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Abstract
Several extreme events in history have shown that the low probability and high impact
extreme values may result in catastrophic losses. In this paper, we propose the use of
extreme value theory with a time-varying framework to model the bivariate dependent
insurance occurrences and provide more reliable risk measures, such as value at risk and
expected shortfall. In this paper three models are considered; time series for the underlying
volatility of the data, extreme value theory for the tail estimation, and copula to model the
dependence structure are combined. The performance of the proposed generalized Pareto-
GARCH-Copula model is tested using the violation numbers and backtesting methods.
We then aim to assess the combined model in terms of its effectiveness in reducing the
ruin probability. Results show that, compared to well-known traditional methods, which
may underestimate the extreme risks, the dynamic generalized Pareto-GARCH-Copula
model captures better the real-life data’s behavior and results in lower ruin probabilities
for heavy-tailed and non-conventional dependent insurance data.
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1. Introduction
The increasing frequency and the severity of catastrophic events worldwide have shown

that extreme events are non-negligible. Even though these events are probabilistically
infrequent, the consequences are severe if caught blindsided [20]. Extreme value theory
(EVT) focuses explicitly on the tail of the distribution over a threshold and offers an
insight into the severity of the future potential extreme events that can be more extreme
than any previous historical event.

EVT is applied to many scientific disciplines, including flood frequency analysis, fire
insurance claims, and financial time series. It became favorable in actuarial science in
the 1990s and since then, used for the modeling of unusually high and unexpected non-
life insurance losses [4], and mortality [5]. Implementation of EVT is also present in
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the pricing of the Swiss Re mortality index bond [2] and reinsurance layers [22]. New
approaches develop based on the EVT to find the capital requirements set by the Basel
III framework [28].

Even though past studies in EVT used static parameters, in some cases, the shape of
the tail can change over time due to exogenous factors. Based on this, an approach is
suggested where the threshold itself is included in the model as an unknown [3]. Later
on, a time-dependent parametric form is proposed to capture the data volatility [30], at
which a generalized autoregressive conditional heteroscedasticity (GARCH) model is used
to forecast the time-varying parameters of the tail distribution. The addition of time series
models to the EVT allows some eventual asymmetry and historical data changes to reflect
on the model. In the presence of heavier volatility than that of in insurance data, for
example, financial time series, a Bayesian non-parametric form of EVT is proposed [6].

Considering that insurance companies usually have business in more than one branch
(life insurance, motor insurance, etc.), creating correlated loss sources, the interrelations
and diversification effects in assessing the risk should be examined. Generally, the normal
distribution method is not suitable for measuring the tail dependence in extreme value
data sets [31]. Therefore, from the perspective of risk modeling, extreme value copula
models are frequently used as it allows discovering the unique dependence structure of
multivariate extreme distributions [12].

The main aim of this study is to quantify the multidimensional risk covered by insurance
contracts and provide robust risk measure estimations by integrating copula and time series
to the time-varying EVT. The sliding windows approach is used in parameter estimation
to incorporate the time-varying changes in data and to consider the threshold as a model
parameter. The proposed generalized Pareto distribution (GPD)-GARCH-Copula model
considers volatility, time-varying changes in data and the potential dependence on the
extreme values on the right tail. We utilize value at risk (VaR) and expected shortfall
(ES) risk measures to quantify the risk for the selected confidence level, which are also
used in practice to determine the capital requirements. We test the model in univariate
and bivariate cases to analyze the effect of multidimensionality and compare it with other
traditional estimation methods; historical simulation (HS), normal approximation (NA),
and exponentially weighted moving average (EWMA). We implement backtesting methods
to compare the accuracy of violation numbers generated from the risk measure estimation
methods.

The secondary target of the paper is to investigate the benefits of the GPD-GARCH-
Copula model on the ruin theory for the heavy-tailed data. We analyze whether the
proposed model will make a change in the probability of ruin by including extreme values
in the modeling. By implementing the risk measure estimations as initial surplus, we study
the effects of each competing method on the heavy-tailed and time-varying asymptotic ruin
probability.

The rest of the paper is organized as follows. Section 2 introduces the methodology for
EVT, risk measure estimation methods, ARMA-GARCH, and copula model. The time-
varying structure is briefly explained in Section 3 which is followed by Section 4 describing
the use of the backtesting methods to compare the validity of the risk measure results.
Section 5 reviews the ruin probability under the heavy-tailed data assumption. Section
6 presents the implementation of the method to real-life data and its numerical findings.
Section 7 concludes the study.

2. Risk measures and dependence in extreme value theory
From the insurance point of view, risk management is principally interested in high

losses in the right tail. EVT uses statistical methods to extract information from the
extreme values in a given data. The methodology is divided mainly into two principal
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approaches: (i) block maxima method (BMM), and (ii) peaks over threshold (POT).
Both have the purpose of modeling the series of maxima or minima, depending on the
interest of the study.

BMM divides the stream of data into several intervals that have the same fixed length.
The highest value in each interval is considered the extreme value. Depending on the
length of the interval, the number of extreme values can be very few. The uncertainty of
the interval length is the main shortcoming of BMM. Considering that we are interested
in extreme events that do not occur frequently, data loss becomes an issue. On the other
hand, POT overcomes this drawback by fitting a GPD to the values exceeding the deter-
mined threshold. It is considered to be the more useful method for real-world applications.
However, the POT has its drawback in determining a sufficiently high threshold to start
modeling.

POT models the exceed values over a predefined threshold value. Let Xi, i = 1, . . . , n,
be independent random variables with a common distribution function F . The maximum
of these n random variables are defined as Mn = max(X1, . . . , Xn). If there exists the
constants an > 0, bn ∈ R and non-degenerate distribution function H, such that

lim
x→∞

(
Mn − bn

an
< x

)
= H(x), (2.1)

then the distribution function F belongs to the maximum domain of attraction of the
extreme value distributions H (F ∈ MDA(H)).

Given that X having a cumulative distribution function (cdf) F , where xF = inf{x :
F (x) = 1}, the conditional distribution of exceedances over a sufficiently high threshold,
Fu(y) u < xF , is

Fu(y) = P (X − u ≤ y | X > u)

= F (u+ y) − F (u)
1 − F (u)

,
(2.2)

where, 0 ≤ y ≤ xF − u, and xF ≤ ∞.

Theorem 2.1 (Pickands, Balkema De Haan (PBH)). For a large family of distributions,
as the sufficiently large threshold value u is progressively raised, Fu can be approximated
by a two parameter GPD with parameters ξ for shape and σ for scale, such that

F ∈ MDA(H) ↔ lim
u→xF

sup
0≤y≤xF −u

|Fu(y) −Gξ,σ(y)| = 0. (2.3)

and here, the cdf of the GPD is defined as

Gξ,σ(y) :=
{

1 −
(
1 + ξ y

σ

)−1/ξ for ξ ̸= 0
1 − exp

(
− y

σ

)
for ξ = 0

(2.4)

where, 0 ≤ y ≤ xF − u if ξ ≥ 0, and 0 ≤ y ≤ −σ/ξ if ξ < 0. The proof of PBH theorem
can be found in [1,23].

Based on the real-life data, we can employ the PBH theorem to determine the distri-
butional behavior of the tail, which is expected to cause the insurance company to pay
extreme losses. Having this as an important setup, we need to make a plausible selection
on the threshold that is decisive in the form of tail distribution through parameter esti-
mation. By setting a low threshold (u), one can expect to have a larger data set which
becomes advantageous for better parameter estimation. However, the POT method is
based on the convergence and assumption of the selected threshold approaching the xF .
It is known that the higher the threshold is, the better the GPD fits [13]. Therefore,
choosing an appropriate threshold refers to the assurance of a balance between bias and
variance. However, there is no exact norm for selecting the right threshold [15]. For this
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reason, we use the conventional quantile-quantile (QQ), mean excess (ME), and Hill plots
to examine and determine the optimal threshold level.

A static model, which is generally suitable for independent and identically distributed
(iid) data, applies to the EVT unconditionally to the observations. However, the iid
condition does not hold for most real-world cases, especially, under high volatility and
dependent data structure. In recent years, the idea that has become widespread in risk
measure calculations is the necessity to consider the time-varying changes in the observa-
tions.

To capture the possible changes in data; including volatility, autocorrelation, and drift,
we propose a comprehensive ARMA(p, q)-GARCH(m, s) model which is given as

Xt =
p∑

i=1
φiXt−i +

q∑
j=1

εt−j + εt,

εt =σtνt,

σ2
t =α0 +

m∑
i=1

αiε
2
t−i +

s∑
j=1

βjσ
2
t−j ,

(2.5)

where νt > 0, αi ≥ 0, βj ≥ 0, σ2
t is the variance process, and εt is residual at time t.

The claims over the time frame can be captured well by the time series model whose
variance is known to be varying over time. The ARMA-GARCH model explained above,
builds up the main foundation of the loss models whose residuals are used to develop a
sophisticated model for the tail behavior. In the bivariate case, where both of the variables
following ARMA-GARCH, yield residuals, whose tails also imitate the similar extreme loss
behavior as the original data. The well-known risk measures VaR and ES can be taken
as leading indicators to determine the boundary for the threshold value. Given the loss
random variable X and its distribution function F , VaRq and ESq are defined as

VaRq := min{x : F (x) ≥ q}, (2.6)

ESq := E [X|X > VaRq] , (2.7)
respectively. The number of exceedances above a pre-specified threshold u, Nu over n
observations, is Nu = #{1 ≤ i ≤ n : xi > u}. Therefore, the empirical distribution
function at u, F (u), becomes

F(u) = n− Nu

n
. (2.8)

When Fu(y) is replaced by Gξ,σ(y), the distribution function is obtained as

F(x) = 1 − Nu

n

(
1 + ξ

x− u

σ

)−1/ξ

. (2.9)

Given the quantile q, the risk measures can be derived such that

VaRq = u+ σ

ξ

[(
n

Nu
(1 − q)

)−ξ

− 1
]
, (2.10)

ESq = VaRq

1 − ξ
+ σ − ξu

1 − ξ
. (2.11)

The credibility and reliability of these risk measures should be evaluated due to extreme
value behaviors. Therefore, we propose a comparative analysis using the examination
of the performance of risk measures obtained by GPD-GARCH-Copula with traditional
methods. The reason behind this is that traditional methods have their own drawbacks.
For example, the HS method is based on the convergence of the empirical distribution to
the actual loss distribution, which relies on the stability of the historical data set. The
NA method provides a straightforward methodology and application, but it overlooks the
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heavy tail and skewed distributional properties. The EWMA method can explain the time-
varying changes in the volatility to an extent by assigning exponentially decreasing weights
to each past data. Although these models are naive, they are still the most commonly
used ones in practice. We expect the proposed approach overcomes the shortcomings of
these well-known methods.

When we consider the existence of an association between two loss variables, the tail
portions of those are expected to keep the same dependence. Along with conventional cor-
relation measures, the theoretical flexibility of copula in capturing the dependence should
be taken as an advantage to tackle the dependence among risks. If the underlying distri-
bution is other than an elliptic distribution, the linear correlation is insufficient to measure
the dependence. Without requiring any assumptions about the underlying distribution,
the copula allows the risk manager to separate an n-dimensional joint distribution function
into its n marginal distributions and a copula function.

A d-dimensional copula is a multivariate distribution function denoted by C(u), u =
{u1, . . . , ud}, that is defined on [0, 1]d. The behavior of d random variables X1, . . . , Xd

with marginal distribution functions F1(x1) = u1, . . . , Fd(xd) = ud is described by their
joint distribution function F , and there exists a copula C, such that [26]

F (x1, . . . , xd) = C(u1, . . . , ud). (2.12)

Based on the dependence structure, there are two families of copulas, elliptical and
Archimedean. Along with these two families, we consider the extreme value copula family,
which can capture the various dependence structures occurring at the most tail portions.
We study the selection of optimal copula model based on Akaike and Bayesian informa-
tion criteria among Gaussian, Student’s-t, Clayton, Frank, Gumbel, Joe-Clayton, Placket
copula, and their variations.

3. Time-varying model parameters
The threshold in the traditional approach is generally chosen as a high enough percentile

of the data [10], and it is fixed during the analysis period. However, the literature shows
that for the POT method the selected threshold value significantly affects the parameter
estimates [9].

Typically if we consider a financial or actuarial time series, non-stationarity and changes
in tail behavior are observed. For this reason, an approach that accounts for time-varying
changes in the parameters needs to be developed. A new model is proposed in which the
threshold itself is a parameter [3], and the possible approaches to model the data below
the threshold are shown [25]. Nevertheless, all these models consider static and GPD
parameters.

Failure to recognize time-dependent changes can cause the premium and risk measures
used by the insurance companies to determine the capital amounts in the long term to
be inaccurate and nonstable. The dynamic GPD-GARCH-Copula model connects the
threshold parameter to other model parameters via a moving windows approach. The
window length in which the parameters are re-estimated should be selected as not too
broad or narrow to ensure enough extreme values above the threshold for the GPD fit.

4. Backtesting methods
Backtesting the violation numbers are considered in the analysis of the forecasting

performance of the risk measure estimation methods. The violation number is defined as
the number of times the observed value exceeds the forecasted risk measure in the testing
period. The proportion of the violation number to the length of the testing period should
be close to the selected confidence level. If this is not the case, the proposed method of risk
measure calculation is not valid or reliable. Widely used tests in literature are Kupiec’s
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proportion of failures (POF), Christoffersen’s independence and interval forecast (IND),
and composite (CC) tests.

Kupiec’s POF Test [21] is the most commonly used backtest in literature. Given that
the number of violations is v and the sample size is n, it follows a binomial distribution
with parameters n and q. The null hypothesis is; the observed violation rate, (v/n), equal
to the expected violation rate, (1 − q), with the log-likelihood ratio, LRPOF,

LRPOF = 2
[
ln

(
v
n

)v (
1 − v

n

)n−v

(1 − q)vqn−v

]
(4.1)

which follows the χ2
1 distribution. Thus the model is rejected if the violation number is

too high or low. The drawback of this test is that it may fail to reject a model having a
violation clustering.

Christoffersen’s independence test depicts if an outcome of an estimate (violation or
not) is dependent or independent of the previous estimate. The test first categorizes the
outcomes via an indicator, It = {0, 1}, where 0 refers to no violation and 1 refers to a
violation at time t. For the two following days, similar to a Markov chain, there are four
possible categories, It,t+1 = {00, 01, 10, 11}, whose number of outcomes is represented by
nij as described in Table 1.

Table 1. Christoffersen’s Markov chain representation [8].

It−1 = 0 It−1 = 1 Total
It = 0 n00 n10 n00 + n10
It = 1 n01 n11 n01 + n11
Total n00 + n01 n10 + n11 N

The violation probabilities πi for i = 0, 1, are expressed as

π0 = n01
n00 + n01

, π1 = n11
n10 + n11

,

π = n11 + n01
n00 + n01 + n10 + n11

.
(4.2)

Hence, the resulting log-likelihood ratio becomes

LRIND = −2
[
ln (1 − π)(n00+n10) π(n01+n11)

(1 − π0)n00 πn01
0 (1 − π1)n10 πn11

1

]
. (4.3)

Similar to the POF test, the LRIND function follows χ2
1 distribution. The disadvantage

of this test is that it only tests the independence of two consecutive days. Therefore, it
ignores the violations above or below two days.

To address the problem of the independence test, a composite independence test is
proposed [7]. The simplified format for the composite test statistic is defined as

LRCC = LRPOF + LRIND. (4.4)
The combined LRCC function follows χ2

2 distribution. The composite test can detect a
violation from POF and IND tests combined. It comes with a decreased ability to detect
a violation of only one of the two tests.

5. Ruin probability for heavy-tailed distributions
Most of the studies focus on the EVT model and compare its result with more traditional

method; hardly any of them investigates its effects on the ruin probabilities. In insurance,
we often deal with heavy-tailed distributions. Therefore in EVT, its asymptotic behavior
is used to represent the actual probability [17, 19]. Similarly, the ruin probability can be
approached asymptotically [14].
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We now aim to study the effects of EVT on the asymptotic ruin probability under some
heavy-tailed distributional assumptions. The classical CramérLundberg model is built
upon the relationship between the initial surplus, premiums collected, and the loss paid.
The number of losses, N(t), follows a homogeneous Poisson(λt) counting process, and it
is assumed to be independent from the loss Xt ≥ 0, which is iid with common distribution
function, F , E(X) = µX < ∞ and Var(X) = σ2

X < ∞. The cumulative loss process, S(t),
is defined as

S(t) =
N(t)∑
i=1

Xi, t ≥ 0, (5.1)

and it forms an independent compound Poisson process with the expected value of E[S(t)] =
µXλt, under independence assumption. Here, EVT is emphasized since S(t) is mostly af-
fected by the few extremely large claims in the tail portion.

Assuming that σ2
X < ∞ in the Cramér-Lundberg model, by CLT {S(t) − E[S(t)]} fluc-

tuates in the order of
√
t. By definition, the extreme values in the loss process only occur if

σ2
X = ∞, which creates a contrast to the classical theory designed for the framework of the

small claims. On the other hand, the σ2
X = ∞ condition is not a rarely seen circumstance

for insurance data. The extreme portion of the distributions, which by nature does not
have a finite moment generating function (mgf) and tails follow a power law and can be
modeled by EVT.

Consider a large initial capital denoted with u0 ≥ 0 and a premium rate denoted with
c(t) > λtµX earned continuously with time. The surplus process following the Cramér-
Lundberg model is defined as

U(t) = u0 + c(t) − S(t), t ≥ 0, (5.2)

where, the premium is considered under the expected value principle, such that c(t) = (1+
ρ)λtµX , and ρ > 0 denotes the premium safety loading factor. By taking c(t) > E[S(t)],
the ruin with probability one is avoided, and U(t) is ensured to have a positive drift.
The infinite time horizon ruin probability, ψ(u0), is the probability that the first time the
surplus falls below 0, such that

ψ(u0) = P

(
inf
t≥0

(U(t) < 0)
)

= P

inf
t≥0

(1 + ρ)µXλt −
N(t)∑
i=1

Xi < −u0

 .

(5.3)

Pollaczek-Khintchine formula [18,24] defines the ladder heights as

Lt = sup
t≥1

(u0 − U(t)) = sup
t≥1

(S(t) − c(t)) , (5.4)

where the process Lt has stationary and independent increments, and the number of
the ladder heights have Geometric distribution with parameter θ = ρ/(1 + ρ) and t ≥ 1.
Under the net profit condition of the CramérLundberg approximation, where c > µXλt for
‘small claims’ Xt has a finite moment generating function. Then, there exists a Lundberg
constant (adjustment coefficient) R ∈ (0,∞) that is derived from the Esscher transform
of F , which leads to ∫ ∞

0
e−RxF (x)dx = c

λ
, (5.5)

where F = 1 − F . Therefore, the ruin is very unlikely and ruin probability has an upper
bound such that [16],

ψ(u0) ≤ e−Ru0 , u0 ≥ 0, (5.6)
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which leads to an asymptotic limit, a constant value C ∈ (0, 1), such that

lim
u0→∞

ψ(u)eRu0 = C. (5.7)

The smaller claims assumption, providing the existence of unique R, can be shown
in terms of E(eRxt) and this property holds for any distribution function with exponen-
tially bounded tail functions. For heavy-tailed risk losses (with power tail behavior), the
smaller claims condition in Equations 5.6 and 5.7 are typically not satisfied. Therefore,
for the heavy-tailed distributions ruin probability should be reconsidered. Let fI(y) be
the integrated density function, and FI be the integrated tail distribution function of F ,

d

dy
FI(y) = fI(y) = 1 − F (y)

µX
, (5.8)

1 − FI(u0) = 1
µX

∫ ∞

u0
F (y)dy, x ≥ 0, (5.9)

respectively. Under these conditions by using compound Geometric distribution, the prob-
ability of ruin can be obtained as

ψ(u0) = ρ

1 + ρ

∞∑
n=0

1
(1 + ρ)n

Fn∗
I (u0), u0 ≥ 0. (5.10)

To express the n-fold convolution of integrated F , Fn∗
I (u0), we let X has a Pareto like

distribution tail such that, F (x) ∼ cx−α for x → ∞, where c and α are positive constants.
Then, the n-fold tail convolution of F becomes

Fn∗(x) = P (X1 + · · · +Xn > x)
∼ P ( max

1≤i≤n
Xi > x)

∼ nF (x), x → ∞.

(5.11)

Equation 5.11 leads to the defining property of a sub-class of heavy-tailed distributions
called subexponential distributions, and is denoted by S, ∀n ≥ 2. For all F ∈ S

lim
x→∞

Fn∗(x)
F (x)

= n, (5.12)

where x > 0, all widely used heavy-tailed distributions fall under the class of S and subex-
ponential distributions contain the distributions with regularly varying tails. Dividing
both sides of Equation 5.10 to FI(u0) and using subexponential distribution, one can
write

lim
u0→∞

ψ(u0)
FI(u0)

= ρ

1 + ρ

∞∑
n=0

1
(1 + ρ)n

n = 1
ρ
, (5.13)

by interchanging limu0→∞ with
∑∞

n=0. The tail distribution mostly determines the ruin
probability and the solvency of the system [14], such that

FI ∈ S ⇔ ψ(u0) ∼ ρ−1FI(u0), u0 → ∞ ⇔ (1 − ψ(u0)) ∈ S. (5.14)
Hence, in heavy-tailed cases, ruin can occur even in the case of a sufficiently large

threshold and it highly depends on the integrated tail of the loss distribution [11].

6. Implementation
The real-life insurance data from the Copula package of the R programming language,

containing 1500 accident indemnity payments (Loss) and corresponding allocated loss
adjustment expenses (ALAE) is utilized to illustrate the proposed combined model. ALAE
data set covers mainly the company expenses attributable to the settlement of losses,
including fees paid to outside attorneys, medical consultancy, insurance experts, legal
fees, etc. These general expenses are mostly covered by the insurer’s expense reserves
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which are dependent on claims payment process. After extracting 34 claims, which are
left truncated and censored due to policy limits and deductibles, we plot the uncensored
1466 claims in original and log-return scales shown in Figure 1. We find the Loss and
ALAE return series are mean reverting and show increased volatility periods.
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Figure 1. Plots of data in log-return and original scale.

Insurance data generally violates the normal distribution assumptions, and the extreme
values at the tail portions require more attention. The descriptive statistics in Table 2
depict that Loss and ALAE yield wide ranges. They both do not have a symmetrical
distribution and show heavier tails than a standard normal distribution. Jarque-Bera test
validates that both data sets are not normally distributed, and the Augmented Dickey-
Fuller test rejects the existence of unit root. To facilitate the implementation of the
models, log-return series are used in the application.

The stepwise implementation of the proposed approach is presented in Table 3 in detail.
Based on the algorithm, we first assess if the data is heavy-tailed to apply EVT by using
QQ plots (Figure 2). The Loss and ALAE data set asymmetrically disperse from the
normal distribution in the left and right tails and show convexity, indicating heavier tails
and right skewness for the distribution. While the difference is slight for the left tail, we
can see that the right tail deviates considerably from the normal distribution, suggesting
a heavy right tail.

Next, we employ ME plots (Figure 3) to aid in the selection of threshold values by inves-
tigating where the function shows linearity and determining the GPD model’s adequacy
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Table 2. Descriptive statistics for Loss and ALAE.

Loss ALAE
Minimum 10 15
Maximum 2,173,595 501,863
Mean 37,110 12,017
Skewness 10.9656 10.0787
Kurtosis 3.3655 4.0912
Standard Deviation 92,513 26,712
Jarque-Bera Test 2.6444e6 1.3918e6

ADF Unit Root Test −32.2487 −31.76284
Observations 1466 1466

Table 3. Algorithm of the bivariate dynamic EVT-GARCH-Copula model.

Compute the portfolio return of the log-return data set.
for j ={Loss, ALAE}

for p, q,m, s = 0, 1, 2
Fit ARMA(p, q)-GARCH(m, s)
Compute AIC, BIC.

end
end
Optimal models are determined by min{AIC, BIC}.
for j ={Loss, ALAE}

for k = 1 : (n− 1) − (moving window length).
for i = k : k + (moving window length)

ARMA(p, q)-GARCH(m, s) parameters are estimated.
Standardized residuals (std. res.) are obtained.
Std. res. are converted to uniform std. res.
Fit copula model to uniform std. res. and simulate one day ahead estimates.
Back transform uniform std. res. to std. res. using the inverse cdf.
EVT applied to simulated std. res.
Select threshold value, and estimate GPD parameters.

end
Use GPD parameters, estimate residual VaRj and ESj .
Use ARMA-GARCH coefficients, estimate VaRj and ESj .

end
Compute the portfolio VaR and ES.
Determine if there is a violation.
Compute the heavy tailed ruin probability, ψ(u0).

end

in practice. Visually, plots show linearity for the threshold value between 3 and 5 for Loss
and 2.5 and 4.5 for ALAE.

Figure 4 shows that the Hill estimators of the Loss and ALAE expose non-linearity
when the ordered statistics for the threshold value are lower than they should be. When
the threshold value is increased the Hill estimator becomes linear around the optimal
threshold, i.e. the 1400th observation, corresponding to 95.5%. Using the information of
QQ, ME, and Hill plots, 95% confidence level for the risk measures for Loss and ALAE
are 3.5296 and 3.1219, respectively.

Contrary to the standard implementation of EVT in univariate cases, we consider joint
tail behavior of Loss and ALAE under copula dependence structure. The joint behavior



258 B. Yıldırım Külekci, U. Karabey, A.S. Selcuk-Kestel

-3 -2 -1 0 1 2 3

Theoretical Quantiles

0

0.5

1

1.5

2

2.5

S
a
m

p
le

 Q
u
a
n
ti
le

s

106

(a) Loss.

-3 -2 -1 0 1 2 3

Theoretical Quantiles

0

1

2

3

4

5

S
a
m

p
le

 Q
u
a
n
ti
le

s

105

(b) ALAE.

Figure 2. QQ plots.
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Figure 3. ME plots.
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Figure 4. Hill plot for Loss and ALAE.

of Loss and ALAE is examined through copula functions with equally likely weights in a
portfolio. For the bivariate case, the dependence measures given in Table 4 range between
0.3087 and 0.4437, suggesting a positive dependence between Loss and ALAE. The scatter
plot on a log-scale (Figure 5) shows definite also positive dependence. We can see that in
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the upper tail of the figure, large values of both variables are highly correlated with each
other. In contrast, the lower-left corner displays a more diffused dependence structure.

Table 4. Empirical dependence measures for Loss and ALAE.

Kendall Pearson Spearman Right Tail
0.3087 0.4313 0.4437 0.4313
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ALAE
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Figure 5. Scatter plot of Loss vs. ALAE observations.

For the dynamic cases, it should be pointed out that daily occurrences do not pose a
strong base for implementing the proposed model. However, similar to the literature on
the modeling of daily Loss and ALAE, we can state a general framework to apply our
approach to larger time units, i.e., monthly, or quarterly, if the data for more extended
periods are available.

We consider nine copula models to cover a variety of dependence structures. These are
Gaussian, Student’s-t, Clayton, rotated Clayton, symmetrized Joe-Clayton (SJC), Frank,
Gumbel, rotated Gumbel, and Plackett. As we follow a dynamic approach, a copula fitting
procedure is performed for the tails in every sliding window of length 250. The copula
model, which most frequently fits the data within t ∈ (251, 1465) based on log-likelihood,
is found to be the SJC followed by the rotated Clayton and the Student’s-t copula (Figure
6). The Gaussian copula shows the worst performance of being the optimal copula among
others.

As next, we run the GPD-GARCH model for univariate and bivariate cases to utilize
their results to set a base for comparison after the incorporation of the copula model.
ARMA-GARCH models are fitted for each lag {p, d,m, s ≤ 2}, based on AIC and BIC for
the univariate static case. The best-fitting model is found to be AR(1)-GARCH(1,1) for
both Loss and ALAE, and the standardized residual distribution is selected as Student’s-t
distribution to reflect on the heavy tail [29]. The GPD is fitted to the exceedances for both
series, and parameter estimates are obtained by maximum likelihood estimation (MLE).

Finally, the univariate static VaR0.95 and ES0.95 values given in Table 5, yield the
highest risk measures to be observed from GPD and EWMA methods in which the order
of rank changes for VaR and ES. The results of the GPD-GARCH model for Loss can be
interpreted as one day ahead claim amount will exceed 4.4209 with a probability of 0.05,
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Figure 6. Optimality in hitting numbers of dynamic copula models.

Table 5. Risk measure point estimates for the univariate static case.

Univariate
Loss ALAE

Method VaR ES VaR ES
Historical 3.5296 4.4130 3.1219 4.1712
Normal 3.4809 4.3732 3.1173 4.1594
EWMA 4.2138 5.0801 3.5494 4.6742
GPD-GARCH 4.4209 4.9041 3.3002 4.7215

i.e., given that this level is exceeded, the expected claim amount will be 4.9041. A similar
interpretation holds for the ALAE and also for other methods tested.

After the static approach explained above, we test the univariate dynamic case. For the
sliding window framework, 250 days of training data are used to re-estimate the param-
eters, and we simulate 1000 scenarios to calculate one-day ahead risk measure forecasts.
Therefore, the estimated values cover 251th to 1465th data resulting in 1215 estimated
points. In the estimation period, re-examining the ME plot and determining the thresh-
old value in each moving window is not feasible. Therefore, we assume that the number
of exceedances is the top 5% of the investigated data set in each moving window. Op-
timally, for each moving window, the lags should be re-estimated, which creates a com-
putational challenge in programming. Therefore, regarding the literature [27], we fit an
AR(1)-GARCH(1,1) in each moving window.

The violation numbers for the univariate and bivariate dynamic cases are calculated.
The expected number of violations for VaR0.95 is 1215×0.05 ≈ 61, hence the GPD-GARCH
method provides closer estimates of the actual VaR level with 68 and 67 violations as shown
in Table 6. The method yielding the highest violation numbers is EWMA, even though
in the static case in Table 5, EWMA has the closest risk measure estimations to the best
performing GPD-GARCH method. This proves the need for the dynamic method over
the static one and the importance of the moving windows approach for the risk measure
estimation.

In the bivariate dynamic case, referred to as Portfolio (Table 6), the decrement in the
violation rates from the univariate dynamic (68 and 67 violations) to the bivariate dynamic
(65 violations) case means that gathering several insurance branches under one roof can
reduce the risk by itself. In the bivariate dynamic copula case for the portfolio, the SJC
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Table 6. Violation numbers for the univariate and bivariate dynamic cases.

Univariate Bivariate
Loss ALAE Portfolio

Method VaR ES VaR ES VaR ES
Historical 80 28 84 33 72 30
Normal 77 29 82 33 72 29
EWMA 80 33 84 35 79 32
GPD-GARCH 68 27 67 29 65 27
GPD-GARCH-Copula - - - - 62 23

copula is added to the model. The GPD-GARCH-Copula model is found to reduce the
number of VaR violations from 65 to 62. However, the most significant change is for the
ES measure, which is reduced from 27 to 23 violations by including the copula model.

Forecasted univariate and bivariate dynamic risk measures are given in Figure 7. For
space limitations, we only include VaR estimates for the univariate case and VaR and
ES estimates for the bivariate portfolio case. It shows that, while HS and NA provide
closer results to each other, EWMA responds with a jump after a high loss and decreases
towards the average when the subsequent loss is lower. Due to EVT incorporating the
extreme values in modeling, the estimated risk measures are overall higher than the other
methods.

It is observed that the EVT method can capture extremes more efficiently for the ALAE
data since the Loss data contains fewer extremes than ALAE. The bivariate dynamic case
shows that the GPD-GARCH-Copula method is more sensitive to high returns and re-
sponds immediately with higher VaR and ES values than any other method. As expected,
dependence modeling for the most extreme data in the tail contributes to this outcome.

6.1. Backtesting
The VaR violation numbers for each method under univariate dynamic and bivariate

dynamic cases are tested. POF test results are given in Table 7. In the univariate case,
all methods except the GPD-GARCH fails the test (p-value< 0.05) with LRPOF > 3.841.
However, in the bivariate case, all methods except the EWMA passes the test (p-value>
0.05).

Table 7. Proportion of failures test results.

Univariate Bivariate
Loss ALAE Portfolio

Method LRPOF p-value LRPOF p-value LRPOF p-value
Historical 5.8644 0.0155* 8.4119 0.0037* 2.0755 0.1497
Normal 4.2338 0.0396* 7.0858 0.0078* 2.0755 0.1497
EWMA 5.8644 0.0155* 8.4119 0.0037* 5.2936 0.0214*
GPD-GARCH 0.8784 0.3486 0.6559 0.4180 0.3063 0.5800
GPD-GARCH-Copula - - - - 0.0269 0.8697
*Significant at 5% level.

IND test results are given in Table 8. As expected, State 1 (I00) is the group with
the highest number of observations, as none of the models had too many violations, to
begin with. In addition, State 4 (I11) is encountered only one time in every method.
All methods accept GPD-GARCH, and GPD-GARCH-Copula methods fail the test with
LRIND > 3.841, in both univariate and bivariate cases.
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Table 8. Christoffersen’s independence and interval forecast test results.

Univariate
Loss

Method State 1 State 2 State 3 State 4 LRIND p-value
Historical 1054 79 80 1 5.8350 0.0157*
Normal 1060 76 77 1 5.1335 0.0235*
EWMA 1054 79 80 1 5.8350 0.0157*
GPD-GARCH 1079 67 68 1 3.2839 0.0700

ALAE
Method State 1 State 2 State 3 State 4 LRIND p-value
Historical 1047 83 83 1 6.7071 0.0096*
Normal 1051 81 81 1 6.2019 0.0128*
EWMA 1047 83 83 1 6.7071 0.0096*
GPD-GARCH 1081 66 66 1 3.0134 0.0826

Bivariate
Portfolio

Method State 1 State 2 State 3 State 4 LRIND p-value
Historical 1071 71 71 1 3.9578 0.0467*
Normal 1071 71 71 1 3.9578 0.0467*
EWMA 1057 78 78 1 5.4793 0.0192*
GPD-GARCH 1085 64 64 1 2.6693 0.1023
GDP-GARCH-Copula 1091 61 61 1 2.1895 0.1390
*Significant at 5% level.

CC test results are given in Table 9. All methods, accept the GPD-GARCH and GPD-
GARCH-Copula methods, fail the test with LRCC > 5.99 at significance level 5%.

Table 9. Composite test results.

Univariate Bivariate
Loss ALAE Portfolio

Method LRCC p-value LRCC p-value LRCC p-value
Historical 11.6994 0.0029* 15.1189 0.0005* 6.0333 0.0490*
Normal 9.3673 0.0092* 13.2877 0.0013* 6.0333 0.0490*
EWMA 11.6994 0.0029* 15.1189 0.0005* 10.7730 0.0046*
GPD-GARCH 4.1622 0.1248 3.6693 0.1597 2.9756 0.2259
GPD-GARCH-Copula - - - - 2.2164 0.3302
*Significant at 5% level.

6.2. Asymptotic ruin probabilities
In computing ψ(u0) in all models, the initial surplus u0 is designated as the estimated

VaR and ES risk measures to satisfy the asymptotic convergence and compare the estima-
tion methods. The loading factor, ρ, is chosen as 0.01, which affects the ruin probability
linearly as in Equation 5.14. Therefore, choosing a different ρ will not affect the ranking
of the models as they are only affected by the distributional assumptions of each model.

Estimated ruin probabilities for the univariate static case are given in Table 10. For
Loss data, the lowest ruin probability is obtained in the GPD-GARCH method followed
by the HS. For the ALAE data, the lowest ruin probability with VaR initial surplus
is obtained in the GPD-GARCH method, whereas with ES, it is obtained in the EWMA
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method. Overall, average ruin probabilities from lower to higher belong to; GPD-GARCH,
EWMA, HS, and NA.

Table 10. Ruin probability estimates for the univariate static case.

Univariate
Loss ALAE

Method VaR ES VaR ES
Historical 0.0656 0.0255 0.0037 0.0014
Normal 0.0914 0.0386 0.0034 0.0011
EWMA 0.0772 0.0310 0.0030 0.0008
GPD-GARCH 0.0234 0.0141 0.0014 0.0010

In the univariate dynamic case, 250 data are used in a sliding window framework. By
doing that, time variation in data is incorporated into the model and ruin probability as
well. Figure 8 presents the ruin probabilities for the Loss and ALAE data sets based on four
estimation methods with initial surplus u0 = VaR0.95. The overall lowest ruin probability
is obtained with the GPD-GARCH model for both Loss and ALAE. The highest ruin
probability presented is the EWMA method for Loss and the HS for ALAE. As the ruin
probability depends on the underlying distribution, time-varying model parameters play
an important role along with estimated risk measures used as initial surplus.

Similar results hold for the ruin probabilities with u0 = ES0.95. The difference with
ES0.95 compared to VaR0.95 is the lowered ruin probabilities, as the initial surplus is
higher with the ES risk measures. For the bivariate dynamic case, the overall lowest ruin
probability is obtained with the GPD-GARCH-Copula model for the portfolio. The high-
est ruin probability presented is HS for VaR and EWMA for ES. Again, ruin probabilities
with initial wealth ES0.95 are lower than VaR0.95 as expected.

To compare the dynamic ruin probabilities over the period t ∈ [251, 1465], average
values of the estimated univariate dynamic and bivariate dynamic ruin probabilities are
computed and presented in Table 11. Even though the GPD-GARCH-Copula model
estimates higher risk measures, it comes with a reward of lowered ruin probabilities which
cannot be said for other models tested. Dynamically analyzing the bivariate actuarial
data, instead of univariate case, significantly reduces the risk and ruin probability by
considering the time-varying dependence between risks.

Table 11. Average ruin probability estimates for the univariate and bivariate
dynamic cases.

Univariate Bivariate
Loss ALAE Portfolio

Method VaR ES VaR ES VaR ES
Historical 0.0461 0.0159 0.0044 0.0027 0.0146 0.0055
Normal 0.0456 0.0149 0.0037 0.0016 0.0124 0.0043
EWMA 0.0543 0.0174 0.0036 0.0023 0.0123 0.0050
GPD-GARCH 0.0367 0.0101 0.0026 0.0011 0.0085 0.0030
GPD-GARCH-Copula - - - - 0.0059 0.0015
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7. Concluding comments
This paper investigates the effects of time-varying extreme dependence in the right

tail by using the EVT-GARCH-Copula model. The primary motivation is to explicitly
determine risk measures under different modeling assumptions for the risk management
of actuarial data in case of extremes. VaR and ES risk measures are estimated by the
dynamic GPD-GARCH-Copula model and compared with three other commonly used
methods; historical simulation, normal approximation, and exponentially weighted moving
average. Results are validated by backtesting the violation rates. This study contributes
to the literature by expanding the combination of three models to show the effects of EVT
on the heavy-tailed asymptotic ruin probabilities by using the estimated risk measures as
initial surplus.

Based on the findings, we conclude that the proposed GPD-GARCH-Copula outper-
forms other models in providing more reliable risk measures. Additionally, we depict that
the valuation of multivariate risk sources in a dependent framework provides more robust
risk measures and lowered ruin probabilities.

It should be noted that the constraints such as deductibles, limits, and stop-loss con-
tracts which can originate from the reinsurance contracts are taken out of the scope of
this paper. These can be added to the risk measure estimations and ruin probabilities by
a few adjustments in future studies.
Acknowledgment. The authors would like to thank editors and anonymous reviewers
for their constructive comments, which help improve the paper significantly.
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