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ABSTRACT Fractional Calculus started in 1695 with Leibniz discussing the meaning of Dny for n = 1/2.
Many mathematicians developed the theoretical concepts, but the area remained somewhat unknown from
applied sciences. During the eighties FC emerged associated with phenomena such as fractal and chaos
and, consequently, in nonlinear dynamical. In the last years, Fractional Calculus became a popular tool for the
modeling of complex dynamical systems with nonlocality and long memory effects.
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INTRODUCTION

The generalization of the concept of derivative Dα f (x) to
non-integer values of α goes back to the beginning of the
theory of differential calculus in the follow-up of the bril-
liant ideas of Gottfried Leibniz (Machado and Kiryakova
2019). The development of this area of knowledge is due
to the contributions of important scientists such as Euler,
Liouville and Riemann (Machado et al. 2010; Valério et al.
2014) as represented in Fig. 1. In the fields of physics and
engineering, Fractional Calculus (FC) is presently associated
with the modelling of complex phenomena with nonlocal-
ity and long memory effects (Tarasov 2019a,b; Băleanu and
Lopes 2019a,b). This paper introduces the fundamentals of
this tool, its application in the control of dynamical systems,
and present day state of development.

MATHEMATICAL FUNDAMENTALS OF FRAC-
TIONAL CALCULUS

The most used definitions of a fractional derivative of order
α are the Riemann-Liouville (RL, t > a, Re (α) ∈ ]n − 1, n[),
Grünwald-Letnikov (GL, t > a, α > 0) and Caputo (C, t > a,
n− 1 < α < n) formulations (Kochubei and Luchko 2019a,b;
Karniadakis 2019):
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where Γ (·) is Euler’s gamma function, [x] means the integer
part of x, and h is the step time increment.

These operators capture the history of all past events, in
opposition to integer derivatives that are ‘local’ operators.
This means that fractional order systems have a memory
of the dynamical evolution. This behaviour has been rec-
ognized in several natural and man made phenomena and
their modelling becomes much simpler using the tools of
FC, while the counterpart of building integer order mod-
els leads often to complicated expressions Machado and
Lopes (2020b,a). The geometrical interpretation of fractional
derivatives has been the subject of debate and several per-
spectives have been proposed (Machado 2003, 2021).
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Figure 1 The FC timeline

Using the Laplace transform we have the expressions:
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sα−k−1 f (k) (0) ,

(2b)

where s and L denote the Laplace variable and operator,
respectively.

The Mittag-Leffler function (MLF), Eα (t), is defined as:

Eα (t) =
∞

∑
k=0

tk

Γ (αk + 1)
, α ∈ C, Re (α) > 0. (3)

The MLF represents a bridge between the exponential
and the power law functions. In particular, when α = 1 the
MLF simplifies and we have E1 (t) = et, while, for large val-
ues of t, the asymptotic behaviour yields Eα (−t) ≈ 1

Γ(1−α)
1
t ,

α ̸= 1, 0 < α < 2.
Since the Laplace transform leads to:

L {Eα (±atα)} =
sα−1

sα ∓ a
(4)

we observe a generalization of the Laplace transform pairs
from the exponential towards the ML, namely from integer

up to fractional powers of s. The more general MLF, often
called two-parameter MLF, is given by:

Eα,β (t) =
∞

∑
k=0

tk

Γ (αk + β)
, α, β ∈ C, Re (α) , Re (β) > 0. (5)

The function defined by (3) gives a generalization of (5),
since Eα (t) = Eα,1 (t).

FRACTIONAL CONTROL
Let us consider an elemental feedback control system of
fractional order α, with unit feedback and transfer func-
tion G (s) = K

sα , 1 < α < 2, in the direct loop (Machado
1997, 2001). The open-loop Bode diagrams of amplitude
and phase have a slope of −20 dB/dec and a constant phase
of −α π

2 rad, respectively. Therefore, the closed-loop sys-
tem has a constant phase margin of π

(
1 − α

2
)

rad, that is
independent of the system gain K.
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Assume that K = 1, so that G (s) = 1
sα , and that the

closed-loop system is excited by an unit step input R (s) = 1
s .

The output response will be C (s) = 1
s(sα+1) , or, in the time

domain, c (t) = 1− Eα (−tα). Figure 2 depicts the responses
for α = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}. We observe
that the fractional values ‘interpolate’ the cases of integer
orders α = {0, 1, 2}. We note a fast initial transient followed
by a slow convergence for the steady-state value, which is
typical of many fractional order systems.

A popular application of FC is in the area of control
(Petráš 2019) and corresponds to the generalization of
the Proportional, Integral and Derivative (PID) algorithm,
namely to the fractional PID. The PIλDµ control algorithm
has a transfer function given by:

Gc (s) = KP + KIs−λ + KDsµ, (6)

where KP, KI and KD are the proportional, integral and
differential gains, and λ and µ are the fractional orders of
the integral and derivative actions, respectively. The cases
(λ, µ) = {(0, 0) , (1, 0) , (0, 1) , (1, 1)}, correspond to the P,
PI, PD and PID, respectively.

Figure 2 Time response c (t) = 1 − Eα (−tα) of the fractional
closed-loop system for a unit step reference input and α =
{0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2}

PROGRESS OF THE FRACTIONAL CALCULUS
We can estimate of the present day state of FC using publicly
available information, just to remind that until 1974 there
were only 1 book devoted to FC as a topic, while by 2018
the number of FC books were estimated to be more than
240 Machado and Kiryakova (2017). For that purpose we se-
lected the program VOSviewer van Eck and Waltman (2009,
2017) as the tool for processing bibliographic information.

Let us consider (i) data is available at Scopus database,
(ii) papers published during year 2020, and (iii) 8 search key-
words, namely {Fractional calculus, Fractional derivative,
Fractional integration, Fractional dynamics, Mittag-Leffler,
Derivative of non-integer order, Integral of non-integer or-
der, Derivative of complex order, Integral of complex order}
that yields 6,589 records. The VOSViewer allows several
perspectives of bibliographic analysis, but let us start by
considering a network plot for the options ‘Co-occurrence’,
‘All keywords’, ‘Full counting’, ‘Minimum number of occur-
rence of a keyword=4’. This search gives 2,764 keywords, as
shown in Fig. 3. On the other hand Fig. 4 depicts the net-
work plot for the options ‘Co-authotship’, ‘Countries’, ‘Full
counting’, ‘Minimum number of occurrence of a country=4’,
, ‘Minimum number of citations of a country=2’ that gives
77 cases. The two network plots show that FC is presently
applied in all fields of science, going from the areas of math-
ematics, physics, engineering and economy, up to medicine,
biology and genetics, and the topic is presently very popular
in all countries of the globe.
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CONCLUSIONS

This work introduced and discussed several aspects of the
FC. The history, fundamentals and the use of FC in control
were described. The present day areas of application of
FC and its evolution were also analyzed using a computer
package for processing bibliographic information.
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