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ABSTRACT

Attribute based approaches are commonly used ientegears instead of low
level features for image classification which iseoaf the most important
problems in the field of computer vision. The magbortant advantage of
attribute based approach is that learning can befgrened similar to human
by using attributes which makes sense for peopl¢his study, unsupervised
attributes are developed in order to avoid humaratezl problems in
supervised attribute learning. In our proposed wotke attributes are
generated as random binary and relative definitiohbe process of random
attribute generation simplifies the data modelingew compared to other work
in the literature. In addition, a major problem whi is the increasing the
numbers of attributes in attribute based approadsesliminated owing to the
increasing the numbers of attributes easily. Fumhere, attributes are
selected more wisely using simple applicable atparm to improve the
discriminative capacity of randomly generated difite set for image
classification. The proposed approaches are evaliatith the other similar
attribute based studies comparatively in the litara based on the same data
set (OSR-Open Scene Recognition). Experiments dghatv noteworthy
performance increase is achieved.
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ORTA SEVIYE VERI TEMSILINDE DENETIMSIiZ NiTEL iK
OGRENIMi

Oz

Bilgisayarla gorme alanindaki en 6nemli problemlend birisi olan imge
siniflandirma igin 6znitelik tabanlh klasik yakielarin yani sira nitelik tabanh
yaklasimlar son vyillarda sikhikla kullaniimaya danmitir. Nitelik tabanh
yaklasimlarin en 6nemli avantaji, insanlar igin anlamdf eden niteliklerin
kullaniimasi vasitasiyla insapluna benzer bir grenme yapilabilmesidir. Bu
calismada, denetimli nitelik grenme sirecinde insan faktorii sebebiyle
olusabilecek sorunlardan kaginmak amaciyla denetimsiaklayim
gelistirilmi stir. Denetimsiz yaklamimizda niteliklerin ikili ve géreceli olarak
rastgele Uretilmesi sayesinde nitelikecrénme sureci, literatirdeki ger
denetimli ve denetimsiz yakimlara gore daha kolay hale gelstir. Ayrica,
nitelik sayisinin basit bigekilde artiriimasi ile nitelik tabanh yaktanlarda
blyuk bir problem olan nitelik sayisinin artiriimamasitletirilmi stir. Rastgele
uretilen nitelik kiimesinin imge siniflandirma icayirt etme kapasitesini
artirmak maksadiyla, rastgele Uretilen nitelikleraaindan en iyileri kolay
uygulanabilir bir algoritma sayesinde secikii. Calismada Onerilen
yaklagimlar literatiirdeki dger benzer nitelik tabanli camalarla ayni veri
kiimesi (OSR-Ac¢lik Alan Tanima - Open Scene Reanynitzerinden ve farkl
siniflandiricilar kullanilarak test edilgtir. Yapilan deneylerde denetimsiz
dgrenilen goreceli niteliklerin dikkate gder bir performans arfi sasladigi
goralmgtar.

Anahtar Kelimeler: Géreceli Nitelikler; Denetimsiz Nitelik CikartimNitelik
Secimi; Gorsel Tanima.

Keywords: Relative Attributes; Unsupervised Feature Extrawtidttribute
Selection; Visual Recognition.
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1. INTRODUCTION

Attributes constitute intermediate layer data repn¢ation between the low-
level image features (i.e. color/edge histograrag, df visual words, quantized
pixel values, GIST, SIFT, Fourier/Laplace/Hough/\&a¥ transforms etc.) and
the top level categories. Because attributes areramn properties of the object
categories, intermediate representations can bewach by using classes in
combinations with respect to the shared attribwdasd, this leads to generating
new discriminative spaces for visual recognition.

Visual attributes are important for understandibgeot appearance and can be
used for describing objects. In detail, visualiltttes include color, modal,
textural, functional, structural, and conceptual amy kind of semantic
properties of objects. In addition to visual or s@tc distinction, the
representation of attribute is also varied as pimarrelative. The presence or
absence of an attribute in binary and the stregthn attribute in relative
become important in attribute representation. Onay nthink binary
correlations (i.e. existence or absence of anbatei in a class) would be
sufficient while the others claim real-valued ramkiscores are essential to
measure the attribute strength among categori#S][6,

Attributes can be learned by supervised or unsugeEnivmanners. Supervised
methods are firstly proposed in the literature treh unsupervised approaches
become more popular. In supervised attribute legtrimages are labeled with
attributes by human effort. Hence, many difficidtieccur. These difficulties
can be summarized as; more general and intuitirdwaies are determined
instead of discriminative attributes which are iede appropriate for
classification purposes. In addition, some disanative attributes may be
overlooked or could not be expressed by words. heuamiore, erroneous
attribute tagging can be performed. Finally, thecpss of attribute extraction
become exhaustive and it takes a long time in ldagasets that may contain
many attributes [16]. In addition to above mentobrdifficulties; attribute
labeling of datasets in supervised methods needpeat deal of human
laboring and budget. Moreover, extracting attrisubg searching the related
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images on the internet as in [9] seems to be aclieea for cost reduction, but
the discovered attributes can be irrelevant withithage categories.

Since attributes are commonly shared amongst diftetop level categories,
one of the major advantages of attributes is teaef training examples are
required to train an attribute and a classifieraleéshed on the basis of
attributes. Consequently, the main idea is to |edimbutes at the intermediate
level for separating visual categories efficientlyattribute learning. However,
the uppermost main target is to discriminate ckssel it is not to learn some
attributes perfectly.

In this work, we aim the image classification witte visual attributes which
are used as the new feature space at mid-leved. Kihd of representation is
achieved in an unsupervised way such that binadyrafative attributes are
learned by random binary predicates or class baséative orderings.
Additionally, we select some of randomly generatederings distinctively by
implementing Kendall Tau metric which computes thgtance between two
sequences.

The contribution of this work is two folded. FingtlWwe get unsupervised data
representation at a new mid-level feature spack biiary/relative attributes.
The class based attributes are generated randandybinary SVM scores are
used out of binary attributes while ordering scoaes handled for relative
ones. So the new feature space is assumablely @egand established more
discriminatively. On the other hand, we train thasib vectors of the new
feature space with a very limited number of tragninstances. Secondly, we
also select some of randomly generated attributél @ distance based
algorithm where more discriminative sequences &rked. We also try three
classifier (kNN, decision tree and SVM) for accyraperformance
comparisons.

In Section 2, the development of attribute notiond aattribute based

approaches are explained in mixed form. In Se@ioour proposed algorithms
based on random binary and relative attributesrareduced while in Section
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4 experimental results are detailed. Finally, theeeimental results are
concluded.

2. RELATED WORK

The literature of attribute-based computer visionbfems can be generally
summarized in the types and extraction methodgtobates, applications and
datasets on which they are implemented, and pesdiocen criteria in the
experiments, as shown in Figure 1.
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Figure 1: Summary of the literature works on atttdsbased computer vision
problems.

Ferrari and Zisserman propose a probabilistic geiver model which infers
whether an image contains a learned binary attilauntd determines which
regions over an object image the attributes mayercdl] in a weakly

supervised manner. They use simple attribute Iliiags, color or texture; and
two adjacent segments produce a complex attribilkiee $potted, striped,
checked etc. Lampert et. al. study object recogmifor categories which are
not seen during training at all [2, 3].
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Farhadi et. al. describe objects by the spati@ngement of their appearance
and part based attributes, and they benefit from itlteractions between
attributes [4]. In addition, Farhadi et. al. [5] leedl object recognition problem
into describing objects and mainly focus on attebiearning on the basis of
semantic (i.e. nameable) attributes like objecttspaand discriminative
attributes which are achieved by splitting the gideature space into different
regions by comparing some classes randomly in arypifashion. The
discriminative intuition is that some attributesngat be nameable although
they may be very useful for discrimination.

The relative attributes are first introduced byiaand Grauman in [6] with
the assumption that semantically more enriched ddgacriptions and
discrimination will be achieved if we use relatistass memberships on
attributes, instead of binary relations. SVM-likgaithm is implemented as a
ranking function in which not only maximizing theangins between class
boundaries but also ordering of classes over atggspace is aimed by using
Newton’s method. They use predetermined namealitdwes and class
orderings are given on these attributes in a sugedvmanner. The main
restriction of the algorithm is that equality aceme in category ordering
according to an attribute. In the notion of eqyaditceptance, human can not
differentiate two image belong to different categer On the basis of the
supervised relative attributes [8], many studie3,33] whose aim is to learn
more robust and precise relative attributes haverged in the literature. In
[33], it is claimed that relative attribute leargirmethod is insufficient in
indistinguishable image pairs which the human caait or differentiate two
image belong to different categories on the bakasnaattribute. Namely, it is
aimed to sort the image pairs which are assumeatjaal situation in [6]. For
this purpose, Bayesian local learning is proposdd®&]. In addition, instead of
creating new method for generating relative atteby Verma et al [34]
improve the performance of the basic relative laite method using patch-
based features instead of global (GIST and Colstdgram) which are used in
[6]. Verma et al claimed that their representateapture local shape in an
image comparison to global features.
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Simple solution to a multi-attribute query is taitr a classifier for each

attribute independently and combine their scoresrdtrieval. But some

attribute conjunctions may be more useful sincehscembinations can be
learned more easily and they discriminate visu#h daore. At this point, it is

critical to determine which combinations of attriési should be trained without
trying all combinations intensively. Rastegari ak. [13] focus on learning

more discriminative attributes by merging some e, instead of learning
each attribute individually. Kumar et. al. [14] opan interesting discussion
about attributes in that similarity of faces wittspect to other specific people
as references may help for achieving more discativa attributes for face

verification, called ‘similes’. With such visuakits, for example, a face might
be described as having a forehead like Barack Obaand eyes like Jennifer
Lopez’s.

It is often intractable for a human to predefina dabel all the attributes in
large datasets explicitly. Furthermore, some attdb may be more valuable
for recognition although we can’'t name them. Maatt.[15] implement an

algorithm to learn class-level relative attribuiesan unsupervised manner,
unlike [6] where relations between pairs of classesattributes are already
given relatively.

Instead of using pre-determined binary/relativeritaite labels or class
orderings on attributes, Karayel and Arica [16]ldal the similar way of
unsupervised attribute learning like in [5, 14, .1But in here, binary and
relative attributes are produced completely rangomihere classes are
separated into positive and negative sides for rpimdtributes, while class
ranks are selected for each relative attributesighnd Mori [17] purpose to
model objects discriminatively for classificatios the dependencies among
attributes are captured using an undirected grapmuwodel built from a
training set. The main distinction from other woiksthat they unify object
class and attribute predictions in a joint framdwsimce classes and their
attributes are closely related concepts.

So far, we mainly build category-attribute correlatmatrices or dependency
matrix among attributes for object recognition. é®séng that we have a
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limited number of nameable attributes which areqetermined, such matrices
would not be sufficient for large-scale computesiam problems. Yu et. al. [18]
add another intermediate layer for multi-attribbtsed image retrieval which
corresponds to a large pool (i.e. 6000) of wealibattes. Weak attributes are
comprised of automatic classifier scores or othel-level representations that
can be easily acquired with little or no human laliohen et. al. focus on
learning a regression model which introduces a datwe attribute
representation [19]. In details, each attributeasonly discriminative but also
cumulative such that all other attribute valuesastebon their relative positions
in a scalar value.

Human efforts involved in the class-attribute rielaship designing are costly
to obtain, subjective for evaluation and not sdelab large-scale datasets.
Given images with category labels, Yu et.al. [2@}falize a category-attribute
co-occurrence matrix for cross-category generadinatThis is different from
randomly generating ‘category splits’ in those getmo properties of category
separability and attribute learnability are use@Clet. al. [23] build facial
classifiers which are based on appearance simyilafipeople with the same
birth name. Another work of human description bsual attributes is proposed
by Sadovnik et. al. [24]. The task is to describ@esison in a group that
distinguishes her from the others. The descriptaih contain as minimum
number of visual attributes as possible while itmiaximizing the likelihood
that a listener will correctly guess which persesatiption refers.

3. UNSUPERVISED FEATURE LEARNING SCHEME

The overall flow chart of the visual recognitiontims work can be basically
split into three stages: Unsupervised data reptasen via attributes at mid-
level, category based domain modeling, and evalmatf the classification
performance. Given the dataset X =“{ i=1,2,3,...,N}; where N is the
number of train instances anff x R represents the low-level feature vector,
we first divide it into three non-overlapping sutsseéandomly. Train set,
Xan =X 0,y s where Xain UX, y¥ ={1,2,3,...,C}, and C is the number

of classes in Yin, hold for the class label, is used in both unsuped
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attribute learning and category modeling. Test Xet: LI X, is utilized in
classifier evaluation while the free parameter<latsifiers (i.e. kNN, SVM
and Decision Tree) are optimized in a grid searethod on a validation set,
Xvalidation AISO note that Xaidation IS achieved by inserting small amount of
white noise to the samples in the dataset.

As mentioned earlier, we learn the classifier dmsgrants in a new feature
space as the mid-level data representation, instéatmply using low level
features. So we learn class based binary andwelattribute models in an
unsupervised manner which will be detailed in saobises A and B,
respectively. The binary attributes define outpiuthe binary SVMs where the
scores are computed by dot (i.e. scalar) prodidisecinput samples,’% and
the learned weight vectors, wRY, of the binary SVMs. We call it Score
Related Attribute (SRA) space. On the other hahd,relative attributes are
modeled in Newton algorithm of [6]. Although thissembles of SVM method
very much, the input signal would be the differenteelated feature vectors,
and the comparative condition determines the p@siind negative sides,
instead of tagging binary instance labels.

After we define binary and relative attributes m @nsupervised manner and
learn them on the train setg26, We then model our classifiers; KNN, SVM
and C4.5 decision tree still on the very limitetl getrain set. Xajidation IS Used
to optimize the parameters of classifiers at harereas we compute the
accuracy performance on the.gl eventually. The flow chart of the proposed
work is depicted in Fig. 2.
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Figure 2: Schematic flow chart of the methodology

A. SRA Representation with Random Binary Attributes

We start with binary attributes for unsupervisedtdiee learning. As the name
explains itself, a binary attribute refers to whegth exists or not in the visual
data. As speaking of class based attributes, wergkre them throughout each
class specifically. For example in the statemerttriBute a, exists in Class A,

but Class B does not have it", we hypothesize Hihinstances in a class
contains or does not contain the mentioned at&ibgt, at all. Although it

seems to be more convenient if the attributes @®gaed per instance
individually, the literature work [6, 15] claim theaclass based attribute
definitions result in consistency for learning thribute models at the mid-
level. Additionally, instance based labeling woglthsume much more effort
inders the unsupervisedrnieg of data

while this process also h
representation.
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In detail, we define class based binary attribuaeslomly for the unsupervised
learning in mid-level feature representation withm& constraints to the
random binary sequence generation. First, all ooesall zeros for an

attributea, ={0,1}¢, is discarded from the list because they do mdp ks

discriminating the visual classes in the attribgfgace. Next, we include
random binary sequences into the consideration ibthey have at least two
positions different from each pattern which hasnbeelded to the list of
attribute definitions already. Note that the numbfepositions which is set for
discrimination is strongly related to the numbeclasses in the train setiaf,
since the length of each attribute sequence edgoals C. Moreover, we
explicitly limit the number of random sequences ofiall combinations, 2
Nevertheless, binary definitions are produced asymas possible, and we
select some of them for training, randomly. Aftee inish the random
definitions, this process results in M class basedry attributes A ={ga| m =
1,2,3,..., M}, and we carry on the next step of modgthe attributes in binary
SVMs.

SVM is a powerful tool for supervised learning whiseparates the feature
space linearly into two categories: positive andatie. It tries to maximize
the margin between positive and negative sides 385, The margin in SVM
represents the gap between support vectors of bioks which are data
samples acceptably close in limits to the oppasites. The main idea is to find
the optimum hyperplane that achieves the total mmnn distance between the
support vectors and the hyperplane. After trairtimg SVM, a new sample is
classified simply as either positive or negativetihg result of the dot product
with the optimized weight vector. In fact, SVM is lmear discriminant
function and it obviously does not handle nonliheaeparable datasets with a
satisfactory accuracy. Kernel functions (Gaussipolynomial, chi-square,
histogram intersection etc.) are introduced in {herature to establish
nonlinear SVM classifiers and they achieve a jisile popularity with SVM.
Actually, SVM still preserves its linearity in thperspective but the input data
are transferred into a new feature space via neafinkernel functions
beforehand. Hence, we get more complex feature espagith higher
dimensionality instead of complicating the discriamt function itself.
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In the second part of the introduced architectue,propose binary attribute
learning concept that is based on two-class SVMltgy. Given the input
data %an = {x?,y¥} and their class based binary attribute assignment
a, ={0,1}“; input signals for the SVM are firstly achieveg Baussian
Kernel Function (GKF), K(¥,Xain):

@)

. —X* - X rain ;

K(X(l) X H 2t ; x) 0 X ain
20

(1)

)=e

train

wherec is the scale parameter that factors the neighlookh80 each data
sample is now represented by its GKF responsesidodata samples (i.e.
landmarks) in Xain. Note that the input dimensionality now equalsthe
number of instances, K. Since SVM is a supervigaining algorithm, the
sample-attribute assignments obtained in the pusvidass based attribute
definition, &, : Y & {0,1}, are now used as the data labels for sugémi
instead of § itself. The unconstrained objective function o BVM is:

yow'x? +b) > 1;0j

)
K

Jg, ,(W,b)= P%Z max(1-WwG , y? 0y’ +%ZIIWIIZ: y? 0{-1,1}
j=1

3)

where P is the trade-off constant, penalizing dadats which violate the
margin requirements. 3epresents GKF output vector of (1) for each sampl
x¥, that is the new input signal to the SVM. W is thatrix, which embeds the
parameter vectors, including biases, b. They asarmasd to be orthogonal to
the hyperplanes that separate both sides (i.erybassignments) and initialized
randomly. As aforementioned, SVM simply separabesspace into two parts.
So the desired output signal for each inptt, ig achieved by assigning 1 for
the classes which have the attributg, and -1for the rest. The stochastic
gradient descent algorithm is then employed as:
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h(G,)=W'G,
(4)

ow=22D)_ opy max(an,(G, )y.0)
(5)

AW=a (%Z(Gléwﬁ Wj
(6)

=W, — 4w

(7)

where éw is the back propagated derivation of the erronaigper data sample,
Aw is the average weight correction that includgselgularization without bias
terms. Also note that is the learning rate andg, lis the hypothesis function of
the SVM. Once the SVM is set up, we optimize theigive parameters
iteratively. The hyperplane is updated with the m@argin objective function
to separate the samples of each side based ontdtie sample-attribute
assignments. The iteration is terminated when dldelle point is reached.

W,

new

After we find optimum parameters of the SVM! ,whe data sample % can
simply be conveyed to the new feature space byeitted binary attribute
score with Score Related Attribute (SRA):

SRA®;w, ) = w x¥
(8)

where w, is the weight vector of SVM which corresponds ke tbinary

attribute definition g, including the bias term, b. So we train an inchelsat
SVM for each random binary attribute with the givteain set, X.in, and the
visual data is now in a new M (i.e. number of bynattributes) dimensional
feature space by their SVM scores. Eventually, mplément our classifier
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algorithms on the train sety¥,, where the feature vectors are now represented
in the mid-level, instead of their original spact Rhere M << d.

B. Rank Based Representation with Relative Attributes

The relative attribute definitions are first intraed in [6] and they have
attracted much attention so far [15, 16, 30]. Umldinary attributes, they infer
the relative strength of an attribute on the visieth, instead of exposing the
existence (or non-existence). As it can be see¢hdrstatement of “Class A has
attribute @ more than Class B, but less than Class C,” thesdbased relative
attributes order the visual categories on the basitors of a new feature space
by comparative constraints; i.e. more/less thamryThiave obvious advantages
over the binary definitions in those: 1. More ingata are fed into the attribute
learning models because the input data are nowdirevise comparisons of
the samples. Assuming that each class has K exangid we have C
categories in the training data setu» then the number of input data will be
C(5)K?, instead of KC. So we assume that more traidag would increase
the accuracy performance in learning the attribotedels. 2. Since we
randomly define the relative attributes by orderihg classes in each attribute
basis, the total number of possibly generated orgegpatterns equals to the
permutation of the number of classes, C. Thus,cameproduce many random
ordering sequences more than the binary predicatesmore discriminative
patterns may be selected among them.

Given a class based ordering, a{c¥ > d? > ¥ > ... > @}; c?uC, which
relates every category to each other with a les®nsondition, we use the
Newton method of [6] for a relative attribute as:

r (x)=w x

©) . .

0@ oo wexd >wx? s idc, ,jOg,, ¢, >¢,
(10)
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Wix® =x0) 219, ; 0(j) 0O, 7, 20
(11)
. 1 2
argmin, (2 wy |, +T]
(12)

where |, is the reel ranking score of the training instand® on the attribute
basis, &, Wm L] RY is the parameter vector of the relative attributlel, G, is
the set which consists of pairwise data instancadig for the more/less
conditions. When we look into (11) closer, the @mumis very similar to that
of the SVM. But the input signal is now the diffece of pairwise feature
vectors from the set, £ not the low-level feature vectors itself. So the
optimum solution would then order the classes @wkeight vector, w, by
minimizing the cost function of (12); where T i®thonstant that regulates the

balance between weight decreasing and the nonimegsack variablesy; .

This results in maximizing the margin between &ass the order definition,
am.

Once we optimize the free parameters, the attribute strength is computed
as in the binary attribute score. Hence, we cortheyoriginal input data %
into a mid-level feature space by M (i.e. number gefnerated relative
attributes) dimensional ranking scores, M << d. Thgt step is to answer how
one may generate class orderings for relativebati modeling which will be
detailed in the subsections below.

(1) Random Relative Attributes

We follow the same approach of binary attribute egation described in
section 3.A. The relative definitions, A ={d m = 1,2,3,..., M}, indicate
ordering the visual categories, ¥c> d? > & > ... > @}; ¢C, randomly
for each attribute,,@ The class ordering expands the feature space mocé
than binary attributes and we have many options tihie. The random class
based ordering sequences are included into thedayason only if they have
at least four positions different from each pattetnch has been added to the
list of attribute definitions already. Note thaethumber of different positions
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is twice that of binary predicates. So we produ@mynunique orderings (say
1,000) and select M sequences out of them randomly.

(2) Selective Relative Attributes

To make attribute definitions more discriminativee propose a new approach
for picking some orderings based on Kendall Tau)(Edrrelation metric [15],
instead of selecting randomly. For each pair odoanly generated attribute
definition, KT is computed as:
kT =l Mo

C(2)
(13)

where gandng are the number of concordant and discordant paitween the
two orderings and the denominator refers to thal toumber of pairs. The
range of KT is then in [-1,1], and it is -1 if twarderings are complately
different (1 if they are the same). Thus, we fi@ipute a correlation matrix in
which each element is the KT value of pairwise ardgs of all generated ones,
next the average correlation values of all defam$ are sorted in the
decreasing order, finally we select the top M randorderings (i.e. least
correlated) among them. Thereafter, the preseledttedifiers (i.e. KNN, SVM
and C4.5 decision tree) are modeled on the trainXggin, While optimizing
their free parameters with,gation

4. EVALUATION OF THE PROPOSED WORK
A. Experimental Setup

We use Outdoor Scene Recognition (OSR) Datasetc@itaining 2,688

images of 8 scene categories. The distributionntdges for the dataset is
shown at Table I. Note that the number of sampiesaich class varies. OSR
dataset is also utilized in [6] and [15] which #ne recent studies in attribute
based object recognition literature. Besides, tfwviged low level features

(i.e. GIST) and the same train/test splits for mpldtruns are used as the initial
input in multi-category classification schemes. Mokthe outdoor scenes in
OSR dataset display large intra-class variabihtganing that object contents
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within a scene category are very different whileeirclass variance is small
especially for the natural scene categories. Th®id makes the object
classification problem harder when working with O®Rtaset. Example
images from OSR are displayed in Fig. 3, respelgtive

Table I. THE DISTRIBUTION OF IMAGES FOR OSR DATASET
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Figure 3: OSR dataset sample images.
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For the training phase of both attribute models\aadal classes, we randomly
select 30 instances from each class ag,and the rest is used as the test set,
Xwest Note that the Xin is very limited due to the mid-level attribute
representation when compared to the low-level featin classification. The
experiments are repeated 20 times, and the meastandiard deviation values
are noted at tables for comparative results whetteasverage accuracies are
used in the figures. Additionally, we limit the nbher of both randomly
generated relative and binary attributes to 2&Hersake of comparison to the
other literature work.

Furthermore, we evaluate three algorithms to meashbeir classification
accuracies in the mid-level attribute space: SVMNkand C4.5 decision tree.
We select these methods as they are powerful apalgoodiscriminants on the
shelf. So WEKA toolbox [37] is used to implemenertin while we optimize
their free parameters (i.e. the regulator const@ntfor SVM; the number of
nearest neighbors, k, for KNN; the pruning confakenC, and the minimum
number of samples, M, for the decision tree) onX(gqaion Additionally, we
normalize the feature vectors of attribute scoresttee new inputs to the
classifiers by whitening process of [38] in orderachieve zero mean and unit
standard deviation for each dimension.

Finally, we also use the supervised binary andtivelaattribute definitions
which are given in [6] to promote the benefits asupervised (i.e. randomly
generated) definitions. Fig. 4 displays the usagmlinations of all attribute
patterns that are utilized for the experimentsaitkd in the next subsection.
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Binary
Attributes

Relative

Attributes

Supervised Random Supervised Random Selective
(BAS) (BAR) (RAS) (RAR) (SRA)
(BAS) (BAR) (RAS) (RAR) (SRA)

All All
(RAA) (SRAA)
(RAA) (SRAA)

Figure 4: Attribute based comparisons scheme.

B. Classification Results

In this subsection, we first analyze the classiitca results in different
configurations of attributes and classifiers. Thxperiments are repeated 20
times and the mean and standard deviations arel fioteinary attributes as
SRA results and relative attributes as Newton ragkicores at Table Il and 111,
respectively. Also note that we use the 6 binary aglative attribute
definitions which are already established on OSRas#d in a supervised
manner [6]. Additionally, we generate/select 28d@n binary and relative
attributes to compare the classification resultthwine other literature work,
although we may produce them as many as neededstdapendent with the

number of visual classes at hand.
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Table 1. SRA RESULTS WITH BINARY ATTRIBUTES ON OSR

DATASET.
Classifier Accuracies (%)
. Decision

Attribute Type KNN Tree SVM
binary_attributes_supervised 52.99 +2.58| 49.07 £ 54.88 £

(BAS) 2.32 3.68
binary_attributes_random 75.27+1.52| 62.31% 74.28

(BAR) 3.99 1.63
binary_attributes_all (BAA) | 76.38 + 1.55| 64.38 £ 76.73

3.34 1.59

For speaking of supervision, randomly generatedbates outperform the
human labeled attributes at both tables considgrdbis is due to the fact that
we can generate more definitions randomly at nd aod this expands the
mid-level feature space discriminatively which désin better accuracies. We
claim that supervision may sometimes divert thenlieg system into a worse
situation as it is subject to the human experieaoel, hard work of labeling.
Nevertheless, we can surely append the supervisetbutes into the
unsupervised patterns if they exist. We achieveoatn2 % increase in the
performance at both tables when they are concaemaith the unsupervised
attributes. Additionally, relative attributes ovence the binary definitions
about 2-3 %. We assume that the class orderingshwive may produce
randomly is related to the permutation of the nundfecategories, not power
of 2, and that gives many more choices for selactiddditionally for the
relative attributes as detailed in section 3.b,rwethe KT algorithm to select
more discriminative ordering patterns from the @nty generated pool,
instead of random selection. We see that selec#lative attributes indeed
increase the performance more than 2 %, and thidircs our previous
assumptions. On the other hand, SVM algorithm aesiebetter accuracies
than KNN and C4.5 decision tree overall while G4.the worst. Note that the
KNN gets the similar, even better results than S&t¥iough it is the simplest
instance-based classifier. We assume that non-ganantearning of the kNN
method benefits the attribute based feature space than the others.
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Table 1ll. NEWTON RESULTS WITH RELATIVE ATTRIBUTE®N OSR

DATASET.
Classifier Accuracies (%)
. Decision
Attribute Type kNN Tree SVM
relative_attributes_supervised (RA| 62.17 54.54 + 63.12 +
1.02 2.05 1.79
relative_attributes_random (RAR) | 76.78 = 69.77 + 76.34 +
1.97 2.63 1.52
relative_attributes_all (RAA) 77.15 + 73.57 + 77.86 +
1.52 2.04 2.13
selective_relative_attributes (SRA)| 77.24 + 70.81 £ 7712 +
1.87 3.62 1.96
selective_relative_attributes_all 78.36 = 72.66 79.86
(SRAA) 2.01 2.91 2.52

Next, the proposed method is compared with the lsimapproaches in
literature on the same experimental setups, andnis@n accuracy results of
the multiple experiments are listed at Table IV.NBl PCA and FLD
algorithms are actually used for dimension reductnd these references are
not related to the attribute learning. Neverthelélss basis vectors (i.e. like
attribute weight vectors, w) which are extractedirty the implementations
help representing the data in a new features spacehey are included as
baselines for this reason. Besides, the other mdstha@enerate
supervised/unsupervised attributes in the interatedilevel for visual
recognition, like the proposed work.

The results at in Table IV show that the proposesthwd outperforms the
other approaches for about a minimum of 1 % with #elective relative
attributes. In general, it is observed that thelatte-based methods achieve
much better accuracies than the other baselinesv&@ the attributes do not
only reduce the dimensionality but also do they stitute a more
representative space in the mid-level. On the othde, the unsupervised
attributes display increased performance when comdpwith the supervised
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ones. Additionally, the accuracy rises up evenhirrtwhen we combine the
both types. We assume that the expanded numbensafparvised attributes
with distinct class orderings establish a bettg@resentation without human
laboring, leading to more effective classifiers.

Table IV. PERFORMANCE COMPARISON OF THE ALGORITHMS.

. # of Mean
Algorithms Attributes Accuracy
(%)

BINs [15] 28 76.05
PCA [15] 34 71.46
FLD [15] 28 63.10
Supervised Attributes (SAT) [6] 6 72.82
Unsupervised Attributes (UAT) [15] 28 76.57
SAT+UAT [15] 34 77.88
RAS [16] 34 78.64
Our Binary ALL 34 76.73
Our Selective Relative ALL 34 79.86

Additionally, we evaluate the behavior of mid-leveature space by changing
the number of attributes that we generate randamtiie proposed work, and
the graphical results are displayed in Fig. 5. Nbtg we use the SVM results
as it is better than kNN and C4.5, comparativelyne/ we take into account
the results of supervised attributes (i.e. 6 bifratgtive definitions) at Table II
and lll, the accuracy performance is almost theesawith 10-12 randomly
generated binary and relative attributes, respelgtivAfter this point, we
outperform the supervised attributes obviously, andcconfirms that the
performance is increased as we enlarge the feghaee with more attributes,
although we select them randomly. Moreover, thatnet definitions achieves
better accuracies than the binary attributes. Wk tithe main reason is that the
Newton method orders the visual categories by maxng the sequential
margins with many more pairwise inputs, and we gamerate more orderings
than the binary predicates. Also, the selectivatred attributes gets the best
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performance since the KT correlation metric is ugdedpick the more

distinctive orderings, instead of simply selectihgm randomly. Another point
is that we can have even better results if the rsigesl attributes are
concatenated with the unsupervised orderings. Oene use the unsupervised
definitions as the supplementary feature spacehef supervised attributes
already exist.

Performance Compatisons with Varying Number of Attributes on OSR Dataset

o
3
T

Mean Accuracy (%o)

0 3 6 9 12 15 18 21 24 27 30 33 35
Number of Attributes

Figure 5: Performance comparisons with varying neinds attributes.

Receiver Operating Characteristic (ROC) curve egjdiently used in literature
to evaluate the performance of classifiers. BalicHie ratio of false and true
positive samples is plotted by changing thresholds step-wise manner. The
classifier is regarded as more successful wherplds rises up earlier and
sharper than the others. Eventually, we compareénmormances of binary,
relative and the selective attributes with theipeswised and combined (i.e.
supervised + unsupervised) versions on ROC cue®$R dataset in Fig. 6.
As seen, the accuracy is increased obviously whemttibutes are used
together, and this confirms that the unsupervigathates add discriminative
power in dimensionality. Additionally, the seledivrelative attributes
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outperform the others clearly while relative defoms are better than the
binary predicates.

Receiver Operating Characteristic of the Attributes

True Positive Rate (tpr)

0.05 0.1 0.15 02 0.25
False Positive Rate (fpr)

Figure 6: ROC analysis of the attribute types orR@&taset.

5.  CONCLUSION

In this work, we introduce two approaches for thel-favel visual data
representations in an unsupervised manner whidfased on the binary and
relative attributes, respectively. Binary attrigitmainly split the low-level
feature space into two sides; i.e. positive andatiegg Then, the SVM
algorithm is established to maximize the margird #s scores are used as the
new data representation. On the other hand, thetdwewnethod tries to
maximize the gap between visual categories based atefinition which
describes the relative ordering. So we first getleereandom attribute
definitions with some limited constraints that assio get exclusively different
binary predicates and relative orderings. Thereafte convey the low-level
feature vectors into a more discriminative attrédgpace by using their new
representations, and the classification is cawiethis new space.
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In the experiments, we utilize a mid-scale viswaognition dataset, OSR, to
evaluate the combinational attribute types andsdiass, namely SVM, kNN,
and C4.5 decision tree. Also note that only a Behiset of train data is used for
learning both the attribute and classification medehich benefits the mid-
level data representation. The results reveal tiatunsupervised attributes
outperform the supervised definitions clearly altho we produce them
randomly without any effort. Additionally, KT cotlegion metric is used to
pick the more discriminative orderings among ranlyogenerated sequences,
instead of simply selecting them randomly. Thisoal®osts the accuracy
performance slightly. Moreover, we have even bettsults if the supervised
attributes are concatenated with the unsupervisaeriogs. We conclude that
the unsupervised definitions can be used as thplementary features if the
supervised attributes already exist.

For the future work, we focus on the relative htite selection issue since it
already proves to be an important tool for the grenbince increase. Also, the
classifier algorithms can surely be used in a combiform, called mixture of

experts, to make better decisions at the end ofldssification process. Lastly,
an incremental learning scheme can be establishddegproposed work which

refers to learning the attribute space and categmgels simultaneously in an
iterative way.
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