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Abstract 

Global warming threatens ecosystems through rising temperatures, increasing sea levels, drought, and extreme weather conditions. 

The natural balance of seas and oceans is also at stake with recent outbreaks of mucilage events all over the world. The mucilage 

phenomenon, which has been frequently observed in the Adriatic and Tyrrhenian seas, has taken place the second time in the Sea of 

Marmara in Spring 2021. The Sea of Marmara dividing the Asian and European parts of Turkey is an important inland sea with 

heavy maritime traffic, hosting many industrial zones and surrounded by highly populated cities. This study aims to determine the 

mucilage formations that were observed intensely all around the Sea of Marmara, focusing on the coasts of Istanbul, Kocaeli, Yalova, 

and Bursa through classifying Sentinel-2A images dated 19 and 24 May 2021, when the peak period of mucilage bloom, using a new 

paradigm of object-based image analysis (OBIA) approach. To create representative and homogenous image objects, multi-resolution 

segmentation was applied, and its result was inputted into a classification process using Random Forest (RF) classifier to generate 

thematic maps. The produced results were compared with pixel-based classification and a high correlation was estimated. Object-

based classification was found effective for the determination of mucilage-covered areas (> 90% overall accuracy) for both 

considered dates. More specifically, areas covered with mucilage aggregates were computed as 56.15 km² and 67.51 km² for 19 May 

and 24 May 2021, respectively, indicating rapid growth in only 5-day period. The resulting thematic maps revealed that mucilage 

was heavily distributed in the gulfs of Gemlik and Izmit and along the coasts of Darica, Tuzla and Pendik. 
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Introduction 

Marine mucilage, also known as "sea snot" or "sea 

saliva", is defined as a set of gelatinous aggregates 

formed on the sea surface, whose length can range from 

0.5 cm to few kilometers. Mucilage is an organic 

material that phytoplankton, which is an important part 

of biological production in the marine environment, 

secretes into the water by excessive proliferation, mainly 

caused by environmental factors. It contains bacterial 

and viral content, and poses a serious problem, 

especially for the industrial fishing and tourism sectors, 

if it is effective for a long time (Azam et al., 1999; 

Balkıs-Ozdelıce et al., 2021; Savun-Hekimoğlu and 

Gazioğlu, 2021). It is a serious environmental problem 

with adverse effects on the eggs and larval forms of 

many fish living near the seabed (Rinaldi et al., 1995). It 

is regarded as a natural phenomenon, but a great 

uncertainty remains about its origins (Cozzi et al., 2004). 

Sudden temperature changes, wind speed, and excessive 

precipitation are all effective in the continuity of 

mucilage cases (Yentur et al., 2013). Until now, many 

scientific studies have been conducted in the Adriatic 

and Tyrrhenian seas, where mucilage is the most 

effective for the last two hundred years (Funari and Ade, 

1999; Giani et al., 2005; Kraus and Supić, 2015). 

Analysis of meteorological data from the period 1865-

2002 showed a significant correlation between 

temperature anomalies and the presence of mucilages 

(Deserti et al., 2005). Considering hydrological 

conditions, researchers (e.g., Buzzelli et al., 1997; 

Urbani et al., 2005) reported that mucilage formation is 

usually formed under oligotrophic conditions. Gotsis-

Skretas (1995) reports 23 mucilage incidents regarding 

the coasts of Greece and states that mucilage, which 

usually occurs in the summer season, cannot be directly 

associated with eutrophication, and therefore a complex 

relationship exists. According to Mecozzi et al. (2005), 

“the formation of mucilages is an alteration of the 

natural humification process that occurs when the 

organic matter degradation phase becomes slower than 

the synthesis phase. This alteration can be produced by 

the synergic action of several hydrological, biological, 

and climatic conditions in the water column”. 

Formation of marine mucilage in the seas and oceans is 

not a new phenomenon since it has been first observed 

off the coast of Italy in 1729 (Bianchi, 1746), indicating 

that marine pollution cannot be the only reason 

(Vollenwider and Rinaldi, 1995). Irregularities in both 

frequency and intensity have been reported in mucilage 

events (Rinaldi et al., 1995; Gigliotti, 2013). All these 

considerations reveal the difficulty of determining the 
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time, quantity, and distribution of mucilage events. 

These events observed from the 1800s to the present day 

in and around the Mediterranean Sea are chronologically 

reported by Danovaro et al. (2009). In the Sea of 

Marmara, which is the transition zone of waters with 

different heat and salinity rates from the Mediterranean 

Sea and the Black Sea, the first mucilage formation was 

observed in the summer of 2007 and the average 

temperature of mucilage areas was measured as 

18.4±1.0°C (Aktan et al., 2008, Tas et al., 2020). It 

should be mentioned that mucilage formations were also 

observed in the Dardanelles Strait between October 2008 

and August 2009 (Yentur et al., 2013). Tüfekçi et al. 

(2010) concluded after in-situ measurements (October 

2007-February 2008) that phytoplankton abundance and 

environmental conditions during mucilage formation in 

the Marmara Sea and concluded that several 

phytoplankton species played a role in mucilage 

formation. In addition, a low nitrogen-phosphorus ratio 

was noted in water samples taken from the Gulf of Izmit. 

The differentiation in this ratio in seawater is also 

considered as a cause of mucilage formation (Tüfekçi et 

al., 2010; Tas et al., 2020). The last mucilage presence 

before the bloom in Spring 2021 was reported by Özalp 

(2021) in December 2020 in the Dardanelles Strait.  

Remote sensing technologies are an important data 

source for monitoring and detecting natural and artificial 

changes related to the time occurring on earth. Detection 

and periodic monitoring of changes caused by climate 

change caused by global warming are also intensely 

studied using remotely sensed data. Among these 

studies, algal blooms and water quality analyses are the 

most important ones. Monitoring environmental disasters 

in the oceans and seas and oil spills left from the ships 

can also be effectively monitored with remote sensing 

technology. However, a limited number of studies (e.g., 

Zambianchi, 1992; Tassan, 1993; Berthon and Zibordi, 

2000; Gigliotti, 2013) exist in the literature for the 

monitoring of the formation and movements of 

mucilages in the seas (Acar et al., 2021).  

Recently, a novel paradigm, namely object-based image 

analysis (OBIA) also referred Geospatial Object-based 

Image Analysis (GEOBIA) has gained rapid popularity 

to classify or map high-resolution remotely sensed 

imagery into meaningful objects (Blaschke 2010; 

Blaschke et al. 2014). OBIA, as an alternative to the 

pixel-based approach, provides reasonable and 

automated techniques for the analysis of high-resolution 

images based on their intrinsic features (spatial, spectral, 

textural, and topological features) (Lang, 2008; 

Kavzoglu et al., 2017; Kavzoglu and Tonbul, 2018). By 

taking highly advantage of this approach, a 

methodological framework can be provided for machine-

based interpretation of complex classes defined by 

structural and hierarchical characteristics (Hay et al., 

2003). Essentially, OBIA tries to mimic the human 

interpretation of remotely sensed images as efficiently as 

possible through computer-based procedures (Castilla 

and Hay, 2008). Thus, it has the potential to handle more 

complex image analysis tasks.  

The objective of this study is to map the surface 

mucilage formations in the Sea of Marmara using multi-

temporal satellite images through object-based image 

classification employing the random forest (RF) 

algorithm, which is a popular machine learning 

classifier. For this purpose, multi-temporal Sentinel-2A 

satellite images were used to determine the mucilage 

aggregates that occurred in the Sea of Marmara in the 

2021 bloom period (March-July 2021). 

Study Area and Datasets 

For this study, an area of approximately 4,000 km2 

covering the eastern, northeastern, and southeastern parts 

of the Sea of Marmara, where the movements of surface 

mucilage formations were intensively observed, was 

determined as the study area (Figure 1). The Sea of 

Marmara is an inland sea with an area of approximately 

11,000 km², separating Asian and European parts of 

Turkey through Bosporus Strait. The cities located in the 

Marmara region contribute significantly to the country’s 

economy in industrial, trade, tourism, and agricultural 

activities. The Marmara region is also the most 

industrialized and densely populated region of Turkey 

and is affected by many polluting sources in terms of 

water and air pollution. 

Fig. 1. The location of the study area. 

Within the scope of this study, Sentinel-2A data 

provided by the ESA space missions were utilized for 

multi-temporal monitoring, detection, and mapping of 

mucilage formations. Sentinel-2A satellite having a 

multispectral instrument provides 13 spectral band 

images with spatial resolutions at 10 m, 20 m, and 60 m. 

In addition to its spatial and spectral properties, 5-day 

revisit frequency has revealed the use of Sentinel-2 

images as the basic data set in many scientific studies. 

Before the preprocessing, the three bands at 60 m spatial 

resolution were excluded from the data set as they were 

designated for representing atmospheric aerosol and 

cirrus cloud properties. The processing level of the 

Sentinel-2A image used in the study is at Level-2A 

product (BOA reflectance image) and is defined in the 

WGS84 datum in the UTM projection system. 
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Methodology 

Data Acquisition and Pre-Processing 

In this study, multi-temporal cloud-free Sentinel-2A 

imagery covering the study area was used to determine 

spatial distributions of mucilage formations and to map 

their temporal changes. In this context, Sentinel-2A 

scenes acquired on 19 and 24 May 2021 were retrieved 

from the ESA Copernicus Hub portal 

(https://scihub.copernicus.eu). Since the approximately 

4,000 km2 area selected as a study area does not fit in a 

single image frame, three image frames were taken at the 

same date, covering the Sea of Marmara between 

Istanbul and Yalova, and Kocaeli and Bursa provinces 

(Table 1). It should be pointed out that Sentinel-2A 

imagery was mosaicked by ENVI Seamless Mosaic Tool 

and reprojected to the UTM coordinate system. To 

minimize the effect of the pixels representing the land 

and island, the shoreline of the study area was first 

extracted from the satellite imagery. The land and island 

pixels were then masked on the mosaicked image. 

Table 1.  Specifications of the Sentinel 2 images used in 

this study. 

Data Source Acquisition Date Tile Number 

Sentinel-2A 

19 May 2021 

T35TPE 

T35TQF 

T35TPF 

24 May 2021 

T35TPE 

T35TQF 

T35TPF 

Image Segmentation 

The primary and crucial step in object-based image 

analysis (OBIA) is the extraction of relevant image 

objects by clustering pixels through image segmentation. 

It is used to divide images into meaningful parts, called 

segments or image objects, that are homogeneous in 

terms of their spectral or spatial features (Ryherd and 

Woodcock 1996). Many segmentation methods and 

algorithms are available in the literature, which can be 

broadly classified into four categories as edge-based 

segmentation, feature space clustering with histograms, 

region-based segmentation and thresholding (Cheng et 

al. 2001; Kavzoglu and Tonbul, 2018). Among them, the 

multi-resolution segmentation, proposed by Baatz and 

Schäpe (2000), is one of the most popular algorithms 

within the OBIA community (Luo et al., 2017; Kavzoglu 

and Tonbul, 2018, Kavzoglu et al., 2018). The multi-

resolution image segmentation is a bottom-up region 

merging technique that segments images into groups of 

pixels and thus produces image objects (Kavzoglu et al., 

2016). This algorithm has three main segmentation 

parameters, namely, scale, shape, and compactness that 

can be set to determine the degree of homogeneity 

(Kavzoglu et al., 2017). The quality of segmentation is 

strongly related to the determination of segmentation 

parameters determined by the analyst and has a direct 

impact on the performance of the subsequent 

classification process (Addink et al., 2007; Kavzoglu 

2017; Tonbul and Kavzoglu, 2020). In the literature, 

there is no universally recognized algorithm or approach 

for estimating optimum segmentation parameters. On the 

other hand, many supervised and unsupervised strategies 

and approaches have been proposed in the literature to 

estimate optimal segmentation parameters (Espindola et 

al., 2006; Drăgut et al.,2010; Johnson and Xie, 2011; 

Drăgut et al.,2014). 

Classification 

The OBIA process is based on the principle of using the 

determined features of the image objects as inputs in the 

classification process (Jensen, 2005). In this study, 

random forest (RF), one of the most widely-used 

machine learning algorithms in the current literature, was 

employed to classify image segments regarding their 

spectral and spatial features. The RF algorithm, 

developed by Breiman (2001), combines multiple 

decision trees to construct the classification model, and 

the resulting ensemble model is known as decision 

forest. The main idea behind the decision forest is to 

create a diverse decision tree classifier and to make a 

final prediction for a particular unknown sample by 

combining their individual predictions. The mentioned 

process is achieved in two following stages. The first is 

to use randomly selected samples, collected by means of 

bootstrap aggregation procedure to construct each 

member of the forest. For this purpose, two-thirds of the 

input training samples (referred to in-bag samples) are 

selected to build the individual tree structure, and one-

third of the sample (referred to out-of-bag samples) are 

employed in the cross-validation process to estimate the 

prediction performance of the constructed tree model. 

The second, split conditions are computed for each node 

in the tree, taking into consideration the predictor 

variables (Colkesen and Kavzoglu, 2017). 

Results 

In order to meet the objectives of this study, three basic 

processing steps of OBIA, namely segmentation, 

classification, and accuracy assessment were followed in 

classifying Sentinel-2A imagery. In the first stage, OBIA 

based multi-resolution segmentation was implemented 

for the Sentinel-2A images to split the images into 

homogeneous image objects or segments. The image 

segmentation procedure was achieved using eCognition 

Developer software (v.10.0). To determine the optimal 

scale value of segmentation, the estimation of scale 

parameter (ESP-2) tool proposed by Drăgut et al. (2014) 

was implemented. The tool was developed for the multi-

resolution image segmentation programmed in the 

Cognition Network Language environment of 

eCognition Developer software. In this tool, automatic 

image segmentation is performed according to the 

increment amount determined by the user, and variation 

in heterogeneity is verified by calculating the local 

variance (LV) based on the corresponding scale. This 

tool graph indicates the rate of changes in local variance 

(LV-RoC) and the first peaks of the LV- RoC curve 

demonstrate appropriate scale values for segmentation 

(Kavzoglu and Tonbul, 2018; Kavzoglu et al., 2018). For 

the implementation of ESP-2 default parameter setting 

(scale increments of 1, 10, and 100, step size level 1 = 1 

and number of loops = 90) was chosen. For the sake of 
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consistency, the shape and compactness parameters of 

multi-resolution segmentation were kept constant as 0.1 

and 0.5, respectively in all segmentation processes as 

used in many studies (Dronova et al., 2012; Belgiu et al., 

2014; Tonbul et al., 2020). As a result of the analysis of 

the local variance change rates calculated by the ESP 

tool, the scale value was calculated as 31 for the image 

dated May 19, while the scale value was calculated as 24 

for the image dated May 24 (Figure 2). 

Fig. 2. The analysis result of LV-ROC graph calculated by ESP-2 tool for (a) May-19 image and (b) May-24 image. It 

should be pointed out that the vertical black line shows the optimal scale parameter for each scene. 

As a result of the segmentation processes using optimal 

scale parameters, totally 84,572 and 131,303 image 

objects were produced for the May-19 and May-24 

images, respectively. It should be noted that all bands of 

the Sentinel-2A image were evaluated in the multi-

resolution segmentation process and all image bands 

were equally weighted as 1. In order to visually analyze 

the quality of image segmentation results, two sample 

subsets belonging to ship and mucilage classes are given 

in Figure 3. The created image objects accurately 

overlapped with real earth surface objects for both class 

segmented images. It should be mentioned that some 

mucilage image objects were exposed to over-

segmentation (Figure 3b). 

In the classification stage, sampling areas representing 

mucilage formations, clear sea, and ship classes in the 

study area were firstly determined on the RGB image at 

10m spatial resolution. Then, designated sampling points 

were associated with the segmented image objects, and 

then training and test objects were created. In order to 

apply the classification process to the constructed 

segments, 52 spectral and spatial object features namely, 

area-of-pixel values, band ratio values, brightness, 

standard deviation, mean, maximum, minimum value of 

spectral bands of Sentinel-2A were calculated for the 

created image objects. The RF model constructed with 

500 trees using the training dataset was applied to the 

whole segmented image objects having 52 object 

features, thus thematic maps of the study area were 

created. At the end of the classification stage, confusion 

matrices were calculated using validation data sets 

including 3,300 pixels per class. The estimated 

individual accuracy measures (F-score, producer’s 

accuracy, and user’s accuracy) and overall accuracies of 

the RF classifier for the thematic maps were presented in 

Table 2. It is noteworthy to mention that the F-score 

measure is adapted from the calculation of the harmonic 

mean of user’s and producer’s accuracies (Tonbul et al., 

2020). 

Table 2.  Summary of accuracy assessment results for 

both dates. 

May-19  May-24 

Class 
Producer’s 

(%) 

User’s 

(%) 

F-score 

(%) 

Producer’s 

(%) 

User’s 

(%) 

F-score 

(%) 

Mucilage 91.12 93.54 92.32 87.75 93.29 90.43 

Water 99.71 99.77 99.74 98.97 99.97 99.47 

Ship 93.17 90.80 91.97 93.44 86.78 89.98 

Overall Ac. 94.70% 93.34% 

Kappa  0.92 0.90 
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Fig. 3. A subset of segmentation results for ship (a) and mucilage (b) classes. 

Fig. 4.  Thematic maps of the study area for (a) May-19 image and (b) May-24 image. 
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As shown in Table 2, the overall accuracies of the 

classifications were estimated as 94.70% (Kappa 

coefficient of 0.92) and 93.34% (Kappa coefficient of 

0.90) for May-19 and May-24 images, respectively. 

Considering the overall accuracies and Kappa 

coefficients, both images were classified with high 

classification accuracies (over 90%). Furthermore, 

analysis of the individual class accuracies indicated that 

all classes were classified with more than 87% accuracy 

level for both images. When the estimated producer’s 

and user’s accuracies were analyzed, the highest 

accuracies were obtained for the water class with 

99.77% and 99.97% for May-19 and May-24 images, 

respectively. Results noticeably indicate that the 

mucilage class was well separated from the other classes, 

giving over 90% F-score accuracies for both images. 

With the intention of visual evaluation of the 

classification results, the thematic maps of the study area 

generated by the RF classifier for both images were 

presented in Figure 4. 

As shown in Figure 4, although the ship and mucilage 

classes were misclassified in some regions, mucilage-

covered areas were clearly identified in both thematic 

maps. It can be easily observed that mucilage formations 

were concentrated in the coastal areas of the Armutlu 

and Mudanya regions of Bursa province. On the other 

hand, mucilage formations were abundant along the 

Kadıköy-Tuzla coastline in Istanbul, also up to the 

Darıca-Körfez coastline in Kocaeli (Figure 4a). When 

the Figure 4b is visually analyzed, it can be seen that 

mucilage formations were concentrated in the whole of 

the study area, and significant amounts of mucilage 

clusters were formed especially in the Çınarcık-Altınova 

coastal areas of Yalova province and in the region 

between the Darıca-Eskihisar coasts of Kocaeli province. 

Considering the coasts of Istanbul, it was observed that 

mucilage aggregates were distributed especially through 

the Pendik-Tuzla coastline (Figure 4b). 

After the classification process, the vectorization process 

was carried out to determine the acreages of the 

mucilage-covered areas. Then, the coverage of mucilage 

formations was estimated as 56.15 km² on 19 May, 

covering 1.39% of the study area (Table 3). It was also 

seen that the acreage of the mucilage aggregates in the 

study area increased by 20%, reaching 67.51 km² on 

May 24, 2021. These results confirm the findings of a 

recent study based on the mapping of mucilage 

formation using pixel-based classification carried out by 

Kavzoglu et al. (2021). 

Table 3.  Temporal evaluation of mucilage covered areas 

using object- and pixel-based classification. 

Date 

Object-based Pixel-based 

Areal 

(km2) 

Ratio 

(%) 

Areal 

(km2) 
Ratio (%) 

19 May 56.15 1.39 57.32 1.42 

24 May 67.51 1.67 70.37 1.75 

Conclusions 

In this study, areas covered with mucilage aggregates on 

the sea surface of the eastern part of Sea of Marmara 

were temporally mapped using Sentinel-2A images. 

Within this framework, OBIA-based multi-resolution 

segmentation was applied to the temporal Sentinel-2A 

data with optimal settings to generate image objects. 

Subsequently, the images were classified to determine 

the distribution of mucilages in the Sea of Marmara. The 

results showed that sea surface mucilage formations 

were calculated over 90% accuracies using RF classifier 

for satellite images dated 14 and 24 May 2021. While 

the acreages of the mucilage covered area were 

estimated as 56.15 km² on 19 May 2021, and 67.51 km² 

on 24 May. The results also revealed that the formation 

of mucilage increased rapidly within the specific five-

day period. This finding was parallel to the results of 

previous research conducted by Kavzoglu et al. (2021) 

on the determination of mucilage-covered areas using 

pixel-based image classification for the same study site. 

The differences in mucilage-covered areas were 

calculated as 1.17 km² and 2.86 km², indicating about 

2% and 4% differences, for May 19 and 24, 2021 

images, respectively. One of the most significant 

findings to emerge from this study is that the remotely 

sensed time-series data provide a unique opportunity for 

detecting and monitoring the mucilage formations in 

marine environments. In particular, the monitoring of 

mucilage formations in certain periods and the 

determination of their distribution are of great 

importance in terms of demonstrating the effectiveness 

of early warning systems, cleaning studies, and decision-

making processes. Finally, produced thematic maps can 

be benefitted together with relevant data (e.g. drainage 

channels, treatment plants, and potential industrial areas) 

for estimating possible hotspots and then take 

precautions for future cases. 
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