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Abstract. Split-complex (hyperbolic) numbers are ordered pairs of real num-

bers, written in the form x + jy with j2 = 1, used to describe the geometry

of the Lorentzian plane. Since a null split-complex number does not have an
inverse, some methods to calculate the exponential of complex matrices are

not valid for split-complex matrices. In this paper, we examined the exponen-

tial of a 2 × 2 split-complex matrix in three cases : i. ∆ = 0, ii. ∆ ̸= 0 and
∆ is not null split-complex number, iii. ∆ ̸= 0 and ∆ is a null split-complex

number where ∆ = (trA)2 − 4 detA.

1. Introduction

The exponential of a matrix could be computed in many ways: series, matrix
decomposition, differential equations and, polynomial methods. The matrix expo-
nential gives a connection between any matrix Lie algebra and the corresponding
Lie group. The matrix exponential does not satisfy some properties of the number
exponential since matrix multiplication is not commutative. For example, the prop-
erty ea+b = eaeb is not true for matrix exponential. The equality eA+B = eAeB

is only true in the case the matrices A and B commute. Detailed information on
the exponential matrix can be found in many sources. In this study, especially
references [2], [26], [16], [3] and, [4] were used.

The purpose of this article is to determine the exponential of split-complex num-
ber matrices and to give useful formulas by classifying them. The formulas of calcu-
lating the matrix exponential for 2×2 complex numbers can be found in Bernstein’s
study [4]. Standard methods can be used to calculate the exponential of a matrix
defined on a field such as complex numbers. However, for a set of numbers defined
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on a ring such as split-complex numbers, some problems are encountered in using
these methods. The methods used in the literature for complex numbers can be
useless, since some elements do not have an inverse in the ring of split-complex
numbers. Diagonalization and finding eigenvalues and eigenvectors of a matrix de-
fined on a ring is not as easy as in matrices defined over a field. There are many
studies on this subject in the literature [18], [21], [15]. In particular, exponential of a
matrix defined on the ring of quaternions can be found in Casey’s paper [17]. Casey
constructed a transformation from quaternionic square matrices to complex square
matrices to compute the exponential of the quaternionic matrix. Also, Ablamowicz
computed matrix exponential of a real, complex, and quaternionic matrix, using
an isomorphism between matrix algebras and orthogonal Clifford algebras [1]. The
exponential of a matrix defined in the rings of split and hyperbolic split quater-
nions can be found in the references [7], [8] and [20]. In this paper, exponential of
a matrix defined over the split-complex numbers is studied. In the first part, some
basic information and definitions about split-complex numbers are given. In the
second part, the cases where some methods and formulas are insufficient are deter-
mined. In the last chapter, it is examined with the help of isomorphism between
split complex matrices and real matrices.

2. Preliminaries

The set of split-complex numbers is defined as follows:

P = {z = z1 + jz2 : z1, z2 ∈ R}
where the split-complex unit j satisfies j2 = 1 and j ̸= 1. In the literature, these
numbers are also called double, spacetime, hyperbolic or perplex numbers [10], [28],
[27], [5], [11], [25], [24], [9], [12]. For any z = z1 + jz2 ∈ P we define the real part
of z as Re(z)=z1 and the split-complex part of z as Im( z) = z2. The conjugate
of z is denoted by z and it is z = z1 − jz2. The inner product of z = z1 + jz2 and
w = w1 + jw2 is defined as

⟨ , ⟩ : P× P → R
⟨z,w⟩ = Re (zw) = w1z1 − w2z2.

This product is a nondegenerate, symmetrical bilinear form, known as the scalar
product in the Lorentzian plane. Since this scalar product is not positively defined,
we will need to classify the split-complex numbers, as in the Lorentzian plane [6],
[23], [13], [22], [14]. We will call a split-complex number z = z1 + jz2 spacelike,
timelike, or null, according to ⟨z, z⟩ = zz > 0, < 0 or = 0, respectively. So, for a
split-complex number z = z1+jz2, we can call z spacelike, timelike or null according
to |z1| > |z2| , |z1| < |z2| and z1 = ±z2, respectively. Null split-complex numbers
have no inverse. In this paper, the set of null split-complex numbers is denoted by
P0. Norm of z = z1 + jz2 is defined as

|z| = zz =
√

|z21 − z22 |.
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The square root of the split-complex number z = z1 + jz2 is found by√
z1 + jz2 =

√
z1 + z2 +

√
z1 − z2

2
+

√
z1 + z2 −

√
z1 − z2

2
j. (1)

A necessary and sufficient condition for the square root of a non-null split-complex
number to be defined is that this number is spacelike. Moreover, for the null split-
complex number z = x+ yj, we have x = ±y and obtain

If x = y,
√
x+ yj =

√
2x

2
(1 + j)

If x = −y,
√
x+ yj =

√
2x

2
(1− j) .

In this paper, by a split-complex matrix, we mean simply a matrix with split-
complex number entries. We denote the set of m × n split-complex matrices with
Mm×n (P). We may write X = X1 + jX2 for any X ∈ Mn×n (P) where X1, X2 ∈
Mn×n (R) . There exists a ring isomorphism between Mn×n (P) and the algebra of
the matrices of the form{[

X1 X2

X2 X1

]
∈ M2n×2n (R) : X1, X2 ∈ Mn×n (R)

}
for X = X1 + jX2 ∈ Mn×n (P). In this study, split-complex numbers and matrices
will be shown in bold small and bold big letters, respectively.

According to the fundamental theorem of the set of split-complex numbers, every
polynomial of the n-th degree has a split-complex root of n2. For example, a second-
order polynomial defined in the split-complex number has exactly 4 split-complex
roots, and the polynomial can be factored in two different ways. Since the roots of
polynomial P (z) = z2 − 4 are z1 = 2, z2 = −2, z3 = 2j, z4 = −2j we can factorize
two kinds as

P (z) = (z− 2) (z+ 2) = (z− 2j) (z+ 2j) .

Also, the characteristic polynomial of a 2×2 split-complex matrix has 4 roots and
can be factored into 2 different forms. Thus, a 2×2 matrix has 2 sets of eigenvalues
and eigenvectors. Detailed information on this subject can be found in Poodiack’s
and LeClair’s excellent article [19]. For example, characteristic polynomial of

A =

[
3− j 1 + 2j
2− 2j j

]
is P (z) = z2 − 3z+ j + 1, and it can be written as

P (z) =

(
z− 5− j

2

)(
z− 1 + j

2

)
= (z− 1− j) (z− 2 + j) .

Let

A =

[
a11 a12
a21 a22

]
∈ M2×2 (P)
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be given. A 2 × 2 matrix A has two different eigenvalues set S1 = {λ1, λ2} and
S2 = {µ1, µ2} where

λ1,2 =
trA

2
±

√
∆

2
and µ1,2 =

trA

2
±

√
∆

2
j

and ∆ = (trA)
2 − 4 detA. Here, λ1 and λ2 are called primary roots of A.

3. Exponential of a Split-Complex Matrix

In this section, we will examine exponential of a 2 by 2 split-complex matrix.
First, let’s give the exponential of an upper triangular 2×2 matrix. These formulas
are given in Bernstein’s article for complex matrices [3]. The following lemmas can
be proved similarly. However, as stated in Lemma 1, if the split-complex number
a11−a22 is null, the formulas for the complex numbers will not work. For example,
exponential of the matrix

A =

[
2 + 3j 2 + j

0 1 + 2j

]
cannot be found by this method, since j + 1 is not an inverse.

Lemma 1. Let A = [aij ] be an upper triangular 2 × 2 split-complex matrix with
a21 = 0.
i. If a11 = a22, then we have

eA = ea11

[
1 a12
0 1

]
;

ii. If a11 ̸= a22 and a11 − a22 are not null, then we have

eA =

ea11
a12 (e

a11 − ea22)

a11−a22
0 ea22

 .

Proof. Both formulas can be proved by induction, similar to complex numbers. □

In the above theorem, a solution is not given when a11 −a22 is null. We will use
a different method for such matrices in the next section. In the most general case,
we will calculate the exponential of matrix

A =

[
a11 a12
a21 a22

]
∈ M2×2 (P)

with diagonalization, and in which cases this method will fail for split-complex
numbers.

We will examine the exponential of a 2×2 split-complex matrix A in three cases

i. ∆ = 0,

ii. ∆ ̸= 0 and ∆ is not null split-complex number,
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iii. ∆ ̸= 0 and ∆ is a null split-complex number

where ∆ = (trA)
2 − 4 detA.

3.1. Case 1 : ∆ = 0. In the case ∆ = 0 for the matrix A = [aij ] ∈ M2×2 (P) , we
encounter 4 special cases that will change the result.
i. a11 − a22,a12 ,a21 are not null
ii. a11 − a22,a21 are null, a12 is not null
iii. a11 − a22,a12 are null, a21 is not null
iv. a11 − a22, a12, a21 are null

Lemma 2 and Theorem 1 can be easily proved using elementary linear algebra
knowledge for first three cases. We will only give proofs for the fourth case.

Lemma 2. Let A = [aij ] ∈ M2×2 (P) be a split-complex matrix with ∆ = 0. Then,
the only eigenvalue is λ = a11+a22

2 . So, we have different cases to determine the

matrix P, satisfying the equality A = PDP−1 where,

D =

[
λ 1/2
0 λ

]
i): If a11 − a22,a12,a21 are not null

P =

[
a11 − a22 1

2a21 0

]
.

ii): If a11 − a22,a21 are null, a12 is not null[
2a12 0

a22 − a11 1

]
.

iii): If a11 − a22,a12 are null, a21 is not null

P =

[
a11 − a22 1

2a21 0

]
.

Theorem 1. Let A = [aij ] ∈ M2×2 (P) be a split-complex matrix with ∆ = 0. Then

eA = eλP

[
1 1/2
0 1

]
P−1

where P should be chosen according to the cases given in above Lemma.

Example 1. Let’s calculate exponential of the split-complex matrix

A =

[
3− j 1 + 2j
2− 2j 1 + j

]
.

Since ∆ = 0, a21 is null and a12 is not null, we find

P =

[
2a12 0

a22−a11 1

]
=

[
4j + 2 0
2j−2 1

]
.
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Therefore, using the theorem and (2j + 1)
−1

=
−1

3
+

2

3
j, we obtain

eA = PeDP−1 = e2
[
2− j 2j + 1
2− 2j j

]
.

In the case of ∆ = 0, if the numbers a11 − a22,a12,a21 are null, then there will
be a different case other than the three cases given in lemma. Before calculating
exponential of a matrix for this case, let’s give a lemma.

Lemma 3. Let A = [aij ] be a 2×2 split-complex matrix with ∆ = 0. If the numbers
a11 − a22, a12, a21 are null, then the matrix A in the form[

x+ jy −uy (j + ϵ)

y
j + ϵ

u
x− 2yϵ− jy

]
where u ̸= 0, x, y ∈ R and ϵ = ±1.

Proof. If the numbers a11 − a22, a12, a21 are null, all of them are same type since
∆ = 0. They can be written as a11 − a22 = µ1 (1 + ϵh) , a12 = µ2 (1 + ϵh) and
a21 = µ3 (1 + ϵh) for µi ∈ R. So, we have

a11 − a22 = µ1 (1 + ϵj) ⇔ µ2
1 (1 + ϵj)

2
= −4µ2µ3 (1 + ϵj)

2 ⇔ µ2
1 = −4µ2µ3.

Let the number be a11 = x+ yj, then a22 = x+ yj − µ1 (1 + ϵj). So, A will be

A =

[
x+ yj µ2 (1 + ϵj)

µ3 (1 + ϵj) x+ yj − µ1 (1 + ϵj)

]
.

Suppose that −→u = (u, 1), 0 ̸= u ∈ R is an eigenvector corresponding to the eigen-

value λ =
a11 + a22

2
. So, from the equality A−→u = λ−→u and equality of split-complex

numbers, we obtain

µ2 = −ϵuy, µ3 =
µ1

u
− ϵ

y

u
, x− ϵy =

trA

2
.

Moreover, from the equality µ2
1 = −4µ2µ3, we find

µ2
1 = 4ϵyµ1 − 4y2 ⇒ µ2

1 − 4ϵyµ1 + 4y2 = 0 ⇒ (−µ1 + 2yϵ)
2
= 0 ⇒ µ1 = 2yϵ.

Therefore, we obtain µ1 = 2ϵy, µ2 = −ϵuy, µ3 =
ϵy

u
and

A =

[
x+ jy −uy (j + ϵ)

y
j + ϵ

u
x− 2yϵ− jy

]
.

Also, the only eigenvalue of this matrix is x− ϵy. □

Theorem 2. If the entries a11 − a22, a12, a21 of the matrix A are null, then

eA = ex−ϵy

[
ϵy + jy + 1 −uy (j + ϵ)
1

u
y (j + ϵ) 1− jy − ϵy

]
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where a11 = x+ yj and −→u = (u, 1) is the only eigenvector of the matrix A.

Proof. The matrix A can be written as A= PDP−1 where

P =

[
u 1
1 0

]
and D =

[
x− ϵy

y

u
(j + ϵ)

0 x− ϵy

]
Therefore, we have

eD = ex−ϵy

[
1

y

u
(j + ϵ)

0 1

]
and

eA = PeDP−1 = ex−ϵy

[
u 1
1 0

] [
1

y

u
(j + ϵ)

0 1

] [
0 1
1 −u

]

= ex−ϵy

[
ϵy + jy + 1 −uy (j + ϵ)
1

u
y (j + ϵ) 1− jy − ϵy

]
.

□

Example 2. Let’s calculate exponential of the split-complex matrix

A =

[
4j + 3 −8j − 8
2j + 2 −4j − 5

]
.

Since ∆ = 0 and a11 − a22, a12, a21 are null, we use above theorem. From the
equalities, a11 = x+yj = 3+4j, a12 = −uy (j + ϵ) = −8j−8, we get x = 3, y = 4,
ϵ = 1 and u = 2, thus we obtain

eA = e−1

[
5 + 4j −8 (j + 1)
2 (j + 1) −4j − 3

]
.

Theorem 3. Let A = [aij ] be a 2× 2 split-complex matrix with ∆ = 0. Then,

eA = eλ [(1− λ) I +A] . (2)

Proof. In the case ∆ = 0, we can write A = PDP−1 where P and D can be chosen
as Lemma 2 above. Therefore, according to Lemma 1,

A = P

[
λ 1/2
0 λ

]
P−1 ⇒ eA = eλP

[
1 1/2
0 1

]
P−1

is written. Hence, we get

eA = eλP

[
1 1/2
0 1

]
P−1

= eλP

[
1− λ+ λ 1/2

0 1− λ+ λ

]
P−1

= eλP (1− λ) IP−1 + eλP

[
λ 1/2
0 λ

]
P−1
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= eλ ((1− λ) I +A) .

On the other hand, if the entries a11 − a22, a12, a21 of the matrix A are null, the
only eigenvalue is λ = x − yϵ, and eigenvector is −→u = (u, 1) . So, we can write as
A = PDP−1 where

P =

[
u 1
1 0

]
ve D =

[
λ k
0 λ

]
, k =

y (j + ϵ)

u
.

So, we get again

eA = eλP

[
1 k
0 1

]
P−1 = eλ

(
P (1− λ) IP−1 +A

)
= eλ ((1− λ) I +A) .

If we write the matrices, we have

eA = eλ

(
(1− x+ yϵ)

[
1 0
0 1

]
+

[
x+ jy −uy (j + ϵ)

y
j + ϵ

u
x− 2yϵ− jy

])

= ex−ϵy

[
ϵy + jy + 1 −uy (j + ϵ)
1

u
y (j + ϵ) 1− jy − ϵy

]
.

□

Corollary 1. Let A = [aij ] be a 2× 2 split-complex matrix with ∆ = 0. Then,

eA = e
a11+a22

2

1 + a11 − a22
2

a12

a21 1− a11 − a22
2

 . (3)

Proof. According to Theorem 3,

eA = eλ [(1− λ) I+A]

= e
a11+a22

2

([
1− λ 0
0 1− λ

]
+

[
a11 a12
a21 a22

])

= e
a11+a22

2

1− a11 + a22
2

0

0 1− a11 + a22
2

+

[
a11 a12
a21 a22

]
= e

a11+a22

2

1 + a11 − a22
2

a12

a21 1− a11 − a22
2


is obtained. □
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3.2. Case 2 : ∆ ̸= 0 and ∆ /∈ P0. Now, we will deal with how to find the
exponent of a split-complex matrix, when discriminant (∆) is not a null number.

In this case, we have two primary eigenvalues λ1,2 =
1

2

(
trA±

√
∆
)
, since ∆ ̸= 0.

For the split-complex matrix A = [aij ]2×2 , we can write as A = PDP−1 where

P =

[
a11 − a22 −

√
∆ 2a21

2a12 a22 − a11 +
√
∆

]
and D =

1

2

[
trA−

√
∆ 0

0 trA+
√
∆

]
.

Notice that detP = 2
√
∆
(
a11 − a22 −

√
∆
)
, so the matrix P does not have an

inverse, if a11 − a22 −
√
∆ ∈ P0.

For example, for the split-complex matrix

A =

[
j + 1 3 + 2j
1 + 2j j + 3

]
,

we have

P =

[
−4j − 6 4j + 2
4j + 6 4j + 6

]
and this matrix has no inverse.

Theorem 4. Let λ1 and λ2 be the eigenvalues of any matrix A ∈ M2×2 (P) . If
∆ ̸= 0 and ∆ /∈ P0, then, λ1 ̸= λ2 and λ2−λ1 is not null. So, exponential of A is

eA =
λ2e

λ1 − λ1e
λ2

λ2 −λ1
I +

eλ2 − eλ1

λ2−λ1
A. (4)

Proof. Let λ1 and λ2 be the eigenvalues of the matrix A ∈ M2×2 (P). So we can
write

A = P

[
λ1 0
0 λ2

]
P−1.

Similarly, the matrix P here is a matrix of eigenvectors whose columns correspond
to the eigenvalues λ1 and λ2. Therefore, we can write

eA = P

[
eλ1 0
0 eλ2

]
P−1.

Hence, we get

eA = P

[
eλ1 0
0 eλ2

]
P−1

= P


λ1e

λ1 − λ1e
λ2 + λ1e

λ2 − λ2e
λ1

λ1−λ2
0

0
λ1e

λ2 − λ2e
λ1 + λ2e

λ1 − λ2e
λ2

λ1−λ2

P−1
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= P


λ2e

λ1 − λ1e
λ2

λ2−λ1
0

0
λ2e

λ1 − λ1e
λ2

λ2−λ1

P−1

+P


λ1e

λ2 − λ1e
λ1

λ2−λ1
0

0
λ2e

λ2 − λ2e
λ1

λ2−λ1

P−1

=
λ2e

λ1 − λ1e
λ2

λ2−λ1
I +

eλ2 − eλ1

λ2−λ1
A.

□

Theorem 5. Let λ1 and λ2 be the eigenvalues of any matrix A = [aij ] ∈ M2×2 (P) .
If ∆ ̸= 0 and ∆ /∈ P0, then, λ1 ̸= λ2 and λ2 − λ1 is not null. So, exponential of A
is

eA =
m

∆

[√
∆cosh

√
∆+ (a11 − a22) sinh

√
∆ 2a12 sinh

√
∆

2a21 sinh
√
∆

√
∆cosh

√
∆− (a11 − a22) sinh

√
∆

]
(5)

where m = e(trA)/2 and ∆ = (trA)
2 − 4 detA.

Proof. Let λ1 and λ2 be the eigenvalues of the matrix A ∈ M2×2 (P). We know
that

coshx =
ex + e−x

2
and sinx =

ex − e−x

2
.

On the other hand, we have λ1 =
1

2

(
trA−

√
∆
)
, λ2 =

1

2

(
trA+

√
∆
)
and λ2 −

λ1 = ∆. Therefore, using the Theorem 4, and the equalities

eλ2 = e(trA+
√
∆)/2 = e(trA)/2e

√
∆ = mk,

eλ1 = mk−1,

where k = e
√
∆, we find

eA =
λ2e

λ1 − λ1e
λ2

λ2−λ1
I +

eλ2 − eλ1

λ2−λ1
A

=
λ2mk−1 − λ1mk

∆
I +

mk−mk−1

∆
A

=
m

∆

((
λ2k

−1 − λ1k
)
I +

(
k− k−1

)
A
)

=
m

∆

[
λ2k

−1 − λ1k+ a11
(
k− k−1

)
a12
(
k− k−1

)
a21
(
k− k−1

)
λ2k

−1 − λ1k+ a22
(
k− k−1

)]
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=
m

∆

[
λ2k

−1 − λ1k+ 2a11 sinh
√
∆ 2a12 sinh

√
∆

2a21 sinh
√
∆ λ2k

−1 − λ1k+ 2a22 sinh
√
∆

]
.

If we write λ1 =
1

2

(
trA−

√
∆
)
and λ2 =

1

2

(
trA+

√
∆
)
, we have

λ2k
−1 − λ1k =

1

2

(
trA+

√
∆
)
k−1 − 1

2

(
trA−

√
∆
)
k

= (trA)
k−1 − k

2
+

√
∆
k−1 + k

2

=
√
∆cosh

√
∆− (a11 + a22) sinh

√
∆.

Thus, we obtain 5. □

Notice that if ∆ is a null number, this formula does not work.

3.3. Case 3 : ∆ ̸= 0 and ∆ ∈ P0.

Theorem 6. Let A = [aij ] ∈ M2×2 (P) be a split-complex matrix with ∆ ∈ P0 and
∆ ̸= 0. If eigenvectors of A are not a real vector, A cannot be diagonalized.

Proof. If ∆ ∈ P0, then we can write that ∆ = x (1 + εh) , x ∈ R. Therefore we
have

√
∆ =

√
2x

2
(1 + εj) .

So, eigenvalues of A will be

λ1,2 =
2trA±

√
2x (1 + εj)

4
.

Also, the eigenvector matrix P can be found as

P =

[
2 (a11 − a22)−

√
2x (1 + εj) 2 (a11 − a22) +

√
2x (1 + εj)

4a21 4a21

]
.

Determinant of this matrix is

detP = −8
√
2xa21 (1 + jε) ∈ P0.

So, P−1 is not defined. □

Example 3. For the matrix,

A =

[
1 + 2j 1− j
2 + 2j j

]
, (6)

we have ∆ = 2j + 2 ∈ P0. Although the primary eigenvalues of this matrix are
different from each other, it cannot be diagonalized. We have to use another method
to find the exponential of this matrix.
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Remark 1. Using the fact that λ (1 + j) = 0 ⇔ λ = 0, we can write the eigen-
vectors of some matrices as real vectors. Some of this case, A can be diagonalized.
For example, the matrix [

3 −j − 1
2j + 2 −3j

]
can be written as,[

3 −j − 1
2j + 2 −3j

]
=

[
1 1
1 2

] [
2− j 0
0 1− 2j

] [
1 1
1 2

]−1

.

Notice that a11 − a22, a11, a21 and ∆ are null split-complex numbers in the form
x (1 + j), x ∈ R and we do not need to use the identity j2 = 1. Here, ∆ is also a
square of a split-complex number.

Remark 2. The exponentials of the n × n split-complex matrix A = X + Y j can
be computed by converting them to 2n× 2n real matrices with the isomorphism

P (A) =

[
X Y
Y X

]
,

and using the help of Jordan form and the useful property eP(X) = P
(
eX
)
. The

matrix P (A) is called the real matrix representation of the split-complex matrix A.
It is known that any n× n complex matrix A can be written as sum of a diagonal-
izable matrix B and nilpotent matrix N0 where the matrices B and N commute.
Remember that if N is a nilpotent matrix, then Nk is zero matrix for k ∈ Z+. The
Jordan matrix decomposition of a square matrix A is A = PJP−1 where J is a
Jordan matrix [29]. It means that a square complex matrix A is similar to a block
diagonal matrix J . In this case, we can write as

J = D +N

where D is the diagonal and N is strictly triangular and thus nilpotent matrix.
Then, we have

A = P (D +N)P−1 = PDP−1 + PNP−1.

Therefore, any n×n complex matrix A can be written as the diagonalizable matrix
B = PDP−1 and nilpotent matrix N0 = PNP−1, since

(PNP−1)k = PN(P−1P )N(P−1N · · ·NP )NP−1 = PNkP−1 = 0.

Also, the matrices B = PDP−1 and N0 = PNP−1 commute. This property allows
us to simplify the calculation of a matrix exponential.

eA = ePJP−1

= eP (D+N)P−1

= PeD+NP−1 = PeDeNP−1.

Example 4. Let’s find the exponential of the matrix 6

A =

[
1 + 2j 1− j
2 + 2j j

]
.
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We know that it is not diagonalized and ∆ = 2j + 2 ∈ P0. Therefore, we convert it
to the 4× 4 real matrix

P (A) =


1 1 2 −1
2 0 2 1
2 −1 1 1
2 1 2 0

 .

This matrix also cannot be diagonalized. But, we can write in Jordan form as

P (A) = P−1JP = P−1 (D +N)P

where N2 = 0. Therefore, we obtain

eP(A) = PeNeDP−1

=


0 1 1/2 −1
1 2 −1/2 0
0 1 −1/2 1
1 2 1/2 0



e1 0 0 0
0 e3 0 0
0 0 e−1 0
0 0 e−1 e−1




−1 1/2 −1 1/2
1/2 0 1/2 0
0 −1 0 1

−1/2 −1/2 1/2 1/2



=
1

2


e−1 + e3 2e−1 e3 − e−1 −2e−1

2e3 − 2e e−1 + e 2e3 − 2e e− e−1

e3 − e−1 −2e−1 e−1 + e3 2e−1

2e3 − 2e e− e−1 2e3 − 2e e−1 + e


since eN = I +N . As a result, according to equality eP(A) = P

(
eA
)
, we find

eA =
1

2

[
e−1 + e3 − j

(
e−1 − e3

)
2e−1 − 2je−1

2e3 − 2e− j
(
2e− 2e3

)
e−1 + e− j

(
e−1 − e

)] .
Conclusion Let A = [aij ] be a 2× 2 split-complex matrix, we can compute expo-
nential of A using the formulas :

• If △ = 0, then eA = eλ [(1− λ) I +A] , where λ is only eigenvalue of A.
• If △ ≠ 0 and △ is not a null split-complex number, then

eA =
λ2e

λ1 − λ1e
λ2

λ2 −λ1
I +

eλ2 − eλ1

λ2−λ1
A.

• If △ is a null split-complex number, we do not give a direct computation
formula without converting it to a real matrix.
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