-money option 

to the stochastic volatility of the option writer’s asset is not as strong as that of the 
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underlying asset.  Additionally, it is observed that long-term mean reverting value and 

long-term volatility of the underlying asset (asset of the counterparty) affect the option 

price positively (negatively) while the mean reverting speed affects negatively 

(positively). 

Ma et al. (2020) focus on the pricing of vulnerable options under a stochastic  

volatility and interest rate framework. They assume that the underlying asset is 

modelled as: 

𝑑𝑆(𝑡) = 𝑟(𝑡)𝑆(𝑡)𝑑𝑡 + √𝑍(𝑡) 𝑆(𝑡)𝑑𝑊𝑆(𝑡) 

𝑑𝑍(𝑡) = 𝜅𝑧(𝜃 − 𝑍(𝑡))𝑑𝑡 + 𝜎𝑧𝑍(𝑡) (𝜌1𝑑𝑊𝑆(𝑡) + √(1 − 𝜌1
2)𝑑𝑊𝑧(𝑡)) 

𝑑𝑟(𝑡) = (𝑏 − 𝑎𝑟(𝑡))𝑑𝑡 + 𝜎𝑟𝑑𝑊𝑟(𝑡) 

where 𝑆(𝑡), 𝑍(𝑡) and 𝑟(𝑡)  denote the time 𝑡-values of the underlying asset, the latent 

instantaneous variance and the stochastic interest rate, respectively. Regarding the 

variance process, 𝜅𝑧  is the mean-reverting rate, 𝜃 is the long-run mean level, 𝜎𝑧 is the 

volatility term.  The interest rate process evolves according to the Vasicek model, 

defining the mean-reverting rate by 𝑎, the long-run mean by 
𝑏

𝑎
 and the volatility by 𝜎𝑟. 

All the parameters given above are assumed to be constant. Herewith, 𝑊𝑆(𝑡), 𝑊𝑧(𝑡) 

and 𝑊𝑟(𝑡) are the standard Brownian motions. 

The dynamics of the market value of the counterparty’s assets, 𝑉(𝑡), is governed  

by the following SDE: 

𝑑𝑉(𝑡) = 𝑟(𝑡)𝑉(𝑡)𝑑𝑡 + 𝜎𝑉𝑉(𝑡) (𝜌2𝑑𝑊𝑆(𝑡) + √(1 − 𝜌2
2)𝑑𝑊𝑉(𝑡)) 

where 𝜎𝑉 is the volatiltiy, 𝜌2 is the correlation coefficient between the value of  

underlying asset and counterparty’s assets, and 𝑊𝑉(𝑡) is a standard Brownian motion. 

All the Brownian motions defined above, namely 𝑊𝑉(𝑡), 𝑊𝑧(𝑡) , 𝑊𝑆(𝑡), and 𝑊𝑟(𝑡), are 

supposed to be mutually independent. 

Following the classical approach in the presence of stochastic interest rates, 

the valuation of vulnerable options is examined under the T-forward measure, rather 

than the risk-neutral probability measure. T-forward measure is determined by a 

Radon-Nikodym derivative in which the zero-coupon bond price is used as the 

numeriare. Since the interest rate process is driven by a Vasicek model, this zero 

coupon price can be expressed in an affine form.  

The paper continues with the formulation of the option price under T-forward 

measure by using fast Fourier transform technique. Here, the key point to obtaining an 

analytical option price is to compute the joint characteristic function of ln 𝑆(𝑇) and 

ln 𝑉(𝑇), whose dynamics under the T-forward measure are represented by using 

Girsanov theorem. The calculation of the joint characteristic function is done by solving 

a non-linear PDE, for which a closed-form solution does not exist, via a perturbation 

method. After the calculation of this joint characteristic function, an analytical option 

price formula is derived, relying on the FFT arguments. Along with the option price 

formula, the Greeks (Delta, Gamma, Rho, Theta) are computed. 
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The paper ends with various numerical experiments: First, the performance of  

the FFT method is tested by comparing the FFT-prices with those of Monte Carlo 

simulations. To this end, vulnerable and non-vulnerable option prices are calculated 

via these two methods for varying strike prices. Numerical tests shows that FFT is 

accurate and faster than Monte Carlo simulations. Secondly, the vulnerable option 

prices are compared with the ones of Klein and those of the non-vulnerable option in 

order to investigate the impact of stochastic interest rates, stochastic volatility and 

credit risk on the option price. Interestingly, it is revealed that non-vulnerable option 

prices are higher than vulnerable option prices. It is due to the possible credit loss of 

the option writer followed by a default event.  The paper includes several figures that 

show the effect of the model parameters on the option price. For instance, greater 

values of the long-run mean level of the stochastic interest rate turn out to increase 

the option price. Indeed, when stochastic interest rates take greater values, price of 

the underlying asset as well as the market value of the assets of the option writer tend 

to increase which makes difficult to fall below the debt threshold level. Therefore, the 

default probability decreases, making the option more valuable.   

7. Conclusion 

In this paper, we have reviewed some very recent research publications in which 

OU,Vasicek, CIR and Hull-White models are incorporated into the modeling framewok 

within the context of actuarial sciences. The affine processes in these publications are  

used to model the stochastic interest rates, stochastic volatility, mortality intensity and 

the mean growth. Other than the models, also the mathematical approaches 

discussed in these papers are different. These methods include the Cost of Capital 

approach, fast Fourier transform, Mellin transform, a perturbation method, change of 

measure technique. There are publications, also favoring a data analysis. In one of the 

papers, a very detailed data analysis, including calibration, robustness test and 

backtesting, is carried out in order to compare the performance of the affine 

processes we favor in this review to model the mortality intensity. Precisely, Hull and 

White model is revealed to overperform compared with OU and Vasicek process  

when modeling the mortality intensity. By reviewing these publications, we aimed to 

give an insight about the use of these affine processes in actuarial applications. 
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