
103 
 

COMPARISON OF THE 2D-3D GRAVITY CALCULATIONS IN CARTESIAN 
COORDINATES AND 3D IN CARTESIAN-SPHERICAL COORDINATES  

Hasan Çavşak, Ali Elmas 

Karadeniz Technical University, Faculty of Engineering, Department of Geophysical Engineering 
 61080 Trabzon /Turkiye  

cavsak@ktu.edu.tr; elmas@ktu.edu.tr 

 

Keywords   Abstract 

Anomaly,  

Gravity,  

Inversion,  

Modelling 

 In this study, comparisons of the various calculations are made to achieve 
the best results in gravity computation. In the three dimensional (3D) 
gravity study, mass surfaces are defined by dividing the triangle surfaces. 
The more triangle surface is taken, the more precise definition of mass 
are made. Triangular pyramids are taken into consideration as the 3D 
master model. This model is formed between each triangle surface and 
calculation point. This method can describe complex shaped formation 
perfectly. In the first study, two dimensional (2D) and 3D gravity 
computation are compared by using a suitable synthetic model in 
cartesian coordinates. And also in the second study, 3D gravity 
calculations are compared by using a suitable synthetic model in 
cartesian and spherical coordinates. In the first study, accuracy of the 3D 
gravity calculation results are found by inversion in cartesian 
coordinates. And also in the second study, the 3D gravity calculation 
results are found to be true in the spherical coordinates instead of in 
cartesian coordinates. The two studies, forward and inversion solutions 
are made for these model geometries by intensity of adoption by using a 
special algorithm. In the gravity method, the best results are determined 
by 3D gravity inversion calculation in spherical coordinates. 
 

2B-3B GRAVİTE HESAPLAMALARININ KARTEZYEN KOORDİNATLARDA VE 3B 
OLARAKTA KARTEZYEN-KÜRESEL KOORDİNATLARDA KARŞILAŞTIRILMASI 

Anahtar Kelimeler  Özet 
Anomali; 

Gravite; 

Ters çözüm; 

Modelleme. 

 
Bu çalışmada, gravite hesabında en iyi sonuca ulaşmak için çeşitli 
hesaplamaların karşılaştırılması yapıldı. Üç boyutlu (3B) gravite 
çalışmasında, kütle yüzeyleri üçgen yüzeylere bölünerek tanımlandı. 
Tanımlamada mümkün olduğunca fazla üçgen yüzey kullanılarak, daha 
hassas kütle tanımlaması yapıldı. 3B ana model olarak üçgen piramitler 
dikkate alındı. Bu model, her bir üçgen yüzey ile hesap noktası arasında 
oluşturuldu. Bu model, karmaşık şekilli birimleri mükemmel olarak 
tanımlayabilir. Bu çalışmada, iki boyutlu (2B) ve 3B gravite 
hesaplamaları, kartezyen koordinatlarda uygun bir sentetik model 
kullanılarak karşılaştırıldı. İkinci çalışmada da, 3B gravite hesaplamaları, 
kartezyen ve küresel koordinatlarda uygun bir sentetik model 
kullanılarak karşılaştırıldı. Birinci çalışmada, 3B gravite 
hesaplamalarının sonuçlarının doğruluğu, kartezyen koordinatlarda ters 
çözüm ile bulunur. İkinci çalışmada da, 3B gravite hesaplamalarının 
doğruluğu, kartezyen ve küresel koordinatlarda bulunur. Bu iki 
çalışmada, düz ve ters çözümler, bu model geometriler için yoğunluk 
kabulüyle, özel bir algoritma kullanılarak yapılır. Gravite yönteminde, en 
iyi sonuçlara, küresel koordinatlarda 3B gravite ters çözüm hesabıyla 
ulaşılır. 
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1. Introduction 

 

The gravity method is applied in petroleum 
search, oil-related construction, to bring out 
fault and salt structure, to help seismic 
surveys [1, 12, 13]. In addition, the gravity 
method is used to examine various tectonic 
units, to uncover major fault systems, to 
investigate magmatic mass limit in the basin 
is covered by younger layers, to examine the 
thickness of earth crust and structure [15, 
17]. The world-wide geophysical research is 
done mostly with 2D subsurface modeling. 
Of course, the results are trusted level. 
However, the 3D subsurface modeling can 
never be compensated by 2D models. 
Though 2D models require less data and 
time, it should be directed to 3D subsurface 
modeling requires more data and effort. The 
3D gravity study in spherical coordinates is 
more accurate than the 3D gravity study in 
cartesian coordinates. By this study, it is 
explained that Earth's curvature should be 
considered in the 3D gravity computations.  
 
 

2. Materials and Methods 
 
The geophysical research is done mostly 
with 2D subsurface modeling [3, 6, 10, 16]. 
Sometimes, the geophysical research is done 
with 3D subsurface modeling [4, 5, 6, 7, 8, 9, 
11, 14]. The 3D gravity algorithm is 
explained with outlines. The outlines of the 
3D gravity algorithm are obtained from the 
Ph.D. Thesis [2]. Parameters in equation are 
obtained after coordinate transformation [3] 
and shown in Fig.1. 3D model geometry is 
triangulated to describe the whole surface of 
the mass. Three points define planes, and the 
method is the most convenient one for 3D 
modeling [14]. Even for very complicated 
mass shapes, a good description can be 
obtained by increasing the number of 
triangles. The gravity effects of the bodies is 
calculated first for the tetrahedra expanded 
by an “observation” point P to each triangle 
and then adding them all up in a certain 
sequence ([9], Fig. 2, Eq.(1) to 10; [3]). The 
surface of a uniform 3D body can be well 
approximated as a polyhedron of plane 
triangles to any degree of detail. This 
parametrization is flexible and efficient. 

Figure 2 shows the basic uniform 
tetrahedron used to calculate the 
gravitational potential dU and to the gravity 
effect dg at its apex P. The tetrahedron from 
P to an arbitrarily oriented planar triangle 
ABC is numbered k. Without reducing 
generality, P can be placed at the origin O of 
the earth-oriented Cartesian (x, y, z) 
coordinate system with z pointing vertically 
downward. The desired gravity effect of the 
polyhedron is derived as the vertical 
component of the potential gradient. The 
effects, dg and dU, of the polyhedron are the 
sums of all the basic tetrahedral effects. With 
a consistently defined sequence of 
computational steps, the partial effects are 
automatically calculated with the correct 
sign, i.e. positive for “far-side” triangles and 
negative for “near-side” triangles; “near” and 
“far” signify the geometrical relation of the 
observation point P and the polyhedron. The 
far-side basic tetrahedral effects are added, 
while the near-side tetrahedral effects are 
subtracted such that only the effects of the 
intervening polyhedron are remaining. The 
calculations are also correct if P is enclosed 
in a polyhedron. Integration of the 
tetrahedral potential effect, dU, in arbitrary 
orientation is awkward, but for the scalar 
potential the orientation is irrelevant and 
therefore a suitable coordinate 

transformation is carried out: , ,   is 
defined such that the triangle is in the   plane 

and one edge (1-2) is parallel to    (Fig. 2). 
A FORTRAN code has been developed which 
performs the triangulation and the 
integration [2]. It is unnecessary to evaluate 
the complicated term, and the simpler 
expression speeds up the evaluation of dg 
and increases the numerical accuracy. 
Completely written, the expression is fairly 
complex. 
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where h is height of tetrahedral;  ,  and   
are the coordinate values that define 
tetrahedral ( Fig.2). 
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With an analytical solution of  Eq.(1), we 
obtain;   
 

 
1

,
2

U G h F      
 

(2) 

 
 F(η, ξ)  is defined with Eq.(3), 
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Y is defined for the whole triangles pyramid 
as follows Eq.(4), 
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Y is defined as shown below while 
parameters are particularly used; 
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(5) 

 
Gravity potential; 
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‘G’ is gravity constant and ‘h’ is the height of 
the tetrahedron see Fig. 2. 
 
The gravity effect of the polyhedron is given 
by the vertical derivative of the potential 
effect.   
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with derivatives of open expression; 
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Normal unit vector of the vertical (z) 
component 

 ˆ hz z






 ve  Y Y
z


 

  (9) 

 
is written; 
 

 
1

1 ˆ
2

n

z i i ii
i

g G Y Y h 



        (10) 

 

Çavşak H., Elmas A., 2014. SDU-JESD-3702-103-111 

 



106 
 

 
Figure 1. The model geometry is created 
between triangle mass surface (triangle 
pyramid) and observation point. 
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Figure 2. Schematic illustration and parameters 
of the integration in Eq. (1). 

 
2.1. 3D Gravity Inversion 
 

The inversion procedure performs the 
smallest sum of the squares of the difference 
between the observed and calculated values, 
the least squares method, forms the basis of 
the inversion procedure. System of 
equations are solved using linear or 
nonlinear solutions. In this study, formation 
density is taken into consideration as 
constant. That is a linear solution is 
implemented. By taking derivatives of the 
squares of the difference between the 
observed and calculated values according to 
parameters, derivative equations is equal to 
zero. So, it is intended to perform the 
smallest mistake.  
 
𝑙1

, 𝑙2
, 𝑙3

 are taken into consideration to be 
measurement values,  

1 1 1 1a x+b y+c zı   

2 2 2 2a x+b y+c zı 
 

(11) 

n n n na x+b y+c zı   

a small error is made absolutely in 
measurements. These errors must be added 
to the equation. 
 
Errors are placed to measurement 
equations, 

1 1 1 1 1a x+b y+c z+l   

2 2 2 2 1a x+b y+c z+l 
 

n n n n na x+b y+c z+l   

(12) 

 

n  error amounts is put to the left side of the 

equations,  

1 1 1 1 1a x b y c zl    
 

2 2 2 2 2a x b y c zl    

 

n n n n na x b y c zl    
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the aim is to zero the sum of the error. 
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for this process in mathematics 
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if this equality is written in the general case 
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partial derivatives are got as to the unknown 
and are equaled to zero, 
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equation is rearranged, 
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                aa x ab y ac z al    

                 ba x bb y bc z bl  

                ca x cb y cc z cl    
(20) 

 
Where (al), (bl) and (cl) are known gravity 
measurements, (aa), (ab), (ac), (ba), (bb), 
(bc), (ca), (cb) and (cc) are matrix factors, x  
is function constant, and y and z are mass 
densities. 
 
The matrix is obtained from the steps of the 
process. This matrix can be solved with 
various solution methods. For example, the 
equation systems can be solved by the 
method of gauss elimination (See Eq.19). 
 
2.2. Comparison of the 2D-3D Gravity 
Calculations  in Cartesian Coordinates 
 
First, a seam shaped model mass is designed 
as the model mass. In order to avoid the 
influence of boundary, the borders of mass 
are extended for ±3000 km as parallel to 
earth's surface. When measuring network is 
created, the calculation profile is considered 
on falls into center profile of model mass. 
The model mass and the measurement 
network on this mass are created. In this part 
of working, a seam shaped model mass of 
which intensity is 3.7 gr/cm3 extends in the 
surrounding rock of which intensity is 2.7 
gr/cm3 is designed. Here, as the intensity 
difference is 1.0 gr/cm3. The accuracy of 
algorithms of computer program which 
perform 2D and 3D calculation are tested. 
For this purpose, vertical cross-section 
under y = 0 profile is extended to ±∞ in y 
direction as parallel to earth's surface, 
gravity is calculated by 2D algorithm for 
density difference to give 1.0 gr/cm3. Then, 
vertical cross-section under y = 0 profile is 
extended to ±3000 km in y direction as 
parallel to earth's surface, gravity is 
calculated by 3D algorithm for density 
difference to give 1.0 gr/cm3. In both cases, 
the maximum gravity value is 16.88491 
mGal. Also the minimum gravity value is 
found as 0.01479 mGal. The found 2D and 3D 
gravity values are compared (Table 1). 
Calculated gravity values for test for both 
cases are seen on Fig. 3. In the original 3D 
model geometry, mass limits are extended to 
±3000 km in y direction as parallel to earth's 

surface, gravity is calculated by 3D algorithm 
for density difference to give 1.0 gr/cm3. 
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Figure 3. The  gravity  of seam mass model on the 
(A B) centre profiles of the gravity  values  over 
the middle profiles which are derived from 2B, 
similation 3D and original 3D models. 
 

 
Figure 4. The gravity of similation 3D model of 
seam mass model. 

 
Here, calculated Bouguer gravity anomaly is 
adopted as the measure values, and these 
values are applied separately to models and 
densities are found individually by 
inversion. Calculated maximum gravity 
value is  79.74457 mGal and minimum 
gravity value is 0.01479 mGal. Also, these 
values can be seen on the y = 0 profile from 
calculated gravity values on Fig. 4. All these 
values are shown in Table 1. 3D simulation 
model geometry is created. Gravity values 
from agreed measure values on y=0 profile 
are given both the 2D and 3D similation. The  
calculated  density  is 0.8581 gr/cm3, 
maximum  gravity  value  is 19.04175 mGal 
and minimum gravity value is 0.12976 mGal. 
The average error is 3.0997 mGal in both 
calculations. Here, the difference of intensity 
is shown. In addition to calculated Bouguer 
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anomaly from the original 3D model, as 
measure values, in order to perform 
inversion, is given again to the original 3D 
model itself. Obtained 3D gravity anomaly 
and 3D similation model geometry of this 
anomaly can be shown in Fig. 4 and Fig. 5. 3D 
gravity anomaly and 3D original model 
geometry can be shown in Fig. 6 and Fig. 7. 
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Figure 5. The design of similation 3D model of 

seam mass model. 

 

 
Figure 6. The gravity anomaly of original 3D 
model of seam shaped model mass. 

 
 

 

Table 1. All values of seam shaped model mass 

THE SEAM MASS MODEL VALUES ON THE (A B) CENTRE PROFILES 
 
 
UNIT 

FORWARD INVERSION 
 
2D M1 

SIMIL. 
3D M2 

ORJG. 
3D M3 

 
2D M1 

SIMIL. 
3D M2 

ORJG. 
3D M3 

Density 
(gr/cm3) 

 
1.000 

 
1.000 

 
1.000 

 
0.8581 

 
0.8581 

 
1.000 

Max 
value 
(mGal) 

 
16.88491 

 
16.88491 

 
79.74457 

 
19.04175 

 
19.04175 

 
79.74457 

Min 
value 
(mGal) 

 
0.01479 

 
0.01479 

 
0.09669 

 
0.12976 

 
0.12976 

 
0.09669 
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Figure 7. The design of original 3D model of seam 
shaped model mass. 
 
2.3. Comparison of the 3D Gravity 
Calculations  in Cartesian Spherical 
Coordinates 
 
In the use of cartesian coordinates in 3D 
gravity calculations, the calculation points 
from a distance, away from the earth by 
growing in size, are suspended outside of the 
earth as shown in figure 10. Also, very large 
formations way out of the real shapes (Fig. 
8). Therefore, with using spherical 
coordinates, also the slope of the land would 
have been included in the calculation (Fig. 9). 
To explain this, a hollow of mass square is 
taken as an example model. The mass of the 
x-direction is taken ±1000 km in length, y 
direction is ±1000 km in length, the depth of 
the upper surface is 0 km and the depth of 
the sub-surface is -350 km. Density is taken 
as 1 gr/cm3. This mass is defined firstly in 
cartesian coordinates and the gravity 
anomaly of mass  is calculated in cartesian 
coordinates as 3D. Then it is defined in 
spherical coordinates for the 3D gravity 
values are calculated and these values are 
compared (Table 2). In addition, the lengths 
of the surface of the mass in the x and y 
direction, vertical direction of the depth, the 
results of the performed calculations in 
cartesian coordinates and spherical 
coordinates can be seen Fig. 10. 
 

 
Figure 8. The mass model in cartesian 
coordinates(beneath) and the  gravity  anomaly  
of   this mass model(above). 

 

Figure 9. The mass model in spherical 
coordinates. 
 

 
Figure 10. In spherical coordinates of a surface 
defined to cartesian coordinates formed shape. 
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Table 2. As 3D calculations comparison of values on Y = 0 (middle) profile in  cartesian-spherical 
coordinates 

THE RESULT OF  CARTESIAN 3D 
CALCULATION 
(density :  1 gr/cm3) 

THE  RESULT OF  SPHERICAL 3D 
CALCULATION 
(density :  1 gr/cm3) 

X (km) Gravity (mGal) DEGREE Gravity (mGal) 
-1000.00 6116.57 -8.99 5776.92 

-800.00 9666.54 -7.19 8481.21 
-600.00 7130.57 -5.40 7295.16 
-400.00 5175.53 -3.60 5866.68 
-200.00 3930.46 -1.80 4891.71 
     0.00 3517.82  0.00 4552.33 

 200.00 3930.46  1.80 4891.71 
 400.00 5175.53  3.60 5866.68 
 600.00 7130.57  5.40 7295.16 
 800.00 9666.54  7.19 8481.21 

     1000.00 6116.57  8.99 5776.92 
VOLUME : 1059333333.333 km3 VOLUME : 1032295281.105 km3 

 

3. Discussion and Conclusions 
 
 
3D gravity model calculations are made 
instead of 2D, more valid results are reached. 
However, although 3D model calculations, if 
the formations are very large, also in this 
case the world curvature to be taken into 
consideration is mandatory. This can be 
possible only by using the spherical 
coordinates. Also very good way of the 
world's inclination to be included in the 
calculation, the surfaces of the masses to be 
necessary directions and locations, be taken 
as often as possible, which should be defined 
with spherical coordinates. In case of very 
complex mass, 2D gravity study gives very 
different results from the search results. In 
large-scale, 3D gravity study in cartesian 
coordinates gives very different results from 
the search results. In such cases, 3D gravity 
study in spherical coordinates is mandatory. 
After that, keep the light on the work with 
the expectation of this study take into 
consideration the points mentioned above, 
the results is better demonstrated. 
 
 

Conflict Of Interest 

No conflict of interest was declared by the 
authors.  

 

4. References 

[1] Akçığ, Z., Pınar,R., 1994, “Gravite 
Manyetik Arama Yöntemleri”, 
Mühendislik Fakültesi Basım Ünitesi, 
İzmir. 

 
[2] Çavşak, H., 1992, “Dichtemodelle für den 

mitteleuropäischen Abschnitt der EGT 
aufgrund der gemeinsamen Inversion von 
Geoid, Schwere und refraktionsseismisch 
ermittelter Krustenstruktur (in German). 
Density models for the central European 
Section of EGT on the basis of joint 
inversion of geoid, gravity and refraction 
seismic crustal structure)”, Ph.D. Thesis, 
Mainz University. 

 
[3] Çavşak, H., 2008, “Gravity effect of 

spreading ridges - comparison of 2D and 
spherical models”, Marine Geophysical 
Researches, Volume 29, Number 3, 
161,165. 

 
[4] Çavşak, H., 2010, “The Effects of the 

Earth’s Curvature on Gravity and Geoid 
Calculations” Pure and Applied 
Geophysics, DOI 10.1007/s00024-011-
0353-8. 

 
[5] Çavşak, H., 2011, “Effective calculation of 

gravity effects of uniform triangle 
polyhedra”, Studia Geophysica et 
Geodaetica, DOI SGEG-2011-0004.R1. 

 
[6] Çavşak, H., and Elmas, A., 2010, “3D 

Modeling Of Gravity Anomalies Using 2D 

Çavşak H., Elmas A., 2014. SDU-JESD-3702-103-111 

 



111 
 

Synthetic Models”, SDÜ Journal of 
Engineering Science and Design Vol:1, 
No:2, 79-86. 

 
[7] Çavşak, H., and Elmas, A., 2011, “Crust 

Studying in the Eastern Pontides by 3D 
Gravity Algorithm”, e-Journal of New 
World Sciences Academy, Vol:6, No:3, No: 
4A0041. 

 
[8] Çavşak, H., Jacoby, W., R., 2004, “Three-

dimensional modelling of crust und upper 
Mantle For the eastern Pondites and 
Black Sea Basin”, Türkiye 16. Uluslararası 
Jeofizik Kongre ve Sergisi, 7-10 Aralık 
Bildiri Özetler Kitabı, Ankara. 

 
[9] Çavşak, H., and Jacoby, W., R., 2005, 

“Inversiyon of Gravity Anomalies Over 
Spreading Oceaning Ridges”. J. 
Geodynamics, 39, 461-474. 

 
[10] Çavşak, H., Jacoby, W., R., ve Seren, A., 

2002, “Eastern Pontides and Black Sea 
gravity inversion, crustal structure, 
isostasy and geodynamics”, Geodynamics, 
33, 201-218.  

 
[11] Elmas, A., 2012, “3B Gravite İnversiyon 

Hesaplarında Sismik Hız Sınırlarının da 
Kullanılmasıyla Yoğunluğun Derinlikle 
Değişiminin Tespiti”, Doktora Tezi, KTÜ, 
Trabzon. 

 

[12] Erden, F., 1979, “Uygulamalı Gravite”, 
Eğitim Serisi No. 21, Maden Tetkik ve 
Arama Enstitüsü Yayınlarından, Ankara. 

 
[13] Ergin, K., 1973, “Uygulamalı Jeofizik”, 

Üçüncü Baskı, Özarkadaş Matbaası, 
İstanbul. 

 
[14] Jacoby, W.R., Smilde, P., 2009, “Gravity 

Interpretation: Fundamentals and 
Application of Gravity Inversion and 
Geological Interpretation”, Springer, US. 

 
[15] Sanver, M., İşsever, T., 2007, “Gravite ve 

Manyetik Arama Yöntemleri”, Birinci 
Baskı, Nobel Basımevi, Ankara. 

 
[16] Talwani, M., Worzel, J., L., and 

Landsman, M., 1959, “Rapid Gravity 
Computations for Two-Dimensional 
Bodies with Aplications to The 
Mendiciono Submarine Fracture Zone”, J. 
Geophys. Res., 64, 49-59. 

 
[17] Telford, W.M., Geldart, L. P., Sheriff, R. E., 

Keys, D. A., 1981, “Applied Geophysics”, 
First Edition, Cambiridge University, New 
York. 

 
 
 
 
 

 

Çavşak H., Elmas A., 2014. SDU-JESD-3702-103-111 

 


