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ABSTRACT 

 
Attribute based approaches are commonly used in recent years instead of  low 
level features for image classification which is one of the most important 
problems in the field of computer vision. The most important advantage of 
attribute based approach is that learning can be performed similar to human 
by using attributes which makes sense for people. In this study, unsupervised 
attributes are developed in order to avoid human related problems in 
supervised attribute learning. In our proposed work, the attributes are 
generated as random binary and relative definitions. The process of random 
attribute generation simplifies the data modeling when compared to other work 
in the literature. In addition, a major problem which is the increasing the 
numbers of attributes in attribute based approaches is eliminated owing to the 
increasing the numbers of attributes easily. Furthermore, attributes are 
selected more wisely using simple applicable algorithm to improve the 
discriminative capacity of randomly generated attribute set for image 
classification. The proposed approaches are evaluated with the other similar 
attribute based studies comparatively in the literature based on the same data 
set (OSR-Open Scene Recognition). Experiments show that noteworthy 
performance increase is achieved. 
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ORTA SEVİYE VERİ TEMSİLİNDE DENETİMSİZ NİTEL İK 
ÖĞRENİMİ 

 
ÖZ 

 
Bilgisayarla görme alanındaki en önemli problemlerden birisi olan imge 
sınıflandırma için öznitelik tabanlı klasik yaklaşımların yanı sıra nitelik tabanlı 
yaklaşımlar son yıllarda sıklıkla kullanılmaya başlanmıştır. Nitelik tabanlı 
yaklaşımların en önemli avantajı, insanlar için anlam ifade eden niteliklerin 
kullanılması vasıtasıyla insanoğluna benzer bir öğrenme yapılabilmesidir. Bu 
çalışmada, denetimli nitelik öğrenme sürecinde insan faktörü sebebiyle 
oluşabilecek sorunlardan kaçınmak amacıyla denetimsiz yaklaşım 
geliştirilmi ştir. Denetimsiz yaklaşımımızda niteliklerin ikili ve göreceli olarak 
rastgele üretilmesi sayesinde nitelik öğrenme süreci, literatürdeki diğer 
denetimli ve denetimsiz yaklaşımlara göre daha kolay hale gelmiştir. Ayrıca, 
nitelik sayısının basit bir şekilde artırılması ile nitelik tabanlı yaklaşımlarda 
büyük bir problem olan nitelik sayısının artırılması basitleştirilmi ştir. Rastgele 
üretilen nitelik kümesinin imge sınıflandırma için ayırt etme kapasitesini 
artırmak maksadıyla, rastgele üretilen nitelikler arasından en iyileri kolay 
uygulanabilir bir algoritma sayesinde seçilmiştir. Çalışmada önerilen 
yaklaşımlar literatürdeki diğer benzer nitelik tabanlı çalışmalarla aynı veri 
kümesi (OSR-Açık Alan Tanıma - Open Scene Recognition) üzerinden ve farklı 
sınıflandırıcılar kullanılarak test edilmiştir. Yapılan deneylerde denetimsiz 
öğrenilen göreceli niteliklerin dikkate değer bir performans artışı sağladığı 
görülmüştür. 
 
Anahtar Kelimeler: Göreceli Nitelikler; Denetimsiz Nitelik Çıkartımı; Nitelik 
Seçimi; Görsel Tanıma. 
 
Keywords: Relative Attributes; Unsupervised Feature Extraction; Attribute 
Selection; Visual Recognition. 
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1. INTRODUCTION 
 
Attributes constitute intermediate layer data representation between the low-
level image features (i.e. color/edge histograms, bag of visual words, quantized 
pixel values, GIST, SIFT, Fourier/Laplace/Hough/Wavelet transforms etc.) and 
the top level categories. Because attributes are common properties of the object 
categories, intermediate representations can be achieved by using classes in 
combinations with respect to the shared attributes, and this leads to generating 
new discriminative spaces for visual recognition. 
 
Visual attributes are important for understanding object appearance and can be 
used for describing objects. In detail, visual attributes include color, modal, 
textural, functional, structural, and conceptual or any kind of semantic 
properties of objects. In addition to visual or semantic distinction, the 
representation of attribute is also varied as binary or relative. The presence or 
absence of an attribute in binary and the strength of an attribute in relative 
become important in attribute representation. One may think binary 
correlations (i.e. existence or absence of an attribute in a class) would be 
sufficient while the others claim real-valued ranking scores are essential to 
measure the attribute strength among categories [6,15].  

 
Attributes can be learned by supervised or unsupervised manners. Supervised 
methods are firstly proposed in the literature and then unsupervised approaches 
become more popular. In supervised attribute learning, images are labeled with 
attributes by human effort. Hence, many difficulties occur. These difficulties 
can be summarized as; more general and intuitive attributes are determined 
instead of discriminative attributes which are indeed appropriate for 
classification purposes. In addition, some discriminative attributes may be 
overlooked or could not be expressed by words. Furthermore, erroneous 
attribute tagging can be performed. Finally, the process of attribute extraction 
become exhaustive and it takes a long time in large datasets that may contain 
many attributes [16]. In addition to above mentioned difficulties; attribute 
labeling of datasets in supervised methods needs a great deal of human 
laboring and budget. Moreover, extracting attributes by searching the related 
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images on the internet as in [9] seems to be a clever idea for cost reduction, but 
the discovered attributes can be irrelevant with the image categories. 
  
Since attributes are commonly shared amongst different top level categories, 
one of the major advantages of attributes is that fewer training examples are 
required to train an attribute and a classifier established on the basis of 
attributes. Consequently, the main idea is to learn attributes at the intermediate 
level for separating visual categories efficiently in attribute learning. However, 
the uppermost main target is to discriminate classes and it is not to learn some 
attributes perfectly. 
 
In this work, we aim the image classification with the visual attributes which 
are used as the new feature space at mid-level. This kind of representation is 
achieved in an unsupervised way such that binary and relative attributes are 
learned by random binary predicates or class based relative orderings. 
Additionally, we select some of randomly generated orderings distinctively by 
implementing Kendall Tau metric which computes the distance between two 
sequences. 
 
The contribution of this work is two folded. Firstly, we get unsupervised data 
representation at a new mid-level feature space with binary/relative attributes. 
The class based attributes are generated randomly, and binary SVM scores are 
used out of binary attributes while ordering scores are handled for relative 
ones. So the new feature space is assumablely expanded and established more 
discriminatively. On the other hand, we train the basis vectors of the new 
feature space with a very limited number of training instances. Secondly, we 
also select some of randomly generated attributes with a distance based 
algorithm where more discriminative sequences are picked. We also try three 
classifier (kNN, decision tree and SVM) for accuracy performance 
comparisons. 
 
In Section 2, the development of attribute notion and attribute based 
approaches are explained in mixed form. In Section 3, our proposed algorithms 
based on random binary and relative attributes are introduced while in Section 
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4 experimental results are detailed. Finally, the experimental results are 
concluded. 
 
2. RELATED WORK 
 
The literature of attribute-based computer vision problems can be generally 
summarized in the types and extraction methods of attributes, applications and 
datasets on which they are implemented, and performance criteria in the 
experiments, as shown in Figure 1. 
          

   

Figure 1: Summary of the literature works on attribute-based computer vision 
problems. 

 
Ferrari and Zisserman propose a probabilistic generative model which infers 
whether an image contains a learned binary attribute and determines which 
regions over an object image the attributes may cover [1] in a weakly 
supervised manner. They use simple attribute like shape, color or texture; and 
two adjacent segments produce a complex attribute like spotted, striped, 
checked etc. Lampert et. al. study object recognition for categories which are 
not seen during training at all [2, 3].  
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Farhadi et. al. describe objects by the spatial arrangement of their appearance 
and part based attributes, and they benefit from the interactions between 
attributes [4]. In addition, Farhadi et. al. [5] embed object recognition problem 
into describing objects and mainly focus on attribute learning on the basis of 
semantic (i.e. nameable) attributes like object parts and discriminative 
attributes which are achieved by splitting the visual feature space into different 
regions by comparing some classes randomly in a binary fashion. The 
discriminative intuition is that some attributes cannot be nameable although 
they may be very useful for discrimination. 
 
The relative attributes are first introduced by Parikh and Grauman in [6] with 
the assumption that semantically more enriched data descriptions and 
discrimination will be achieved if we use relative class memberships on 
attributes, instead of binary relations. SVM-like algorithm is implemented as a 
ranking function in which not only maximizing the margins between class 
boundaries but also ordering of classes over attributes space is aimed by using 
Newton’s method. They use predetermined nameable attributes and class 
orderings are given on these attributes in a supervised manner. The main 
restriction of the algorithm is that equality acceptance in category ordering 
according to an attribute. In the notion of equality acceptance, human can not 
differentiate two image belong to different categories. On the basis of the 
supervised relative attributes [8], many studies [33,34] whose aim is to learn 
more robust and precise relative attributes have emerged in the literature. In 
[33], it is claimed that relative attribute learning method is insufficient in 
indistinguishable image pairs which the human can’t sort or differentiate two 
image belong to different categories on the basis of an attribute. Namely, it is 
aimed to sort the image pairs which are assumed as equal situation in [6]. For 
this purpose, Bayesian local learning is proposed in [18]. In addition, instead of 
creating new method for generating relative attributes,  Verma et al [34] 
improve the performance of the basic relative attribute method using patch-
based features instead of global (GIST and Color Histogram) which are used in 
[6]. Verma et al claimed that their representation capture local shape in an 
image comparison to global features. 
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Simple solution to a multi-attribute query is to train a classifier for each 
attribute independently and combine their scores in retrieval. But some 
attribute conjunctions may be more useful since such combinations can be 
learned more easily and they discriminate visual data more. At this point, it is 
critical to determine which combinations of attributes should be trained without 
trying all combinations intensively. Rastegari et. al. [13] focus on learning 
more discriminative attributes by merging some of them, instead of learning 
each attribute individually. Kumar et. al. [14] open an interesting discussion 
about attributes in that similarity of faces with respect to other specific people 
as references may help for achieving more discriminative attributes for face 
verification, called ‘similes’. With such visual traits, for example, a face might 
be described as having a forehead like Barack Obama’s and eyes like Jennifer 
Lopez’s. 
 
It is often intractable for a human to predefine and label all the attributes in 
large datasets explicitly. Furthermore, some attributes may be more valuable 
for recognition although we can’t name them. Ma et. al. [15] implement an 
algorithm to learn class-level relative attributes in an unsupervised manner, 
unlike [6] where relations between pairs of classes on attributes are already 
given relatively. 
 
Instead of using pre-determined binary/relative attribute labels or class 
orderings on attributes, Karayel and Arica [16] follow the similar way of 
unsupervised attribute learning like in [5, 14, 15]. But in here, binary and 
relative attributes are produced completely randomly where classes are 
separated into positive and negative sides for binary attributes, while class 
ranks are selected for each relative attributes. Wang and Mori [17] purpose to 
model objects discriminatively for classification as the dependencies among 
attributes are captured using an undirected graphical model built from a 
training set. The main distinction from other works is that they unify object 
class and attribute predictions in a joint framework since classes and their 
attributes are closely related concepts. 
 
So far, we mainly build category-attribute correlation matrices or dependency 
matrix among attributes for object recognition. Assuming that we have a 
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limited number of nameable attributes which are pre-determined, such matrices 
would not be sufficient for large-scale computer vision problems. Yu et. al. [18] 
add another intermediate layer for multi-attribute based image retrieval which 
corresponds to a large pool (i.e. 6000) of weak attributes. Weak attributes are 
comprised of automatic classifier scores or other mid-level representations that 
can be easily acquired with little or no human labor. Chen et. al. focus on 
learning a regression model which introduces a cumulative attribute 
representation [19]. In details, each attribute is not only discriminative but also 
cumulative such that all other attribute values depend on their relative positions 
in a scalar value. 
 
Human efforts involved in the class-attribute relationship designing are costly 
to obtain, subjective for evaluation and not scalable to large-scale datasets. 
Given images with category labels, Yu et.al. [20] formalize a category-attribute 
co-occurrence matrix for cross-category generalization. This is different from 
randomly generating ‘category splits’ in those geometric properties of category 
separability and attribute learnability are used.Chen et. al. [23] build facial 
classifiers which are based on appearance similarity of people with the same 
birth name. Another work of human description by visual attributes is proposed 
by Sadovnik et. al. [24]. The task is to describe a person in a group that 
distinguishes her from the others. The description will contain as minimum 
number of visual attributes as possible while it is maximizing the likelihood 
that a listener will correctly guess which person description refers. 
 
3. UNSUPERVISED FEATURE LEARNING SCHEME 
 
The overall flow chart of the visual recognition in this work can be basically 
split into three stages: Unsupervised data representation via attributes at mid-
level, category based domain modeling, and evaluation of the classification 
performance. Given the dataset X = {x(i) | i=1,2,3,…,N}; where N is the 
number of train instances and x(i) 

ԑ Rd represents the low-level feature vector, 
we first divide it into three non-overlapping subsets randomly. Train set, 

 }y,{x =X K
1j

(j)(j)
train = ; where Xtrain ⊂ X, y(j) = {1,2,3,…,C}, and C is the number 

of classes in Xtrain, hold for the class label, is used in both unsupervised 



Unsupervised Feature Learning For Mid-Level Data Representation 

 59 

attribute learning and category modeling. Test set, Xtest ⊂  X, is utilized in 
classifier evaluation while the free parameters of classifiers (i.e. kNN, SVM 
and Decision Tree) are optimized in a grid search method on a validation set, 
Xvalidation. Also note that Xvalidation is achieved by inserting small amount of 
white noise to the samples in the dataset. 
 
As mentioned earlier, we learn the classifier discriminants in a new feature 
space as the mid-level data representation, instead of simply using low level 
features. So we learn class based binary and relative attribute models in an 
unsupervised manner which will be detailed in subsections A and B, 
respectively. The binary attributes define output of the binary SVMs where the 
scores are computed by dot (i.e. scalar) products of the input samples, x(j), and 
the learned weight vectors, w ԑ Rd, of the binary SVMs. We call it Score 
Related Attribute (SRA) space. On the other hand, the relative attributes are 
modeled in Newton algorithm of [6]. Although this resembles of SVM method 
very much, the input signal would be the difference of related feature vectors, 
and the comparative condition determines the positive and negative sides, 
instead of tagging binary instance labels. 
 
After we define binary and relative attributes in an unsupervised manner and 
learn them on the train set, Xtrain, we then model our classifiers; kNN, SVM 
and C4.5 decision tree still on the very limited set of train set. Xvalidation is used 
to optimize the parameters of classifiers at hand whereas we compute the 
accuracy performance on the Xtest, eventually. The flow chart of the proposed 
work is depicted in Fig. 2. 
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Figure 2: Schematic flow chart of the methodology 

 
 

A. SRA Representation with Random Binary Attributes 
 
We start with binary attributes for unsupervised feature learning. As the name 
explains itself, a binary attribute refers to whether it exists or not in the visual 
data. As speaking of class based attributes, we generalize them throughout each 
class specifically. For example in the statement “Attribute am exists in Class A, 
but Class B does not have it”, we hypothesize that all instances in a class 
contains or does not contain the mentioned attribute, am, at all. Although it 
seems to be more convenient if the attributes are assigned per instance 
individually, the literature work [6, 15] claim that class based attribute 
definitions result in consistency for learning the attribute models at the mid-
level. Additionally, instance based labeling would consume much more effort 
while this process also hinders the unsupervised learning of data 
representation. 
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In detail, we define class based binary attributes randomly for the unsupervised 
learning in mid-level feature representation with some constraints to the 
random binary sequence generation. First, all ones or all zeros for an 
attribute C

m {0,1} =a , is discarded from the list because they do not help us 
discriminating the visual classes in the attribute space. Next, we include 
random binary sequences into the consideration only if they have at least two 
positions different from each pattern which has been added to the list of 
attribute definitions already. Note that the number of positions which is set for 
discrimination is strongly related to the number of classes in the train set, Xtrain, 
since the length of each attribute sequence equals to it, C. Moreover, we 
explicitly limit the number of random sequences out of all combinations, 2C. 
Nevertheless, binary definitions are produced as many as possible, and we 
select some of them for training, randomly. After we finish the random 
definitions, this process results in M class based binary attributes A = {am | m = 
1,2,3,…, M}, and we carry on the next step of modeling the attributes in binary 
SVMs. 
SVM is a powerful tool for supervised learning which separates the feature 
space linearly into two categories: positive and negative. It tries to maximize 
the margin between positive and negative sides [35, 36]. The margin in SVM 
represents the gap between support vectors of both sides which are data 
samples acceptably close in limits to the opposite ones. The main idea is to find 
the optimum hyperplane that achieves the total minimum distance between the 
support vectors and the hyperplane. After training the SVM, a new sample is 
classified simply as either positive or negative by the result of the dot product 
with the optimized weight vector. In fact, SVM is a linear discriminant 
function and it obviously does not handle nonlinearly separable datasets with a 
satisfactory accuracy. Kernel functions (Gaussian, polynomial, chi-square, 
histogram intersection etc.) are introduced in the literature to establish 
nonlinear SVM classifiers and they achieve a justifiable popularity with SVM. 
Actually, SVM still preserves its linearity in this perspective but the input data 
are transferred into a new feature space via nonlinear kernel functions 
beforehand. Hence, we get more complex feature spaces with higher 
dimensionality instead of complicating the discriminant function itself. 
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In the second part of the introduced architecture, we propose binary attribute 
learning concept that is based on two-class SVM topology. Given the input 
data Xtrain = {x (j),y(j)} and their class based binary attribute assignments 

C
m {0,1} =a ; input signals for the SVM are firstly achieved by Gaussian 

Kernel Function (GKF), K(x(j),Xtrain): 
 

train
j

2

2

train
(j

train
(j) Xx;

2σ

X-x-
e),XK(x ∈= )(

)  
                                                                            

(1) 
 
where σ is the scale parameter that factors the neighborhood. So each data 
sample is now represented by its GKF responses to the data samples (i.e. 
landmarks) in Xtrain. Note that the input dimensionality now equals to the 
number of instances, K. Since SVM is a supervised learning algorithm, the 
sample-attribute assignments obtained in the previous class based attribute 
definition, am : y(j) � {0,1}, are now used as the data labels for supervision, 
instead of y(j) itself. The unconstrained objective function of the SVM is: 
 

j 1 ; b) x(wy (j)T(j) ∀>+                                                                                                           
(2) 

{-1,1}yW
2

1
,0)yGmax(1-w

K

1
P(W,b)J (j)

K

1j

22(j)

x

T
,yG (j)

X
∈+= ∑ ∑

=

;                                        

(3) 
 
where P is the trade-off constant, penalizing data points which violate the 
margin requirements. Gx represents GKF output vector of (1) for each sample, 
x(j), that is the new input signal to the SVM. W is the matrix, which embeds the 
parameter vectors, including biases, b. They are assumed to be orthogonal to 
the hyperplanes that separate both sides (i.e. binary assignments) and initialized 
randomly. As aforementioned, SVM simply separates the space into two parts. 
So the desired output signal for each input, y(j), is achieved by assigning 1 for 
the classes which have the attribute, am, and -1 for the rest. The stochastic 
gradient descent algorithm is then employed as: 
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T

xW GW)(Gh =                

                 (4) 

)y,0)(G-h-2Py max(1
δh

δJ(W,b)
δw xW
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==          

                 (5) 








 += ∑ wδw)(G
N

1
α ∆w T

x        

      (6) 
∆www oldnew −=         

      (7) 
 
where δw is the back propagated derivation of the error signal per data sample, 
∆w is the average weight correction that includes L2 regularization without bias 
terms. Also note that α is the learning rate and hw is the hypothesis function of 
the SVM. Once the SVM is set up, we optimize the weight parameters 
iteratively. The hyperplane is updated with the max-margin objective function 
to separate the samples of each side based on the static sample-attribute 
assignments. The iteration is terminated when the saddle point is reached. 
 
After we find optimum parameters of the SVM, wT, the data sample, x(j), can 
simply be conveyed to the new feature space by its related binary attribute 
score with Score Related Attribute (SRA): 
 

(j)T
aa

(j) x w) ;wSRA(x
mm

=                                                                           

                 (8) 
 
where 

maw is the weight vector of SVM which corresponds to the binary 

attribute definition am, including the bias term, b. So we train an independent 
SVM for each random binary attribute with the given train set, Xtrain, and the 
visual data is now in a new M (i.e. number of binary attributes) dimensional 
feature space by their SVM scores. Eventually, we implement our classifier 
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algorithms on the train set Xtrain, where the feature vectors are now represented 
in the mid-level, instead of their original space Rd, where M << d. 
 

B. Rank Based Representation with Relative Attributes 
 
The relative attribute definitions are first introduced in [6] and they have 
attracted much attention so far [15, 16, 30]. Unlike binary attributes, they infer 
the relative strength of an attribute on the visual data, instead of exposing the 
existence (or non-existence). As it can be seen in the statement of “Class A has 
attribute am more than Class B, but less than Class C,” the class based relative 
attributes order the visual categories on the basis vectors of a new feature space 
by comparative constraints; i.e. more/less than. They have obvious advantages 
over the binary definitions in those: 1. More input data are fed into the attribute 
learning models because the input data are now the pairwise comparisons of 
the samples. Assuming that each class has K examples and we have C 
categories in the training data set, Xtrain, then the number of input data will be 

2C
2 )KC( , instead of KC. So we assume that more training data would increase 

the accuracy performance in learning the attribute models. 2. Since we 
randomly define the relative attributes by ordering the classes in each attribute 
basis, the total number of possibly generated ordering patterns equals to the 
permutation of the number of classes, C. Thus, one can produce many random 
ordering sequences more than the binary predicates, and more discriminative 
patterns may be selected among them. 
 
Given a class based ordering, am = {c(1) > c(2) > c(3) > … > c(i)}; c (i)∈C, which 
relates every category to each other with a less/more condition, we use the 
Newton method of [6] for a relative attribute as: 
 

)()( jT
m

j
m xw)(xr =                                                                                           

(9) 

baba
(j)
C

T
m

(i)
C

T
m cc c , cxwxw , ji;:

m
O(i,j)

ba
>∈∈>∈∀                                                              

(10) 
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2
m

                                                                                                 

(12) 
 

where rm is the reel ranking score of the training instance, x(j), on the attribute 
basis, am, wm ∈ Rd is the parameter vector of the relative attribute model, Om is 
the set which consists of pairwise data instances holding for the more/less 
conditions. When we look into (11) closer, the equation is very similar to that 
of the SVM. But the input signal is now the difference of pairwise feature 
vectors from the set, Om, not the low-level feature vectors itself. So the 
optimum solution would then order the classes on the weight vector, wm, by 
minimizing the cost function of (12); where T is the constant that regulates the 
balance between weight decreasing and the non-negative slack variables, ij γ . 

This results in maximizing the margin between classes in the order definition, 
am.  
 

Once we optimize the free parameters, wm, the attribute strength is computed 
as in the binary attribute score. Hence, we convey the original input data x(j) 
into a mid-level feature space by M (i.e. number of generated relative 
attributes) dimensional ranking scores, M << d. The next step is to answer how 
one may generate class orderings for relative attribute modeling which will be 
detailed in the subsections below. 
 

(1) Random Relative Attributes 
 

We follow the same approach of binary attribute generation described in 
section 3.A. The relative definitions, A = {am | m = 1,2,3,…, M}, indicate 
ordering the visual categories,  {c(1) > c(2) > c(3) > … > c(i)}; c(i)∈C, randomly 
for each attribute, am. The class ordering expands the feature space much more 
than binary attributes and we have many options this time. The random class 
based ordering sequences are included into the consideration only if they have 
at least four positions different from each pattern which has been added to the 
list of attribute definitions already. Note that the number of different positions 
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is twice that of binary predicates. So we produce many unique orderings (say 
1,000) and select M sequences out of them randomly.  
 

(2) Selective Relative Attributes 
 

To make attribute definitions more discriminative, we propose a new approach 
for picking some orderings based on Kendall Tau (KT) correlation metric [15], 
instead of selecting randomly. For each pair of randomly generated attribute 
definition, KT is computed as: 
 

)C(

nn
KT

C
2

dc −
=                                                                                                                          

(13) 
 

where nc and nd are the number of concordant and discordant pairs between the 
two orderings and the denominator refers to the total number of pairs. The 
range of KT is then in [-1,1], and it is -1 if two orderings are complately 
different (1 if they are the same). Thus, we first compute a correlation matrix in 
which each element is the KT value of pairwise orderings of all generated ones, 
next the average correlation values of all definitions are sorted in the 
decreasing order, finally we select the top M random orderings (i.e. least 
correlated) among them. Thereafter, the preselected classifiers (i.e. kNN, SVM 
and C4.5 decision tree) are modeled on the train set, Xtrain, while optimizing 
their free parameters with Xvalidation. 
 

4. EVALUATION OF THE PROPOSED WORK 
 

A. Experimental Setup 
 

We use Outdoor Scene Recognition (OSR) Dataset [6] containing 2,688 
images of 8 scene categories. The distribution of images for the dataset is 
shown at Table I. Note that the number of samples in each class varies. OSR 
dataset is also utilized in [6] and [15] which are the recent studies in attribute 
based object recognition literature. Besides, the provided low level features 
(i.e. GIST) and the same train/test splits for multiple runs are used as the initial 
input in multi-category classification schemes. Most of the outdoor scenes in 
OSR dataset display large intra-class variability, meaning that object contents 
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within a scene category are very different while inter-class variance is small 
especially for the natural scene categories. This issue makes the object 
classification problem harder when working with OSR dataset. Example 
images from OSR are displayed in Fig. 3, respectively. 
 

Table I. THE DISTRIBUTION OF IMAGES FOR OSR DATASET. 
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Figure 3: OSR dataset sample images. 
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For the training phase of both attribute models and visual classes, we randomly 
select 30 instances from each class as Xtrain, and the rest is used as the test set, 
Xtest. Note that the Xtrain is very limited due to the mid-level attribute 
representation when compared to the low-level features in classification. The 
experiments are repeated 20 times, and the mean and standard deviation values 
are noted at tables for comparative results whereas the average accuracies are 
used in the figures. Additionally, we limit the number of both randomly 
generated relative and binary attributes to 28 for the sake of comparison to the 
other literature work. 
 
Furthermore, we evaluate three algorithms to measure their classification 
accuracies in the mid-level attribute space: SVM, kNN, and C4.5 decision tree. 
We select these methods as they are powerful and popular discriminants on the 
shelf. So WEKA toolbox [37] is used to implement them while we optimize 
their free parameters (i.e. the regulator constant, C, for SVM; the number of 
nearest neighbors, k, for kNN; the pruning confidence, C, and the minimum 
number of samples, M, for the decision tree) on the Xvalidation. Additionally, we 
normalize the feature vectors of attribute scores as the new inputs to the 
classifiers by whitening process of [38] in order to achieve zero mean and unit 
standard deviation for each dimension. 
 
Finally, we also use the supervised binary and relative attribute definitions 
which are given in [6] to promote the benefits of unsupervised (i.e. randomly 
generated) definitions. Fig. 4 displays the usage combinations of all attribute 
patterns that are utilized for the experiments, detailed in the next subsection. 
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Figure 4: Attribute based comparisons scheme.  

 
B. Classification Results 

 
In this subsection, we first analyze the classification results in different 
configurations of attributes and classifiers. The experiments are repeated 20 
times and the mean and standard deviations are noted for binary attributes as 
SRA results and relative attributes as Newton ranking scores at Table II and III, 
respectively. Also note that we use the 6 binary and relative attribute 
definitions which are already established on OSR dataset in a supervised 
manner [6]. Additionally, we generate/select 28 random binary and relative 
attributes to compare the classification results with the other literature work, 
although we may produce them as many as needed that is dependent with the 
number of visual classes at hand. 
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Table II. SRA RESULTS WITH BINARY ATTRIBUTES ON OSR 
DATASET. 

 
 Classifier Accuracies (%) 

Attribute Type kNN Decision 
Tree 

SVM 

binary_attributes_supervised 
(BAS) 

52.99 ± 2.58 49.07 ± 
2.32 

54.88 ± 
3.68 

binary_attributes_random 
(BAR) 

75.27 ± 1.52 62.31 ± 
3.99 

74.28 ± 
1.63 

binary_attributes_all (BAA) 76.38 ± 1.55 64.38 ± 
3.34 

76.73 ± 
1.59 

 
For speaking of supervision, randomly generated attributes outperform the 
human labeled attributes at both tables considerably. This is due to the fact that 
we can generate more definitions randomly at no cost and this expands the 
mid-level feature space discriminatively which results in better accuracies. We 
claim that supervision may sometimes divert the learning system into a worse 
situation as it is subject to the human experience, and hard work of labeling. 
Nevertheless, we can surely append the supervised attributes into the 
unsupervised patterns if they exist. We achieve almost 2 % increase in the 
performance at both tables when they are concatenated with the unsupervised 
attributes. Additionally, relative attributes overcome the binary definitions 
about 2-3 %. We assume that the class orderings which we may produce 
randomly is related to the permutation of the number of categories, not power 
of 2, and that gives many more choices for selection. Additionally for the 
relative attributes as detailed in section 3.b, we run the KT algorithm to select 
more discriminative ordering patterns from the randomly generated pool, 
instead of random selection. We see that selective relative attributes indeed 
increase the performance more than 2 %, and this confirms our previous 
assumptions. On the other hand, SVM algorithm achieves better accuracies 
than kNN and C4.5 decision tree overall while C4.5 is the worst. Note that the 
kNN gets the similar, even better results than SVM although it is the simplest 
instance-based classifier. We assume that non-parametric learning of the kNN 
method benefits the attribute based feature space more than the others. 



Unsupervised Feature Learning For Mid-Level Data Representation 

 71 

Table III. NEWTON RESULTS WITH RELATIVE ATTRIBUTES ON OSR 
DATASET. 

 
 Classifier Accuracies (%) 

Attribute Type kNN Decision 
Tree 

SVM 

relative_attributes_supervised (RAS) 62.17 ± 
1.02 

54.54 ± 
2.05 

63.12 ± 
1.79 

relative_attributes_random (RAR) 76.78 ± 
1.97 

69.77 ± 
2.63 

76.34 ± 
1.52 

relative_attributes_all (RAA) 77.15 ± 
1.52 

73.57 ± 
2.04 

77.86 ± 
2.13 

selective_relative_attributes (SRA) 77.24 ± 
1.87 

70.81 ± 
3.62 

77.12 ± 
1.96 

selective_relative_attributes_all 
(SRAA) 

78.36 ± 
2.01 

72.66 ± 
2.91 

79.86 ± 
2.52 

 
Next, the proposed method is compared with the similar approaches in 
literature on the same experimental setups, and the mean accuracy results of 
the multiple experiments are listed at Table IV. BINs, PCA and FLD 
algorithms are actually used for dimension reduction and these references are 
not related to the attribute learning. Nevertheless, the basis vectors (i.e. like 
attribute weight vectors, w) which are extracted during the implementations 
help representing the data in a new features space, so they are included as 
baselines for this reason. Besides, the other methods generate 
supervised/unsupervised attributes in the intermediate level for visual 
recognition, like the proposed work.  
 
The results at in Table IV show that the proposed method outperforms the 
other approaches for about a minimum of 1 % with the selective relative 
attributes. In general, it is observed that the attribute-based methods achieve 
much better accuracies than the other baseline works. So the attributes do not 
only reduce the dimensionality but also do they constitute a more 
representative space in the mid-level. On the other side, the unsupervised 
attributes display increased performance when compared with the supervised 
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ones. Additionally, the accuracy rises up even further when we combine the 
both types. We assume that the expanded number of unsupervised attributes 
with distinct class orderings establish a better representation without human 
laboring, leading to more effective classifiers. 
 

Table IV. PERFORMANCE COMPARISON OF THE ALGORITHMS. 
 

Algorithms 
# of 

Attributes  

Mean 
Accuracy 

(%) 
BINs [15] 28 76.05 
PCA [15] 34 71.46 
FLD [15] 28 63.10 
Supervised Attributes (SAT) [6] 6 72.82 
Unsupervised Attributes (UAT) [15] 28 76.57 
SAT+UAT [15] 34 77.88 
RAS [16] 34 78.64 
Our Binary ALL 34 76.73 
Our Selective Relative ALL 34 79.86 

 
Additionally, we evaluate the behavior of mid-level feature space by changing 
the number of attributes that we generate randomly in the proposed work, and 
the graphical results are displayed in Fig. 5. Note that we use the SVM results 
as it is better than kNN and C4.5, comparatively. When we take into account 
the results of supervised attributes (i.e. 6 binary/relative definitions) at Table II 
and III, the accuracy performance is almost the same with 10-12 randomly 
generated binary and relative attributes, respectively. After this point, we 
outperform the supervised attributes obviously, and it confirms that the 
performance is increased as we enlarge the feature space with more attributes, 
although we select them randomly. Moreover, the relative definitions achieves 
better accuracies than the binary attributes. We think the main reason is that the 
Newton method orders the visual categories by maximizing the sequential 
margins with many more pairwise inputs, and we can generate more orderings 
than the binary predicates. Also, the selective relative attributes gets the best 
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performance since the KT correlation metric is used to pick the more 
distinctive orderings, instead of simply selecting them randomly. Another point 
is that we can have even better results if the supervised attributes are 
concatenated with the unsupervised orderings. One may use the unsupervised 
definitions as the supplementary feature space if the supervised attributes 
already exist. 
  

 

Figure 5: Performance comparisons with varying number of attributes.  
 
Receiver Operating Characteristic (ROC) curve is frequently used in literature 
to evaluate the performance of classifiers. Basically, the ratio of false and true 
positive samples is plotted by changing thresholds in a step-wise manner. The 
classifier is regarded as more successful when its plot rises up earlier and 
sharper than the others. Eventually, we compare the performances of binary, 
relative and the selective attributes with their supervised and combined (i.e. 
supervised + unsupervised) versions on ROC curves for OSR dataset in Fig. 6. 
As seen, the accuracy is increased obviously when all attributes are used 
together, and this confirms that the unsupervised attributes add discriminative 
power in dimensionality. Additionally, the selective relative attributes 
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outperform the others clearly while relative definitions are better than the 
binary predicates. 
 

 

Figure 6: ROC analysis of the attribute types on OSR dataset.  

 
5. CONCLUSION 
 
In this work, we introduce two approaches for the mid-level visual data 
representations in an unsupervised manner which is based on the binary and 
relative attributes, respectively. Binary attributes mainly split the low-level 
feature space into two sides; i.e. positive and negative. Then, the SVM 
algorithm is established to maximize the margin, and its scores are used as the 
new data representation. On the other hand, the Newton method tries to 
maximize the gap between visual categories based on a definition which 
describes the relative ordering. So we first generate random attribute 
definitions with some limited constraints that assure to get exclusively different 
binary predicates and relative orderings. Thereafter, we convey the low-level 
feature vectors into a more discriminative attribute space by using their new 
representations, and the classification is carried on this new space. 
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In the experiments, we utilize a mid-scale visual recognition dataset, OSR, to 
evaluate the combinational attribute types and classifiers, namely SVM, kNN, 
and C4.5 decision tree. Also note that only a limited set of train data is used for 
learning both the attribute and classification models which benefits the mid-
level data representation. The results reveal that the unsupervised attributes 
outperform the supervised definitions clearly although we produce them 
randomly without any effort. Additionally, KT correlation metric is used to 
pick the more discriminative orderings among randomly generated sequences, 
instead of simply selecting them randomly. This also boosts the accuracy 
performance slightly. Moreover, we have even better results if the supervised 
attributes are concatenated with the unsupervised orderings. We conclude that 
the unsupervised definitions can be used as the supplementary features if the 
supervised attributes already exist. 
 
For the future work, we focus on the relative attribute selection issue since it 
already proves to be an important tool for the performance increase. Also, the 
classifier algorithms can surely be used in a combined form, called mixture of 
experts, to make better decisions at the end of the classification process. Lastly, 
an incremental learning scheme can be established on the proposed work which 
refers to learning the attribute space and category models simultaneously in an 
iterative way. 
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